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Abstract

In this paper, we consider a class of Morse-Smale diffeomorphisms
defined on a closed 3-manifold (non-necessarily orientable) under the as-
sumption that all their saddle points have the same dimension of the
unstable manifolds. The simplest example of such diffeomorphisms is
the well-known “source-sink” or “north pole - south pole” diffeomorphism,
whose non-wandering set consists of exactly one source and one sink. Such
systems, as Reeb showed back in 1946, can be realized only on the sphere.
We generalize his result, namely, we show that diffeomorphisms from the
considered class also can be defined only on the 3-sphere.
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INTRODUCTION AND FORMULATION OF
THE RESULTS
The class of dynamical systems, introduced by S. Smale in 1960 [15] and known
today as Morse-Smale systems, played not the least role in the formation of
the modern dynamical systems theory. The study of these systems remains an
important part of it because they form a class of structurally stable systems
which, in addition, have zero topological entropy [10], [9], [13], that makes them
in this sense by “the simplest” structural stable systems.

A close relation of the Morse-Smale diffeomorphisms (MS-diffeomorphisms)
with the topology of the ambient manifold allows us to realize various topological
effects in the dynamics of such systems. The classical example demonstrating
such a relation is systems with exactly two points of extreme Morse indices. In
this case, it follows from Reeb’s theorem [12], the ambient manifold is homeo-
morphic to the sphere.

Another brilliant illustration of researched relations is the decomposition
of an orientable 3-manifold into a connected sum of S2 × S1 whose number of
summands is completely determined by a structure of the non-wandering set
of an MS-diffeomorphism without heteroclinic curves defined on it. This result
was obtained in papers by H. Bonatti, V. Grines, and V. Medvedev [2], [3] and
is based on the breakthrough result about the existence of a tame neighborhood
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of a 2-sphere with one point of wildness. The ideas that authors put into their
proofs have been extremely helpful in our research.

The present paper is a straightforward generalization of Reeb’s Theorem on
the following class of difeomorphisms. Let f be an MS-diffeomorphism defined
on a closed connected 3-manifold M3 and all its saddle points have the same
dimension of their unstable manifolds. Denote this class as G. Then we can
formulate the main result of this work.

Theorem 1. Any closed connected 3-manifold M3, admitting a diffeomorphism
f ∈ G, is homeomorphic to the 3-sphere.

Acknowledgement. The work was supported by the Russian Science Foun-
dation (Project No. 23-71-30008).

1 AUXILIARY INFORMATION AND FACTS
This section introduces basic concepts and facts from topology and dynamical
systems theory.

1.1 Some topological facts
Let X, Y be topological spaces, A ⊂ X and B ⊂ Y are their subsets and
g : A→ B is a homeomorphism. Let ∼ be the minimal equivalence relation on
X ⊔ Y for which a ∼ g(a) for all a ∈ A. The factor space for this equivalence
relation is said to be obtained by gluing the space Y to the space X by the map
g, written X ∪g Y .

Let X, Y be compact n-manifolds, D1 ⊂ X, D2 ⊂ Y be subsets homeo-
morphic to Dn, h1 : Dn → D1, h2 : Dn → D2 be the corresponding home-
omorphisms and g : ∂D1 → ∂D2 be a homeomorphism such that the map
h−1
2 gh1

∣∣
∂Dn : Sn−1 → Sn−1 reverses orientation. Then the space X#Y =

(X \ intD1) ∪g (Y \ intD2) is called the connected sum of X and Y .
If X ⊂ Y then the map iX : X → Y such that iX(x) = x for all x ∈ X, is

called the inclusion map of X into Y.
Let X and Y be Cr-manifolds. Denote by Cr(X,Y ) the set of all Cr-

maps λ : X → Y . A map λ : X → Y is said to be a Cr-embedding if it is
a Cr-diffeomorphism onto the subspace λ(X). C0-embedding is also called a
topological embedding.

A topological embedding λ : X → Y of an m-manifold X into an n-manifold
Y (m ≤ n) is said to be locally flat at the point λ(x), x ∈ X, if the point λ(x) is
in the domain of such a chart (U,ψ) of the manifold Y that ψ(U ∩λ(X)) = Rm,
here Rm ⊂ Rn is the set of points for which the last n−m coordinates equal to 0
or ψ(U ∩λ(X)) = Rm

+ , here Rm
+ ⊂ Rm is the set of points with the non-negative

last coordinate.
An embedding λ is said to be tame and the manifold X is said to be tamely

embedded if λ is locally flat at every point x ∈ X. Otherwise the embedding λ
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is said to be wild and the manifold X is said to be wildly embedded. A point
λ(x) which is not locally flat, is said to be the point of wildness.

Proposition 1 ([1], Theorem 4). Let T be a two-dimensional torus tamely
embedded in the manifold S2 × S1 in such a way that iT∗(π1(T )) ̸= 0. Then T
bounds in S2 × S1 a solid torus.

Proposition 2 ([2], Proposition 0.1). Let M3 be a closed connected 3-manifold
and let λ : S2 →M3 be a topological embedding of the 2-sphere which is smooth
everywhere except one point. Let Σ = λ(S2). Then any neighborhood V of the
sphere Σ contains a neighborhood K diffeomorphic to S2 × [0, 1].1

Let us assume that the empty set and only the empty set has a dimension −1
(dim∅ = −1). The separable metric space X has a dimension ≤ n (dimX ≤ n)
if any neighborhood Vp of a point p ∈ X contains a neighborhood Up such that
dim(∂Up) ≤ n−1. The space X has a dimension n (dimX = n) if the statement
dimX ≤ n is true and the statement dimX ≤ n− 1 is false.

It is said that a subset D of a connected space X divides it if the space X \D
is disconnected.

Proposition 3 ([8], Corollary 1, p.48). Any connected n-manifold cannot be
divided by a subset of the dimension ≤ n− 2.

1.2 Morse-Smale diffeomorphisms
Here and below, we assume that Mn is a closed connected 3-manifold with a
metric d and a map f :Mn →Mn is a diffeomorphism.

The trajectory or the orbit of a point x ∈Mn is the set Ox = {fm(x),m ∈ Z}.
A set A ⊂ Mn is said to be f -invariant if f(A) = A, that is A consists of

hole orbits.
A compact f -invariant set A ⊂ Mn is called an attractor of the diffeomor-

phism f if it has a compact neighborhood UA such that f(UA) ⊂ intUA and
A =

⋂
k≥0

fk(UA). The neighborhood UA in this case is said to be trapping. The

basin of the attractor A is the set

W s
A = {x ∈Mn : lim

k→+∞
d(fk(x), A) = 0}.

A repeller and its basin are defined as an attractor and its basin for f−1.
A point x ∈Mn is said to be a wandering for the diffeomorphism f if there

is an open neighborhood Ux of x such that fk(Ux) ∩ Ux = ∅ for all k ∈ N.
Otherwise, the point x is said to be a non-wandering. The set of all non-
wandering points is called the non-wandering set and it will be denoted by Ωf .
The non-wandering set Ωf is f -invariant and if Ωf is finite, then it consists only
of periodic points, i.e. such points p ∈Mn that there exists the natural number

1This fact was proven in [2] for an orientable manifold M3, but the proof don’t use the
orientability anywhere. So we can use this result in our case too.
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m for which fm(p) = p. If this equality is not satisfied for any natural number
k < m, then m is called the period of a point p, denote it by mp.

For a periodic point p, let us define sets

W s
p = {x ∈Mn : lim

k→+∞
d(fkmp(x), p) = 0}

and
Wu

p = {x ∈Mn : lim
k→−∞

d(fkmp(x), p) = 0},

which are called, respectively, stable and unstable manifolds of the point p. These
sets are also known as invariant manifolds of the point p.

A periodic point p with a period mp is said to be hyperbolic if the absolute

values of each eigenvalues of the Jacobi matrix
(
∂fmp

∂x

)∣∣∣∣
p

is not equal to 1.

If the absolute values of all the eigenvalues are less than 1, then p is called an
attracting, a sink point or a sink; if the absolute values of all the eigenvalues are
greater than 1, then p is called a repelling, a source point or a sink. Attracting
and repelling fixed points are called nodes. A hyperbolic periodic point which
is not a node is called a saddle point or a saddle.

The hyperbolic structure of the periodic point p and the finiteness of the non-
wandering set implies that its the stable and the unstable manifolds are smooth
submanifolds of Mn which are diffeomorphic to Rqp and Rn−qp respectively,
where qp is a Morse index of p, that is the number of the eigenvalues of Jacobi
matrix whose the absolute value is greater than 1.

A connected component ℓup (ℓsp) of the set Wu
p \p (W s

p \p) is called an unstable
(stable) separatrix of the periodic point p. For p let νp be +1(−1) if fmp |Wu

p

preserves (reverses) orientation and let µp be +1(−1) if fmp |W s
p

preserves (re-
verses) orientation.

A diffeomorphism f : M3 → M3 is called a Morse-Smale diffeomorphism
(f ∈MS(M3)) if

1) the non-wandering set Ωf is finite and hyperbolic;
2) for every two distinct periodic points p, q the manifolds W s

p ,W
u
q intersect

transversally.
Note that all the facts below are proved in the case when Mn is orientable,

but the direct check allows us to verify the correctness of these results for non-
orientable manifolds as well.

Proposition 4 ([5], Theorem 2.1). Let f ∈MS(M3). Then

1. Mn =
⋃

p∈Ωf

Wu
p ,

2. Wu
p is a smooth submanifold of the manifold Mn diffeomorphic to Rqp for

every periodic point p ∈ Ωf ,

3. cl(ℓup) \ (ℓup ∪ p) =
⋃

r∈Ωf :ℓup∩W s
r ̸=∅

Wu
r for every unstable separatrix ℓup of a

periodic point p ∈ Ωf .
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If σ1, σ2 are distinct periodic saddle points of a diffeomorphism f ∈MS(Mn)
then the intersection W s

σ1
∩ Wu

σ2
̸= ∅ is called a heteroclinic. If dim(W s

σ1
∩

Wu
σ2
) > 0 then a connected component of the intersection W s

σ1
∩Wu

σ2
is called a

heteroclinic manifold and if dim(W s
σ1

∩Wu
σ2
) = 1 then it is called a heteroclinic

curve. If dim(W s
σ1

∩Wu
σ2
) = 0 then the intersection W s

σ1
∩Wu

σ2
is countable,

each point of this set is called a heteroclinic point and the orbit of a heteroclinic
point is called the heteroclinic orbit.

Proposition 5 ([5], Proposition 2.3). Let f ∈ MS(Mn) and σ be a saddle
point of f such that the unstable separatrix ℓuσ has no heteroclinic intersections.
Then

cl(ℓuσ) \ (ℓuσ ∪ σ) = {ω},
where ω is a sink point. If qσ = 1 then cl(ℓuσ) is an arc topologically embedded
into Mn and if qσ ≥ 2 then cl(ℓuσ) is the sphere Sqσ topologically embedded into
Mn.

A diffeomorphism f ∈ MS(Mn) is called a “source-sink” diffeomorphism if
its non-wandering set consists of a unique sink and a unique source.

Proposition 6 ([5], Theorem 2.5). If a diffeomorphism f ∈ MS(Mn), n > 1,
has no saddle points then f is a “source-sink” diffeomorphism and the manifold
Mn is homeomorphic to the n-sphere Sn.2

Proposition 7 ([4], Theorem 1). Let f ∈ MS(Mn) and ΩA be such a subset
of Ωf that the set

A = Ω0 ∪Wu
ΩA

is closed and f -invariant. Then

1. the set A is an attractor of the diffeomorphism f ;

2. W s
A =

⋃
p∈(A∩Ωf )

W s
p ;

3. dimA = max
p∈(A∩Ωf )

{qp}.

For an orbit Op of a point p, let mOp
= mp, qOp

= qp, νOp
= νp, µOp

= µp,
W s

Op
=

⋃
q∈Op

W s
q , Wu

Op
=

⋃
q∈Op

Wu
q .

Following the classic paper by S. Smale [14], we introduce on the set of
periodic orbits of f ∈MS(Mn) a partial order ≺:

Oi ≺ Oj ⇐⇒ W s
Oi

∩Wu
Oj

̸= ∅.

According to Szpilrajn’s theorem [16], any partial order (including the Smale
order) can be extended to a total order. Let us consider a special kind of such
total order on the set of all periodic orbits.

We say that numbering of the periodic orbits O1, · · · ,Okf
of the diffeomor-

phism f ∈MS(Mn) is a dynamical if it satisfies the following conditions:
2The second part of this statement can be known as a special case of the Reeb’s Theorem

[12]
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1. Oi ≺ Oj =⇒ i ⩽ j;

2. qOi
< qOj

=⇒ i < j.

Proposition 8 ([5], Proposition 2.6). For any diffeomorphism f ∈ MS(Mn)
there is a dynamical numbering of its periodic orbits.

1.3 Orbit spaces
In this section, we present concepts and facts whose detailed presentation and
proof can be found in the monograph [5].

Let f : Mn → Mn be a diffeomorphism and let X ⊂ Mn be an f -invariant
set. It can be checked directly that the relation x ∼ y ⇐⇒ ∃k ∈ Z : y = fk(x)
is an equivalence relation on X. The quotient set X/f induced by this relation is
called an orbits space of the action of f on X. Let us denote by p

X/f
: X → X/f

the natural projection. A fundumental domain of the action of f on X is a closed
set DX ⊂ X such that there is a set D̃X satisfying:

1. cl(D̃X) = DX ;

2. fk(D̃X) ∩ D̃X = ∅ for each k ∈ Z \ {0};

3.
⋃
k∈Z

fk(D̃X) = X.

If the projection p
X/f

is a cover and the orbits space X/f is connected then,
by virtue of the Monodromy Theorem (see, for example, [5], p.60), for a loop
ĉ ⊂ X/f , closed at a point x̂, there exists its lift c ⊂ X which is a path joining
points x ∈ p−1

X/f
(x̂) and fk(x). In this case, a map η

X/f
: π1(X/f) → Z, defined

by the formula η
X/f

([ĉ]) = k, is a homomorphism which is called induced by the
cover p

X/f
.

Proposition 9. Let f and f ′ be diffeomorphisms defined on f - and f ′-invariant
set X. If ĥ : X/f → X/f ′ is a homeomorphism for which ηX/f = ηX/f ′ ĥ then
there is a homeomorphism h : X → X which is a lift of ĥ (p

X/f′h = ĥp
X/f

) and
such that hf = f ′h.

Proposition 10 ([5], Theorem 2.1.3). Let f ∈ MS(Mn), A be an attractor of
f , ℓsA =W s

A \A, ℓ̂sA = ℓsA/f and DℓsA
be a fundamental domain of the action of

f on ℓsA. Then the projection pℓ̂sA is a cover and the orbits space ℓ̂sA is a smooth
closed n-manifold homeomorphic to pℓ̂sA(DℓsA

). In particular, if the attractor A

coincides with a sink orbit then the manifold ℓ̂sA is homeomorphic to following
manifolds:

• S1 for n = 1;

• Sn−1×̃S1 for n > 1, νA = −1;

• Sn−1×S1 for n > 1, νA = +1.
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2 TOPOLOGY OF 3-MANIFOLDS ADMIT-
TING DIFFEOMORPHISMS FROM THE
CLASS G

Recall that G is a class of Morse-Smale diffeomorphisms f : M3 → M3 defined
on a closed connected 3-manifold M3 (not necessarily orientable), with non-
wandering set Ωf whose all saddle points have the same dimension of their
unstable manifolds.

This section is focused on the proof of the main result of this paper.
Theorem 1. Any closed connected 3-manifold M3, admitting a diffeomor-

phism f ∈ G, is homeomorphic to the 3-sphere.
To prove the main result let us state some auxiliary facts.

Remark 1. Further, without loss of generality, up to the power of the diffeo-
morphism, one may assume that Ωf consists of fixed points only and for all
p ∈ Ωf the numbers νp and µp equal to +1. Moreover, for definiteness, we
suppose that the set Ω1 is empty.

Lemma 1. For any diffeomorphism f ∈ G, the set Ω0 consists of a unique sink.

Proof. Let
R =W s

Ω2
∪ Ω3.

By virtue of Statement 7, the set R is a repeller of the diffeomorphism f and
dimR = 1. It follows from Statement 3 that M3 \R is connected. On the other
hand, according to Statement 4, M3 \ R = W s

Ω0
. From the above we conclude

that the set Ω0 consists of a unique sink.

Let us denote by ω the unique sink of the diffeomorphism f ∈ G.

Lemma 2. In the non-wandering set of any diffeomorphism f ∈ G there exists
a saddle σ such that ℓuσ ⊂ ℓsω.

Proof. By Lemma 1, the fixed points of the diffeomorphism f admit the follow-
ing dynamical order:

ω ≺ σ1 ≺ · · · ≺ σk ≺ α1 ≺ · · · ≺ αs,

where Ω2 = {σ1, · · · , σk}, Ω3 = {α1, · · · , αs}.
(1)

Assume that σ = σ1. Then, it follows from order (1) that

∀ p ∈ Ωf \ ω =⇒ ℓuσ ∩W s
p = ∅.

In the other words, ℓuσ can only intersect with W s
ω. By Statement 4 (1), any

point x ∈ ℓuσ has to lie on the stable manifold of some fixed point. Hence,
ℓuσ ⊂ ℓsω.
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Figure 1: Sphere Σσ

Further, let the saddle σ ∈ Ω2 satisfies the conclusion of Lemma 2, and let
Σσ = cl(ℓuσ). It follows from Statements 5 and 4 (2) that Σσ = ℓuσ ∪ {ω} ∪ {σ}
is an embedding of the two-dimensional sphere (see Fig. 1). This embedding is
smooth everywhere except, maybe, the point ω. Let Mσ =M3 \ Σσ.

Lemma 3. The manifold Mσ is disconnected.

Proof. Since for any manifold the notions of connectivity and path connectivity
are equivalent, they will be used interchangeably hereafter.

Step 1. First of all, let us proof that the set Lσ = ℓsω \ ℓuσ is disconnected.
Suppose the contrary: any two distinct points x, y ∈ Lσ can be connected by a
path in Lσ (see Fig. 2).

Figure 2: The space Lσ.
Figure 3: The orbits space of the
sink basin

Consider the orbits space ℓ̂sω = ℓsω/f of the sink ω and put pω = pℓ̂sω
: ℓsω →

ℓ̂sω, ηω = ηℓ̂sω
: π1(ℓ̂

s
ω) → Z. By Statement 10, the map pω is a cover, ℓ̂sω is

homeomorphic to S2×S1 and ℓ̂uσ is homeomorphic to the two-dimensional torus
(see Fig. 3).
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Since ℓuσ ⊂ ℓsω, then ℓ̂uσ ⊂ ℓ̂sω. Moreover, ℓ̂uσ = pω(ℓ
u
σ) that, by Statement 4,

implies that ℓ̂uσ is a smooth embedding of the 2-torus into ℓ̂sω (see Fig. 3). By
Statement 10, homomorphism ηω is non-trivial and it follows from its definition
that i∗(π1(ℓ̂uσ)) ̸= 0.

Then, using Statement 1, one may conclude that ℓ̂uσ bounds in ℓ̂sω a solid torus
and, consequently, it divides this orbits space into two connected components.
Let us choose a point in each component and denote them x̂ and ŷ. From their
pre-images we take two points x ∈ p−1

ω (x̂) and y ∈ p−1
ω (ŷ). Since we assumed

that Lσ is path-connected then there exists a path γ : [0, 1] → Lσ : γ(0) =

x, γ(1) = y. Then, by continuity of pω, the map γ̂ = pωγ : [0, 1] → ℓ̂sω \ ℓ̂uσ is a
path between x̂ and ŷ in ℓ̂sω \ ℓ̂uσ, that is a contradiction.

Thus, Lσ is disconnected.
Step 2. Let us prove that Mσ = M3 \ Σσ is not connected. Suppose the

contrary: it is connected. Let us note that dim Mσ = 3, because it is an open
subset of the manifold M3. Then, by Statement 3, Mσ \ R is connected. On
the other hand, Mσ \ R = (M3 \ Σσ) \ R = W s

ω \ Σσ = Lσ and it contradicts
the conclusion of the previous step. So, Mσ is disconnected.

Let us introduce a diffeomorphism a : R3 → R3 by the rule a(x, y, z) =
(x2 ,

y
2 ,

z
2 ). It has a unique non-wandering point, a sink O(0, 0, 0). Let ℓ = R3 \O.

As well as before, let f ∈ G, σ satisfies the conclusion of Lemma 2 and
Σσ = cl(ℓuσ). By Statement 7, sphere Σσ is an attractor of diffeomorphism f
with the basin W s

Σσ
=W s

σ ∪W s
ω. Let ℓsΣσ

=W s
Σσ

\ Σσ.

Lemma 4. The manifold ℓsΣσ
consists of two connected components ℓ1, ℓ2,

and for each of the components ℓi there exists a diffeomorphism hi : ℓi → ℓ,
conjugating f |ℓi with a|ℓ.

Proof. By virtue of Statement 10, the orbits space ℓ̂sΣσ
= ℓΣs

σ
/f is a smooth

closed 3-manifold. Let us prove that ℓ̂sΣσ

∼= S2 × S1 ⊔ S2 × S1.
By Statement 2, the attractor Σσ has a neighborhood Kσ ⊂W s

Σσ
diffeomor-

phic to S2 × [0, 1] (see Fig. 4). Let us show that there exists a natural number
N such that fN (x) ∈ intKσ for any x ∈ Kσ. Since ∂Kσ ⊂ W s

Σσ
, then for

all x ∈ ∂K there exist such a closed neighborhood Ux ⊂ ∂Kσ and a natural
number νx that for any ν ≥ νx it is true that fν(Ux) ⊂ intKσ. Due to the
compactness of ∂Kσ, there exists a finite subcover of ∂Kσ in {Ux, x ∈ ∂Kσ}.
Thus, one may choose the desired number N as the maximum of numbers νx
corresponding to the neighbourhoods of Ux in the chosen subcover. Without
loss of generality, we assume the number N to be 1, then f(KΣσ ) ⊂ intKσ (see
Fig. 5). It follows from Lemma 3 that the sphere Σσ separates in Kσ the con-
nected components of its boundary. Whence, according to [[3], Theorem 3.3],
Kσ \ int f(Kσ) ∼= S2 × [0, 1] ⊔ S2 × [0, 1]. It follows from the construction that
the manifold Kσ \ int f(Kσ) is a fundamental domain of the action of f on the
space ℓsΣσ

. Then by Statement 10, ℓ̂sΣσ

∼= S2 × S1 ⊔ S2 × S1.
We denote by ℓ̂1, ℓ̂2 the connected components of the set ℓ̂sΣσ

and by ηℓ̂i :

π1(ℓ̂i) → Z, i = 1, 2 the homomorphism induced by the cover pℓ̂sΣσ

. Let us

9



Figure 4: The neighbohood Kσ
∼= S2 × [0, 1] of the sphere Σσ

Figure 5: The dynamics of the diffeomorphism f on M3

assume ℓi = p−1

ℓ̂sΣσ

(ℓ̂i). It follows from the definition of the homomorphism

ηℓ̂i that it is an isomorphism, hence the set ℓi is connected. Let ℓ̂ = ℓ/a.
Since the point O is a sink of the three-dimensional map a, then, by Statement
10, ℓ ∼= S2 × S1 and the homomorphism ηℓ̂ : π1(ℓ̂) → Z is an isomorphism.
Therefore, the manifolds ℓ̂i and ℓ̂ are homeomorphic smooth 3-manifolds, hence
there exists a diffeomorphism ĥi : ℓ̂i → ℓ̂i (see [6]). Without loss of generality,
we assume that ηℓ̂ĥi = ηℓ̂i (otherwise, one may consider its composition with a
diffeomorphism θ : S2 × S1 → S2 × S1, given by the formula θ(s, r) = (s,−r)).

By Statement 9, there exists a lift hi : ℓi → ℓ of the diffeomorphism ĥi,
smoothly conjugating f |ℓi with a|ℓ.

Now let M̄σ = R3⊔Mσ⊔R3, Mσ = R3∪h1Mσ∪h2R3 and let pσ : M̄σ →Mσ

10



be the natural projection.

Lemma 5. The space Mσ consists of two connected components Mσ
1 , M

σ
2 each

of which is a closed smooth 3-manifold such that

M3 =Mσ
1 #M

σ
2 .

Moreover, the manifold Mσ
i , i = 1, 2 admits a diffeomorhism fi : Mσ

i → Mσ
i

belonging to the class G and having less saddle points than f .

Proof. It follows from Lemma 4 that the manifold Mσ is a disjoint union of two
manifolds, and hence the space Mσ has exactly the same number of connected
components, let us denote them as Mσ

1 and Mσ
2 . Since hi glues open subsets

of 3-manifolds, then the projection pσ induces the structure of a smooth 3-
manifold on Mσ. Since the glued manifolds have no boundary, the manifold
Mσ has no boundary as well. Due to the compactness of M3, the manifold Mσ

is closed. Moreover, it follows directly from the definition of the connected sum
that M3 =Mσ

1 #M
σ
2 .

According to [[7], Theorem 18.3 (The pasting lemma)], the map fσ :Mσ →
Mσ, defined by the formula

fσ(x) =

{
pσ(f(p

−1
σ (x))), if x ∈ pσ(Mσ),

pσ(a(pσ(x))), if x ∈ pσ(M̄σ \Mσ),

is a diffeomorphism. Let fi = fσ|Mσ
i
(see Fig. 6, 7). By the construction, the

Figure 6: The dynamics of f1 on Mσ
1

Figure 7: The dynamics of f2 on Mσ
2

diffeomorphism fσ is smoothly conjugated with f on pσ(Mσ) and with a on
pσ(M̄σ \Mσ) (Oi (i = 1, 2) is a point conjugated with the fixed sink O(0, 0, 0)
of a). Hence, fσ ∈ G and its non-wandering set have one saddle point less than
the non-wandering set of the diffeomorphism f .

Now let us prove the main result of this paper.
Theorem 1. Any closed connected 3-manifold M3, admitting a diffeomor-

phism f ∈ G, is homeomorphic to the 3-sphere.
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Proof. Let f : M3 → M3 be from the class G. Also, we assume that f satisfies
the Remark. We prove Theorem 1 by the induction on the number k of the
saddle points of the diffeomorphism f .

Base of induction. k = 0.
It follows from Statement 6 that M3 is homeomorphic to the 3-sphere.
Step of induction. k > 0.
Inductive hypotheses. Any diffeomorphism from the class G, the number

of saddle points in which is less than some natural number k, can be defined only
on a manifold homeomorphic to the 3-sphere.

The diffeomorphism f : M3 → M3 lies in G and have exactly k saddle
points. Due to Lemma 2, there exists a saddle σ whose the unstable manifold
has no heteroclinic intersections. This saddle was chosen according to the order
1. By Lemma 5, M3 = Mσ

1 #M
σ
2 and the manifold Mσ

i , i = 1, 2 admits a
diffeomorphism fi : M

σ
i → Mσ

i from the class G which have less saddle points
than f .

In this case, it follows from the inductive hypotheses that Mσ
i
∼= S3. Thus,

M3 is a connected sum of the 3-spheres and, consequently, M3 ∼= S3.
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