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Equivariant completions of affine spaces

I. V. Arzhantsev and Yu. I. Zaitseva

Abstract. We survey recent results on open embeddings of the affine
space Cn into a complete algebraic variety X such that the action of the
vector group Gn

a on Cn by translations extends to an action of Gn
a on X. We

begin with the Hassett–Tschinkel correspondence describing equivariant
embeddings of Cn into projective spaces and present its generalization
for embeddings into projective hypersurfaces. Further sections deal with
embeddings into flag varieties and their degenerations, complete toric
varieties, and Fano varieties of certain types.
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Introduction

The survey is devoted to the study of completions of the affine space Cn by an
algebraic variety X such that the action of the vector group Gn

a on Cn by transla-
tions can be extended to a regular action Gn

a×X → X. To obtain such a completion
means to construct an effective regular action with open orbit of the commutative
unipotent group Gn

a on a complete algebraic variety X. We call an effective regular
action Gn

a ×X → X with open orbit an additive action on X. Another interpre-
tation comes from the theory of group embeddings. Let G be a linear algebraic
group. A group embedding is an embedding of G into an algebraic variety X as an
open subset such that the actions of G on G by left and right translations can be
extended to a regular action of the group G×G on X. In these terms we are going
to study group embeddings of a commutative unipotent group.

The story began with a work by Hirzebruch. In [64], § 3.2, he considered complex
analytic compactifications of the affine space Cn. Problem 26 asks to determine all
complex analytic compactifications of C2, and Problem 27 raises the same question
for all spaces Cn under the restriction that the compactification must have second
Betti number 1. These problems initiated the study of open embeddings of affine
spaces, both in the analytic and algebraic categories. For more information on
algebraic compactifications of affine spaces, see, for example, [56], [96], [33], and
references therein.

Clearly, an algebraic variety X that contains an open subset U isomorphic to an
affine space possesses some specific properties. In particular, X is rational, every
invertible regular function on X is constant, and the divisor class group Cl(X) is
a free finitely generated abelian group. More precisely, Cl(X) is freely generated
by the classes of irreducible components of the complement X \ U . At the same
time, the class of all compactifications of affine spaces is too wide, and it is natural
to study compactifications satisfying some extra conditions.



Equivariant completions of affine spaces 573

The first variant is to consider algebraic manifolds X in the naive sense, that is,
X can be covered by open subsets U1, . . . , Um such that each Ui is isomorphic to
an affine space. Manifolds of this type were considered by Gromov in [59], § 3.5.D.
In [48], § 6.4, such manifolds are called manifolds of class A0. They appear in
connection with the Oka principle and algebraic ellipticity. It is known that the
class A0 includes the smooth projective rational surfaces, the smooth complete toric
varieties, the flag varieties and, more generally, the smooth complete spherical vari-
eties. Moreover, this class is closed under blowing up points. In [9], Theorem A.1,
it was proved that any smooth complete rational variety with a torus action of com-
plexity 1 belongs to the class A0. A wider class is the class of uniformly rational
varieties. A variety X is uniformly rational if every point in X admits a Zariski
open neighbourhood isomorphic to a Zariski open subset of the affine space. Some
recent results on uniformly rational varieties can be found in [81].

The second variant is to involve algebraic group actions. Namely, if an algebraic
group G acts on the affine space Cn, we can study open embeddings of Cn into
complete varieties X such that the action of G on Cn extends to an action of G
on X. Taking G = Gn

a with the action Gn
a × Cn → Cn by parallel translations, we

arrive at the theory of additive actions. This is the subject of the present survey.
A further motivation to investigate equivariant completions of affine spaces comes

from arithmetic geometry. In their study of Manin’s conjecture on the distribu-
tion of rational points on algebraic varieties, Chambert-Loir and Tschinkel [28]
gave asymptotic formulae for the number of rational points of bounded height on
smooth projective equivariant compactifications of the vector group. More gener-
ally, asymptotic formulae for the number of rational points of bounded height on
quasi-projective equivariant embeddings of the vector group were obtained in [29].
The limited volume of this survey does not allow us to discuss these results. We
recommend the articles [28], [29], [93], [102], [106], and references therein to the
reader.

It is natural to compare the theory of additive actions with the theory of toric
varieties. At the first glance the two theories should be similar since the formula-
tions of problems are almost the same: in the toric case we study open equivariant
embeddings of the group Gn

m, and in the theory of additive actions we just replace
the multiplicative group Gm of the ground field by the additive group Ga. But
it turns out that toric geometry and the theory of additive actions have almost
nothing in common. Let us dwell a bit on this.

The theory of toric varieties plays an important role in modern algebra, combi-
natorics, geometry, and topology. This is caused by a beautiful description of toric
varieties in terms of rational polyhedral cones and fans of such cones [37], [55].
There are several ways to generalize the theory of toric varieties. For example, one
can consider arbitrary torus actions on algebraic varieties. A semi-combinatorial
description of such actions in terms of so-called polyhedral divisors living on vari-
eties of smaller dimensions was introduced recently [1], [2]. Another variant is
to restrict the (complex) algebraic torus action on a toric variety to the maximal
compact subtorus (S1)n, axiomatize this class of (S1)n-actions, and consider such
actions on wider classes of topological spaces. This is an active research area, called
toric topology [24]. One can also consider linear algebraic group actions with an
open orbit by replacing the torus T by a non-abelian connected reductive group G.
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In other words, one can study open equivariant embeddings of homogeneous spaces
G/H, where H is an algebraic subgroup of G. This theory is well developed in
the case when G/H is a spherical homogeneous space, that is, a Borel subgroup B
of G acts on G/H with open orbit. Here a description of equivariant embeddings
in terms of convex geometry is also available in the framework of the Luna–Vust
theory, although it is more complicated than in the toric case [84], [107].

Returning to an ‘additive analogue’ of toric geometry, that is, to the case when
we replace the acting torus T with the commutative unipotent group Gn

a , we come
across principal differences. Firstly, it is well known that every orbit of an action
of a unipotent group on an affine variety is closed (see [95], § 1.3). In particular,
if a unipotent group acts on an affine variety with open orbit, then this action is
transitive. This means that, in contrast to the toric case, if an irreducible alge-
braic variety with a non-transitive action of a unipotent group U contains an open
U -orbit, then it cannot be covered by U -invariant open affine charts. Secondly, any
toric variety contains finitely many T -orbits, and if two toric varieties are isomor-
phic as abstract algebraic varieties, then they are isomorphic in the category of toric
varieties (see [19], Theorem 4.1). In the additive case these two properties do not
hold: consider two actions of G2

a on the projective plane P2 given in homogeneous
coordinates by

(a1, a2) · [z0 : z1 : z2] = [z0 : z1 + a1z0 : z2 + a2z0]

and

(a1, a2) · [z0 : z1 : z2] =
[
z0 : z1 + a1z0 : z2 + a1z1 +

(
a2
1

2
+ a2

)
z0

]
.

In the first case there is a line of fixed points, while there are exactly three G2
a-orbits

for the second action.
At the same time, the absence of analogy with toric geometry is definitely not

the end of the theory of additive actions. During the last decades, many general and
classification results on varieties with an additive action were obtained and some
original methods to deal with this class of actions were developed. Our survey aims
to discuss these results and methods.

Let us describe the content of the paper. In § 1 we study additive actions on
projective spaces. It is a certain surprise that the space Cn can be embedded
equivariantly in Pn in many different ways. Hassett and Tschinkel [62] observed
that such embeddings are in bijection with local commutative associative unital
algebras of dimension n+ 1. This result also follows from a more general corre-
spondence between finite-dimensional commutative associative unital algebras and
open equivariant embeddings of commutative linear algebraic groups into projective
spaces established by Knop and Lange [76]. We begin with the well-known struc-
tural theory and classification results on finite-dimensional commutative associative
algebras and develop the Hassett–Tschinkel correspondence in complete generality.
In particular, it includes a nice correspondence with certain subspaces of the poly-
nomial algebra which are invariant under some differential operators with constant
coefficients.
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In § 2 we show how the technique proposed by Hassett and Tschinkel can be
applied to the study of additive actions on projective varieties different from projec-
tive spaces. This started already in [62], where projective curves, smooth
projective surfaces, and a special class of smooth projective 3-folds carrying addi-
tive actions were described. Using this technique, we give a proof of Sharoiko’s
theorem [103]. It claims that, in contrast to projective spaces, any non-degenerate
projective quadric admits a unique additive action. We also explain how one can
describe additive actions on degenerate projective quadrics [12], [10] and establish
a generalization of the Hassett–Tschinkel correspondence to arbitrary projective
hypersurfaces in terms of invariant multilinear forms [10], [18]. In Theorem 2.30
we find a correspondence between additive actions on non-degenerate projective
hypersurfaces and Gorenstein local algebras. Finally, Theorem 2.32 generalizes
Sharoiko’s result and claims that a non-degenerate projective hypersurface admits
at most one additive action. Theorems 2.30 and 2.32 and some other statements
in § 2 are original results of this article.

Section 3 begins with some general background on varieties with additive actions.
Then we show that if a flag variety G/P of a simple linear algebraic group G admits
an additive action, then the parabolic subgroup P is maximal. We list all varieties
G/P admitting an additive action following [3]. Then we discuss a uniqueness result
which claims that if a flag variety is not isomorphic to the projective space, then it
admits at most one additive action. This theorem was proved by Fu and Hwang [51]
and independently by Devyatov [41]. The last part presents a construction due to
Feigin [45] that degenerates an arbitrary flag variety to a variety with an additive
action.

In § 4 we study additive actions on toric varieties following [11]. It is proved that
if a complete toric variety admits an additive action, then it admits an additive
action normalized by the acting torus. Moreover, we show that any two normalized
additive actions are equivalent and give a combinatorial criterion of the existence
of a normalized additive action on a toric variety. These results are based on the
theory of Cox rings and Demazure roots of toric varieties. We also present two
results of Dzhunusov. The first is a classification of additive actions on complete
toric surfaces [43], and the second is a criterion of the uniqueness of an additive
action on a complete toric variety [42].

In the last section, § 5, we discuss recent classification results due to Fu, Huang,
Hwang, Montero, and Nagaoka on additive actions on generalized del Pezzo sur-
faces, Fano 3-folds, and varieties with high index (see [51], [53], [54], [65], and [89]).
A special subsection is devoted to Euler-symmetric projective varieties introduced
by Fu and Hwang. Every Euler-symmetric variety admits an additive action. More-
over, for wide classes of varieties including toric varieties and flag varieties the con-
dition to be Euler symmetric is equivalent to the existence of an additive action.

We end the text with a list of open problems and possible directions for further
research.
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1. Equivariant embeddings into projective spaces

In this section we study additive actions on projective spaces. In 1999
Hassett and Tschinkel [62] established a remarkable correspondence between
such actions and commutative associative local Artinian unital algebras. This
correspondence led to classification results and allowed one to employ new methods,
which were subsequently generalized to some other classes of projective varieties.
The main goal of this section is to introduce all objects and concepts needed
to establish the Hassett–Tschinkel correspondence, formulate this correspondence
in complete generality and with detailed proofs, and discuss related results and
corollaries. We work over an algebraically closed field K of characteristic zero.

In § 1.1 we begin with basic facts on finite-dimensional commutative associative
algebras. Any finite-dimensional commutative associative algebra is a direct sum
of local ones. So finite-dimensional local algebras are important building blocks in
many problems in algebra and geometry, comparable with finite simple groups or
finite fields. Although the classification of local algebras of small dimension has been
known for many years, it is not easy to find it in explicit form in the literature.
In Table 1 we list all local algebras up to dimension 6.1 We also introduce the
Hilbert–Samuel sequence of a local algebra and define Gorenstein local algebras.

Subsection 1.2 is devoted to results due to Suprunenko and Tyshkevich [105].
We explain how information on maximal commutative nilpotent subalgebras of
a matrix algebra can be used to study abstract commutative algebras and groups.
In particular, one can deduce the classification of local algebras in Table 1 from
the classification results in [105]. That book contains many important facts and
observations that are useful for our purposes, but it is not easy to extract them
from the text. We hope that a subsection with unified formulations and, where it is
possible, short proofs can help the reader to understand the results of Suprunenko
and Tyshkevich better.

In § 1.3 we prove a result due to Knop and Lange [76]. It establishes a bijective
correspondence between the effective actions of commutative linear algebraic groups
on the projective space Pn with open orbit and the commutative associative unital
algebras A of dimension n+ 1. We also characterize the actions with finitely many
orbits.

Subsection 1.4 contains preparatory results on a duality between subspaces of the

polynomial algebra K[x1, . . . , xn] and the algebra K
[
∂

∂x1
, . . . ,

∂

∂xn

]
of differential

operators with constant coefficients. In general, this duality is not bijective, but it
defines a bijection when restricted to finite-dimensional subspaces of K[x1, . . . , xn]

and subspaces of finite codimension of K
[
∂

∂x1
, . . . ,

∂

∂xn

]
. Moreover, let us define

a generating subspace in K[x1, . . . , xn] as a translation invariant subspace that gen-
erates the algebra K[x1, . . . , xn]. It turns out that this duality provides a bijection
between the generating subspaces of dimension m and the non-degenerate ideals of

codimension m in K
[
∂

∂x1
, . . . ,

∂

∂xn

]
supported at the origin.

1Starting from dimension 7 the number of isomorphy classes of such algebras becomes infinite.
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Following Hassett and Tschinkel [62], in § 1.5 we establish a correspondence
between

(a) the faithful cyclic representations ρ : Gn
a → GLm(K);

(b) the pairs (A,U), where A is a local commutative associative unital algebra of
dimension m with maximal ideal m, and U ⊆ m is a subspace of dimension n
generating the algebra A;

(c) the non-degenerate ideals I ⊆ K[S1, . . . , Sn] of codimension m supported at
the origin;

(d) the generating subspaces V ⊆ K[x1, . . . , xn] of dimension m.
We give complete proofs including arguments for ‘up to isomorphism’ statements,
which are usually ignored in the literature. An effective algorithm that finds the
generating subspace corresponding to a pair (A,U) is presented. We illustrate
the theory by explicit computations in low-dimensional cases. It is also shown
that the Gn

a -modules A and V are dual to each other.
In § 1.6 we show that by limiting either the Knop–Lange theorem to the case of

a unipotent group or the Hassett–Tschinkel correspondence to the case m = n+ 1
we obtain a bijection between the additive actions on Pn and the local commutative
associative unital algebras A of dimension n+1. In this case we arrive at a remark-
able class of generating subspaces, which we call basic subspaces. Such a subspace
represents an automorphism of the open orbit of Gn

a in Pn that conjugates an addi-
tive action to the standard action by translations in the automorphism group of
the affine space. We show that there is a unique additive action with finitely many
orbits on Pn and describe additive actions of modality 1. Finally, we observe that
an additive action has a unique fixed point if and only if the corresponding local
algebra is Gorenstein.

1.1. Finite-dimensional algebras. In this subsection we recall basic structural
and classification results on Artinian commutative algebras or, equivalently, finite-
dimensional commutative associative unital algebras over the ground field K;
see [14], Chap. 8, for more information. In what follows an algebra means a finite-
dimensional commutative associative unital algebra. The base field K is embedded
into an algebra as the linear span of the unity.

Definition 1.1. An algebra A is called local if it contains a unique maximal
ideal m.

Lemma 1.2. An algebra A is local if and only if A is the direct sum of subspaces
K⊕m, where m is an ideal consisting of nilpotent elements.

Proof. Let A = K⊕m. The ideal m is maximal since its codimension equals 1. Any
element of A \ m is the sum of an invertible scalar and a nilpotent element, hence
it is invertible and cannot belong to any proper ideal. Thus the ideal m is a unique
maximal ideal.

Conversely, let A be a local algebra with maximal ideal m. Let us show that any
a ∈ m is nilpotent. Since A is finite-dimensional, for some k ∈ Z>0 we have the
equality of ideals (ak) = (ak+1), that is, ak = ak+1b and ak(ab − 1) = 0 for some
b ∈ A. Note that ab− 1 /∈ m. Therefore, ab− 1 does not belong to any proper ideal
and so is invertible. This implies that ak = 0.
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Denote by La : A → A the operator of multiplication by a ∈ A. Let λ be an
eigenvalue of La. Then La−λ·1 is non-invertible, whence a − λ · 1 is non-invertible
and belongs to the maximal ideal m. Together with the relation K ∩ m = 0, this
implies that A = K⊕m. 2

The following lemma is a particular case of Theorem 8.7 in [14].

Lemma 1.3. Every algebra is the direct sum of some local ideals of it.

Proof. As above, denote by La : A → A the operator of multiplication by a ∈ A.
Recall that the generalized eigenspace of an operator L ∈ End(V ) with respect to an
eigenvalue λ is the subspace V λ = {v ∈ V : (L − λ idV )kv = 0 for some k ∈ Z>0}.
Let us prove that A is a direct sum of some ideals Vi of A lying in generalized
eigenspaces of La for any a ∈ A. Indeed, take some a ∈ A and consider the gen-
eralized eigenspace decomposition A =

⊕
V ′i with respect to La. All generalized

eigenspaces are ideals since A is commutative. Repeating the decomposition proce-
dure for those V ′i that do not lie in a generalized eigenspace of Lb for some b ∈ A,
we obtain the desired decomposition.

The components εi ∈ Vi of the unity in A are the unities in Vi. By the construc-
tion of Vi, for any ai ∈ Vi there is λ ∈ K such that the action of (Lai

− λ idA)
∣∣
Vi

=
Lai−λεi

∣∣
Vi

on Vi is nilpotent. Applying this operator to εi ∈ Vi we obtain that
ai − λεi is nilpotent in Vi. So the algebra Vi is local by Lemma 1.2. 2

Let A be a local algebra and m be its maximal ideal. Consider the following
series of ideals in A:

A ⊃ m ⊃ m2 ⊃ · · · ⊃ ml−1 ⊃ ml = 0.

The number l is called the length of the algebra A. Set ri := dimmi − dim mi+1.
In particular, r0 = 1. The sequence r0, r1, r2, . . . , rl−1 is called the Hilbert–Samuel
sequence of the algebra A.

The socle of A is the ideal SocA = {a ∈ A : ma = 0}. The algebras with
dim SocA = 1 are called Gorenstein. Note that ml−1 ⊆ SocA, but the inclusion can
be strict. So A is Gorenstein if and only if ml−1 = SocA and dim ml−1 = rl−1 = 1.

Theorem 1.4. For m ⩽ 6 the number of isomorphism classes of local algebras of
dimension m is finite. For m ⩾ 7 there are infinite series of non-isomorphic local
algebras. The number of such classes is as follows:

m 1 2 3 4 5 6 ⩾ 7

1 1 2 4 9 25 ∞

The local algebras of dimension at most 6 are listed in Table 1. Gorenstein alge-
bras are marked with ‘G’. It was observed in [62] that this result can be extracted
from the 1968 book by Suprunenko and Tyshkevich [105]; see 2)–5) in the next
subsection for details. The same classification was obtained independently and
using other methods in the 1980 article by Mazolla (see [88], § 2), where schemes
parametrizing commutative nilpotent associative multiplications on the affine space
were studied. One more approach to such a classification can be found in [94].

There are many classification results on Gorenstein local algebras (see [26], [44],
and [74], for instance). In general, local algebras and their Hilbert–Samuel sequences
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Table 1. Local algebras of dimension at most 6

No Local algebra A r0, r1, . . . , rl−1

dim A = 1

1 K 1 G

dim A = 2

2 K[x1]/(x2
1) 1, 1 G

dim A = 3

3 K[x1]/(x3
1) 1, 1, 1 G

4 K[x1, x2]/(x2
1, x1x2, x

2
2) 1, 2

dim A = 4

5 K[x1]/(x4
1) 1, 1, 1, 1 G

6 K[x1, x2]/(x1x2, x
2
1 − x2

2) 1, 2, 1 G

7 K[x1, x2]/(x3
1, x1x2, x

2
2) 1, 2, 1

8 K[x1, x2, x3]/(x2
i , xixj) 1, 3

dim A = 5

9 K[x1]/(x5
1) 1, 1, 1, 1, 1 G

10 K[x1, x2]/(x1x2, x
3
1 − x2

2) 1, 2, 1, 1 G

11 K[x1, x2]/(x3
1, x

3
2, x1x2) 1, 2, 2

12 K[x1, x2]/(x4
1, x

2
2, x1x2) 1, 2, 1, 1

13 K[x1, x2]/(x3
1, x

2
2, x

2
1x2) 1, 2, 2

14 K[x1, x2, x3]/(x1x2, x1x3, x2x3, x
2
1 − x2

2, x
2
1 − x2

3) 1, 3, 1 G

15 K[x1, x2, x3]/(x2
1, x1x2, x1x3, x2x3, x

2
2 − x2

3) 1, 3, 1

16 K[x1, x2, x3]/(x3
1, x

2
2, x

2
3, x1x2, x1x3, x2x3) 1, 3, 1

17 K[x1, x2, x3, x4]/(x2
i , xixj) 1, 4

dim A = 6

18 K[x1]/(x6
1) 1, 1, 1, 1, 1, 1 G

19 K[x1, x2]/(x1x2, x
4
1 − x2

2) 1, 2, 1, 1, 1 G

20 K[x1, x2]/(x1x2, x
3
1 − x3

2) 1, 2, 2, 1 G

21 K[x1, x2]/(x3
1, x

2
2) 1, 2, 2, 1 G

22 K[x1, x2]/(x5
1, x1x2, x

2
2) 1, 2, 1, 1, 1

23 K[x1, x2]/(x4
1, x1x2, x

3
2) 1, 2, 2, 1

24 K[x1, x2]/(x3
1, x

2
1x2, x1x

2
2, x

3
2) 1, 2, 3

25 K[x1, x2]/(x4
1, x

2
1x2, x

3
1 − x2

2) 1, 2, 2, 1

26 K[x1, x2]/(x4
1, x

2
1x2, x

2
2) 1, 2, 2, 1

27 K[x1, x2, x3]/(x2
1, x

2
2, x

2
3, x1x2 − x1x3) 1, 3, 2

28 K[x1, x2, x3]/(x2
2, x

2
3, x1x2, x

2
1 − x2x3) 1, 3, 2

29 K[x1, x2, x3]/(x2
1, x

2
2, x

2
3, x2x3) 1, 3, 2
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30 K[x1, x2, x3]/(x2
1, x

2
2, x1x3, x2x3, x1x2 − x3

3) 1, 3, 1, 1 G

31 K[x1, x2, x3]/(x2
1 − x3

3, x
2
2, x1x2, x1x3, x2x3) 1, 3, 1, 1

32 K[x1, x2, x3]/(x3
1, x

2
2, x

2
3, x1x2, x1x3) 1, 3, 2

33 K[x1, x2, x3]/(x2
1, x

2
2, x

2
3, x1x2 − x1x3 − x2x3) 1, 3, 2

34 K[x1, x2, x3]/(x3
1, x

2
2, x1x3, x2x3, x1x2 − x2

3) 1, 3, 2

35 K[x1, x2, x3]/(x4
1, x

2
2, x

2
3, x1x2, x1x3, x2x3) 1, 3, 1, 1

36 K[x1, x2, x3]/(x3
1, x

3
2, x

2
3, x1x2, x1x3, x2x3) 1, 3, 2

37 K[x1, x2, x3]/(x3
1, x

2
2, x

2
3, x

2
1x2, x1x3, x2x3) 1, 3, 2

38 K[x1, x2, x3, x4]/(x2
i − x2

j , xixj , i ̸= j) 1, 4, 1 G

39 K[x1, x2, x3, x4]
/(

x2
1, x

2
2, x

2
4, x1x3, x1x4, x2x3,

x2x4, x3x4, x1x2 − x2
3

)
1, 4, 1

40 K[x1, x2, x3, x4]/(x2
i , x1x3, x1x4, x2x3, x2x4, x3x4) 1, 4, 1

41 K[x1, x2, x3, x4]/(x3
1, x

2
2, x

2
3, x

2
4, xixj , i ̸= j) 1, 4, 1

42 K[x1, x2, x3, x4, x5]/(x2
i , xixj) 1, 5

have been studied intensively in connection with punctual Hilbert schemes and
collections of commuting nilpotent matrices (see, for example, [69]–[71], [90], [16],
and references therein).

1.2. The Suprunenko–Tyshkevich classification. In this subsection we pre-
sent and discuss some results in [105]. This monograph deals with collections of
commuting matrices in the matrix algebra Matm(K). Our goal is to demonstrate
applications of these results to the investigation of abstract commutative algebras
and groups. In particular, a classification of maximal commutative nilpotent subal-
gebras of Matm(K) for m ⩽ 6 leads to a classification of local algebras of dimension
at most 6 (see Theorem 1.4).

Let us start with a short historical overview. There is an immense number of
results and publications on maximal commutative subalgebras and subgroups in
various contexts and under various constraints. The earliest one was [50] by Frobe-
nius. Circa 1920–35, Kravchuk studied a canonical form of maximal commutative
subalgebras, called the Kravchuk normal form in [105], and obtained many results
on criteria for conjugacy using this form (see [105], §§ 2.5 and 2.6).

As concerns the dimension function of commutative subalgebras of Matm(K), it
dates back to Schur’s work [98], where the upper bound [m/4]2 + 1 for the field
K = C was established. Jacobson [73] extended this result to an arbitrary field.
In [57], Gerstenhaber proved that the dimension of the algebra generated by two
commuting matrices in Matm(K) is at most m (for other proofs of this fact and
more discussion, see also [15], [109], and [78]). In [78] and [60] dimension bounds for
algebras generated by a pair and a triple of elements were studied. The dual problem
of the minimum dimension was discussed in [35] and [77]. It turns out that there are
maximal commutative subalgebras of Matm(K) of dimension smaller than m− 1.
Various constructions of maximal commutative subalgebras of Matm(K) can be
found in [22], [21], and [104].
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As Handelman observed in [61], relations between maximal commutative subal-
gebras and maximal commutative subgroups had been established for the first time
by Charles [30]–[32]. Such relations were studied systematically in [105]. Let us
present the corresponding results.

As above, all algebras are supposed to be finite-dimensional, commutative, and
associative. If an algebra is not said to be nilpotent, then we also assume that it
has a unity element. All results are formulated over an algebraically closed field K
of characteristic zero.

1) Local algebras and indecomposable subalgebras. Let us introduce some nota-
tion. A set A of elements in Matm(K) is called decomposable if Km is the direct sum
of proper subspaces that are invariant under the tautological action of A on Km;
otherwise A is called indecomposable.

In [105], § 2.2 (see Theorem 2.2 in [105] and the text below), it was proved
that any maximal commutative subalgebra of Matm(K) is a direct sum of
indecomposable maximal commutative subalgebras of the Matmi

(K) for some
m1 + · · ·+mr = m.

An algebra A is an indecomposable maximal commutative subalgebra of
Matm(K) if and only if A = K⊕ m, where K is the subalgebra of scalar matrices
and m is a maximal commutative nilpotent subalgebra of Matm(K) (see [105],
Theorems 2.3 and 2.4). Together with Lemma 1.2, this implies that the set of
indecomposable maximal commutative subalgebras of Matm(K) coincides with the
set of local maximal commutative subalgebras of Matm(K).

2) A classification of nilpotent subalgebras. In § 3.3 of [105] a classification,
up to conjugation, of maximal commutative nilpotent subalgebras of the algebra
Matm(K) for m ⩽ 6 was presented. The number of conjugacy classes of such
subalgebras is as follows:

m 1 2 3 4 5 6 ⩾ 7

1 1 3 7 18 57 ∞

For a nilpotent algebra m, denote by l its index of nilpotency, so that ml = 0 and
ml−1 ̸= 0. The classification is derived from the following cases: a classification,
up to conjugation, of maximal commutative nilpotent subalgebras of Matm(K)
for l = 2 (§ 2.3, Theorem 2.7), l = m (§ 2.4, Theorem 2.8), l = m − 1 (§ 3.1,
Theorem 3.1), l = m−2 (§ 3.2, Theorem 3.2) for an arbitrary m, and a classification
of commutative nilpotent algebras of dimension 5 for l = 3 (§ 2.9, Theorem 2.18
and § 3.3).

3) Regular subgroups and subalgebras. We call a commutative subgroup G ⊆
GLn+1(K) regular if the tautological action of G on Kn+1 has an open orbit, that
is, there exists v ∈ Kn+1 with open orbit Gv ⊆ Kn+1. A commutative subalgebra
A ⊆ Matn+1(K) is regular if there is a cyclic vector v ∈ Kn+1, that is, Av = Kn+1.
A commutative nilpotent subalgebra m ⊆ Matn+1(K) is called regular if there is
a vector v ∈ Kn+1 with dim mv = n; in this case we also call such a vector v cyclic.

Lemma 1.5. Let G be a commutative algebraic group that acts effectively on an
irreducible algebraic variety X with open orbit. Then G is connected and dimG =
dimX .
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Proof. Let Gx0 ⊆ X be an open orbit. Since G is commutative, the stabilizers of all
points in Gx0 coincide. Any element of G that acts trivially on Gx0 acts trivially on
X as well. Therefore, by the effectivity of the action, the stabilizer of x0 is trivial,
and the mapping G ↪→ X defined by g 7→ gx0 is an equivariant open embedding.
This implies the assertion. 2

Lemma 1.6. Every regular subgroup G ⊆ GLn+1(K) (regular subalgebra A ⊆
Matn+1(K); regular nilpotent subalgebra m ⊆ Matn+1(K)) is maximal among
the commutative subgroups of GLn+1(K) (commutative subalgebras of Matn+1(K);
commutative nilpotent subalgebras of Matn+1(K), respectively). Moreover, G is
connected, dimG = dimA = n+ 1, and dim m = n.

Proof. From Lemma 1.5 as applied to the tautological action of G on Kn+1 we
conclude that G is connected and has dimension n+ 1. Any commutative subgroup
G̃ of Matn+1(K) such that G̃ ⊇ G is regular as well, so G and G̃ are two connected
algebraic groups of the same dimension n+ 1 and G̃ = G. This implies maximality.

If A is a regular subalgebra of Matn+1(K) with a cyclic vector v, then the map
A → Kn+1, a 7→ av, is a surjection. Any a ∈ A in the kernel of this map equals
zero since aKn+1 = aAv = Aav = 0. Thus, A is isomorphic to Kn+1 as a vector
space. Maximality can be proved as above.

For a regular nilpotent subalgebra m ⊆ Matn+1(K) consider the direct sum K⊕m
with the subspace of scalar matrices. It is a regular unital subalgebra. Indeed, let
dim mv = n for some v ∈ Kn+1; then dim(K + m)v = n + 1 since v /∈ mv by the
nilpotency of m. 2

4) Regular representations. Let us discuss a connection between abstract com-
mutative algebras and commutative subalgebras of Matn+1(K). Any algebra A of
dimension n+ 1 has the regular representation R : A → End(A) defined by the
operators of multiplication. Different identifications φ : A ∼−→ Kn+1 give conjugate
subalgebras R′(A) of Matn+1(K): see the diagram below. We say that a subalge-
bra A comes from the regular representation if A = R′(A) for some identification
A ∼= Kn+1:

A
R(a) //

��
φ ≀

��

A

φ ≀
��

Kn+1
R′(a) // Kn+1

1
R(A) //

φ ≀
��

A

φ ≀
��

φ(1)
R′(A) // Kn+1

The regular representation of an algebra A is faithful, provided that A has a unity.
If m is a nilpotent algebra of dimension n, we can add an element e and construct
a unital algebra A = Ke ⊕ m of dimension n+ 1 defined by the relations e2 = e
and ae = ea = a for any a ∈ m. The regular representation of A induces a faithful
representation of m in Matn+1(K), which is also called regular.

Lemma 1.7. A commutative subalgebra (commutative nilpotent subalgebra) of
Matn+1(K)) comes from the regular representation if and only if it is a regular
subalgebra (regular nilpotent subalgebra, respectively). In particular, there is
a bijection between the isomorphism classes of commutative algebras of dimension
n+1 (the commutative nilpotent algebras of dimension n) and the conjugacy classes
of regular subalgebras (the regular nilpotent subalgebras, respectively) of Matn+1(K).
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Proof. First consider unital algebras. Any subalgebra R′(A) of Matn+1(K) com-
ing from the regular representation is regular with a cyclic vector v = φ(1) since
R′(A)φ(1) = φ(A): see the diagrams above. Conversely, if A is a regular subalgebra
with Av = Kn+1, v ∈ Kn+1, then A comes from its regular representation via the
identification φ(a) = av.

Let the nilpotent subalgebra R′(m) come from the regular representation. Then
K⊕R′(m) is a regular subalgebra of Matn+1(K), and R′(m) is regular with the same
cyclic vector v = φ(1) since R′(m)φ(1) = φ(m). Conversely, if m ⊆ Matn+1(K) is
a regular nilpotent subalgebra, then A = K⊕m is a regular subalgebra, and by the
above arguments it comes from its regular representation.

5) Classification results on abstract algebras. According to the above, a clas-
sification of local algebras of dimension n+ 1 is equivalent to a classification of
the images of the regular representations of their maximal nilpotent ideals, that is,
a classification of regular nilpotent subalgebras of Matn+1(K). Thus if we want to
obtain a classification of local algebras of dimension at most 6 up to isomorphism,
from the list of subalgebras in [105], § 3.3 (see item 2) above), then we have to choose
those that are regular. Moreover, Theorem 2.15 in [105] says that a maximal com-
mutative nilpotent subalgebra of Matn+1(K) is regular if and only if its so-called
first Kravchuk number ν = n + 1 − dim mKn+1 equals 1, that is, dim mKn+1 = n.
Thus, Table 1 can be obtained from results in [105], § 3.3.

Example 1.8. Consider n + 1 = 4. By the classification in [105], § 3.3, there are
seven maximal commutative nilpotent subalgebras of Mat4(K):

l = 2 : (1)




0 0 0 0
a 0 0 0
b 0 0 0
c 0 0 0


 , (2)




0 0 0 0
0 0 0 0
a b 0 0
c d 0 0


 , (3)




0 0 0 0
0 0 0 0
0 0 0 0
c b a 0


 ,

l = 3 : (4)




0 0 0 0
a 0 0 0
b a 0 0
c 0 0 0


 , (5)




0 0 0 0
a 0 0 0
b a 0 c
0 0 0 0


 , (6)




0 0 0 0
a 0 0 0
b a 0 c
c 0 0 0


 ,

l = 4 : (7)




0 0 0 0
a 0 0 0
b a 0 0
c b a 0


 , a, b, c, d ∈ K

(see item 2) above). The subalgebras (1), (4), (6), and (7) are regular. with
a cyclic vector v = (1, 0, 0, 0). They correspond to four commutative algebras of
dimension 4, namely, nos. 8, 7, 6, and 5 in Table 1. For the subalgebras (2), (3),
and (5) the first Kravchuk numbers are 2, 3, and 2, respectively, so these subalgebras
are not regular.

6) Infinite series. While there is a finite number of nilpotent algebras of dimen-
sion n with index of nilpotency 2, n − 2, n − 1, or n, there exist infinitely many
non-isomorphic nilpotent algebras of dimension 6 with index of nilpotency 3. It
follows that there is an infinite number of local algebras of dimension at least 7.
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More precisely, consider algebras with Hilbert–Samuel sequence (1, 4, 2). Since
the index of nilpotency of the maximal ideal of such an algebra equals 3, multi-
plication is determined by a bilinear symmetric map m/m2 × m/m2 → m2. We
have dim m/m2 = 4 and dim m2 = 2, so such maps form a space of dimension
20 = 4(4+1)/2 ·2. An isomorphism between such algebras corresponds to a change
of coordinates in m/m2 and m2, that is, we consider maps up to the action of the
group GL(4)×GL(2). It has dimension 20 = 42 + 22 and acts on the space of such
maps with a one-dimensional inefficiency kernel. Since 19 < 20, it follows that there
are infinitely many generic pairwise non-isomorphic algebras of this type. A dis-
cussion about algebras of similar type can be found in Example 3.6 in [62] and
the text before and after it. For more information on Hilbert–Samuel sequences
corresponding to infinitely many non-isomorphic local algebras, see [83].

Let us give an explicit example. For n = 7 consider the algebras Aα of the form

Aα = K[x1, x2, x3, x4]/(x2
1 + x2

3 − 2x2
2, x

2
4 − x2

2 − α(x2
3 − x2

2), xixj , i ̸= j).

It was shown in [105], § 2.8, that any isomorphy class of algebras of the form Aα
contains a finite number of algebras. For n > 7, to the algebra Aα we can add the
variables x5, . . . , xn−3 such that xixk = 0 for any 1 ⩽ i ⩽ n− 3 and 5 ⩽ k ⩽ n− 3.
Then we obtain an infinite series of pairwise non-isomorphic algebras of dimension n.

1.3. The Knop–Lange theorem. In this section we study actions of arbitrary
connected commutative linear algebraic groups on projective spaces with open orbit.
It is well known that such a group G is isomorphic to Gr

m×Gs
a for some r, s ∈ Z⩾0

(see [66], Theorem 15.5). The numbers r and s are called the rank and the corank
of G, respectively.

Definition 1.9. Actions αi : Gi × Xi → Xi of algebraic groups Gi on algebraic
varieties Xi, i = 1, 2, are said to be equivalent if there is a group isomorphism
ψ : G1 → G2 and a variety isomorphism φ : X1 → X2 such that φ◦α1 = α2◦(ψ×φ).

The following theorem was proved in [76], Proposition 5.1.

Theorem 1.10. There is a bijection between the following objects:
(a) the effective actions of connected commutative linear algebraic groups G on

Pn with an open orbit;
(b) the commutative associative unital algebras A of dimension n+ 1.

This bijection is considered up to an equivalence of actions and algebra isomor-
phisms. Moreover, if G is of rank r , then A contains exactly r + 1 maximal ideals.
The number of isomorphism classes is presented in Table 2.

Proof. (b) → (a) The group of invertible elements A× of an algebra A is a con-
nected commutative linear algebraic group, which is open in A. The factor group
G = P(A×) := A×/K× by the subgroup of invertible scalars K× · 1 is a connected
commutative linear algebraic group. It acts on P(A) = Pn in a canonical way with
open orbit isomorphic to P(A×).

Equivalence. An algebra isomorphism φ : A1 → A2 induces a group isomorphism
P(A×1 ) → P(A×2 ) and a variety isomorphism P(A1) → P(A2). They define an
equivalence between the actions of P(A×i ) on the P(Ai) for i = 1, 2.
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Table 2. The number of algebras of small dimension
dim A 1 2 3 4 5 6 7 8 9 10 11 12
r = 0 1 1 2 4 9 25 ∞ ∞ ∞ ∞ ∞ . . .
r = 1 1 1 3 6 16 42 ∞ ∞ ∞ ∞ . . .
r = 2 1 1 3 7 18 49 ∞ ∞ ∞ . . .
r = 3 1 1 3 7 19 51 ∞ ∞ . . .
r = 4 1 1 3 7 19 52 ∞ . . .
r = 5 1 1 3 7 19 52 . . .

· · ·
. . .

. . .
. . .

. . .
. . .

. . .
total 1 2 4 9 20 53 ∞ ∞ ∞ ∞ ∞ . . .

(a) → (b) Lemma 1.5 implies that dimG = n. Since G acts on Pn effectively,
we can regard G as a subgroup of Aut(Pn) = PGLn+1(K).

Denote by π : GLn+1(K) → PGLn+1(K) the canonical projection and let H :=
π−1(G). Let us prove that H is a connected commutative linear algebraic group
of dimension n+ 1. First note that H contains the group K× of invertible scalar
matrices since G ∋ 1. Then

dimH = dimG+ dim Kerπ
∣∣
H

= n+ 1.

Further, H is connected as π(H) = G and Kerπ
∣∣
H

are connected. Finally, we prove
that H is commutative. Consider the commutant [H,H] of H. Since G is commu-
tative, we have [H,H] ⊆ Kerπ

∣∣
H

= K×. On the other hand [H,H] is connected
as the commutant of a connected group, so [H,H] = {1} or [H,H] = K×. The
latter is impossible since the commutant consists of matrices with determinant 1.
It follows that [H,H] is trivial and H is commutative.

Consider GLn+1(K) as an open subset of Matn+1(K) and denote by A the asso-
ciative subalgebra of Matn+1(K) generated by H. Clearly, A is a commutative
unital algebra. Let us prove that dimA = n+ 1.

Note that the tautological action of H ⊆ GLn+1(K) on Kn+1 has an open orbit.
The group of invertible elements A× ⊆ GLn+1(K) is open in A. It is commutative,
acts on Kn+1 effectively, and this action has an open orbit since the action of H ⊆
A× has. By Lemma 1.5 we obtain dimA× = dim Kn+1 = n+ 1, so dimA = n+ 1.
Moreover, H = A× since H is an algebraic subgroup of A× of the same dimension.

Equivalence. Let ψ : G1 → G2 and φ : Pn → Pn define an equivalence of two
actions. Since φ ∈ PGLn(K), there is Φ ∈ GLn+1(K) that induces φ on P(Kn+1).
The isomorphism of vector spaces Φ induces an isomorphism of operator algebras
Ψ: Matn+1(K) → Matn+1(K), Ψ(X) = ΦXΦ−1. Regarding Gi as a subgroup of
PGLn(K) and setting Hi = π−1(Gi), i = 1, 2, we obtain

Ψ(H1) = Φπ−1(G1)Φ−1 = π−1(φG1φ
−1) = π−1(G2) = H2.

Hence Ψ(A1) = A2 is the desired algebra isomorphism.
Let us check that the two maps constructed are inverse to each other. Let A

be an algebra as in part (b). Then we have an action of the group G = A×/K×
on P(A) as in part (a). We can regard G as a subgroup of PGL(A). According to



586 I. V. Arzhantsev and Yu. I. Zaitseva

the implication (a) → (b), this action corresponds to the associative subalgebra of
Matn+1(K) generated by π−1(A×/K×) = A×, which coincides with A.

Conversely, let G act on Pn with open orbit. We have an algebra A as in
(a) → (b), in particular, A× = H = π−1(G). Then A×/K× coincides with G
in PGLn+1(K).

For the second assertion note that if A = K ⊕ m is local, then its group of
invertible elements is A× = K×⊕m = K××(1+m), where (1+m,×) ∼= (m,+) ∼= Gn

a

via the exponential map and K× ∼= Gm. Since any commutative algebra A is a sum
of local algebras by Lemma 1.3, the rank of the group A× is the number of its local
summands, which is equal to the number of maximal ideals. By construction, the
rank of A× = H is one greater than the rank of G.

The number of isomorphism classes of algebras of dimension n+ 1 can be found
by direct computations using the number of local algebras of fixed dimension, which
is given in Table 1. More precisely, any algebra of dimension n+ 1 decomposes into
a sum of local algebras, and this decomposition is defined by an unordered tuple of
local algebras of dimensions m1, . . . ,mr, where n+ 1 = m1 + · · ·+mr.

Remark 1.11. In [76], Proposition 5.1, the first assertion of Theorem 1.10 was
proved for an arbitrary ground field K.

Remark 1.12. Theorem 2.1 of Suprunenko and Tyshkevich [105] states that there
is a one-to-one correspondence between the maximal commutative subalgebras of
Matn+1(K) and the maximal commutative subgroups of GLn+1(K). More precisely,
for a subalgebra A ⊆ Matn+1(K) and a subgroup H ⊆ GLn+1(K) this bijection
is defined by A 7→ A× and SpanH ↢ H. Let us reformulate the proof of the
Knop–Lange theorem in these terms.

It is easy to see that the correspondence in Theorem 2.1 restricts to a bijec-
tion between the regular subalgebras of Matn+1(K) and the regular subgroups
of GLn+1(K). On the one hand regular subalgebras of Matn+1(K) correspond
to abstract algebras of dimension n+ 1 by Lemma 1.7. On the other hand the
arguments in the proof of the Knop–Lange theorem show that the regular sub-
groups H ⊆ GLn+1(K) are in bijection with the commutative subgroups G ⊆
PGLn+1(K) = Aut(Pn) such that the corresponding action of the group G on Pn
has an open orbit: the correspondence is given by G = π(H) and H = π−1(G),
where π is the canonical projection π : GLn+1(K) → PGLn+1(K). Thus we obtain
a bijection between the G-actions on Pn with open orbit and the algebras of dimen-
sion n+ 1.

Now we arrive at a description of orbits of a commutative group acting on Pn in
terms of the corresponding algebra.

Corollary 1.13. The correspondence in Theorem 1.10 defines a bijection between
the G-orbits on Pn and the non-zero principal ideals in the algebra A.

Proof. First we establish a bijection between the G-orbits on Pn and the association
classes of non-zero elements in the algebra A. If for a, b ∈ A there exists c ∈ A×

such that a = cb, then [b] ∈ P(A) is obtained from [a] ∈ P(A) by the action of
[c] ∈ A×/K×. Conversely, if [a] = [c] · [b] for a, b ∈ A and c ∈ A×, then a = λcb,
λ ∈ K×. Hence a and b are associated. 2
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It remains to notice that a generator of a principal ideal is defined up to associ-
ation.

For the following statement, see [62], Proposition 3.5.

Corollary 1.14. There is a unique action of Gn
a on Pn with finitely many orbits.

It corresponds to the truncated polynomial algebra A = K[S]/(Sn+1).

Proof. By Corollary 1.13 we have to investigate local (n+1)-dimensional algebras A
with finite number of principal ideals. First note that the algebra K[S]/(Sn+1) is
local and has a finite number of principal ideals (Sk), 0 ⩽ k ⩽ n + 1. Let us
prove the converse statement using induction on n. Let A be a local algebra of
dimension n+ 1 with finitely many principal ideals. The set of fixed points in
Pn = P(A) coincides with P(SocA), so that dim SocA = 1. Notice that SocA is an
ideal in A, so we can consider the factor algebra A/ SocA. It is n-dimensional and
has a finite number of principal ideals as well, so by the inductive hypothesis it is
isomorphic to K[s]/(sn). Let S + SocA ∈ A/ SocA correspond to s. Then A is the
direct sum of the vector spaces SocA and ⟨Sk, 0 ⩽ k ⩽ n− 1⟩. Moreover, it follows
that Sn ∈ SocA, hence Sn+1 = 0. If Sn = 0, then Sn−1 ·S = 0 and Sn−1 SocA = 0
imply that Sn−1m = 0, which is in contradiction with Sn−1 /∈ SocA. Thus A =
⟨Sk, 0 ⩽ k ⩽ n⟩.

For positive integers n and r we denote by pr(n) the number of partitions n =
n1 + · · ·+ nr such that n1 ⩾ · · · ⩾ nr ⩾ 1. 2

Corollary 1.15. Let G be a connected commutative linear algebraic group of dim-
ension n and rank r . Then there exist precisely pr(n) effective actions of G on Pn
with finite number of orbits. The corresponding algebras A are precisely the algebras
of the form K[S]/(f(S)), where f(S) is a polynomial of degree n with precisely r
distinct roots.

Proof. By Corollary 1.13 the number of G-orbits in Pn is equal to the number of
principal ideals in the corresponding algebra A. Let

A = A1 ⊕ · · · ⊕An

be the decomposition into a sum of local ideals (see Lemma 1.3). Principal ideals of
A are precisely sums of principal ideals in Ai, so the number of principal ideals in
A is finite if and only if it is finite for every local summand. By Corollary 1.14 this
holds if and only if every Ai is isomorphic to K[S]/(Sni), where ni = dimAi. Hence
the algebra A is of the required form and is uniquely determined by the dimensions
n1, . . . , nr. 2

Example 1.16. Consider the algebra A = Kn+1 with coordinatewise multiplica-
tion. Then A× = (K×)n+1, and the group A×/K× is isomorphic to Gn

m: an
element (t1, . . . , tn) ∈ Gn

m corresponds to the class of (1, t1, . . . , tn) ∈ A× and acts
by multiplication on the classes of elements (z0, . . . , zn) ∈ A:

(t1, . . . , tn) · [z0 : z1 : · · · : zn] = [z0 : t1z1 : · · · : tnzn].

It is an action of Gn
m on Pn with open orbit {zi ̸= 0, 0 ⩽ i ⩽ n}. The other orbits

are parametrized by the set of indices 0 ⩽ i ⩽ n such that zi = 0, so there are
2n+1 − 1 orbits for this action.
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Example 1.17. Consider the local algebra A = K[S1, S2]/(S2
1 , S1S2, S

2
2) with m =

⟨S1, S2⟩. Let us find the corresponding action of A×/K× on P(A).
Since A×/K× = (1 + m,×) ∼= (m,+) ∼= G2

a via the exponential map, the action
of an element (x1, x2) ∈ G2

a is given by multiplication by the class of exp(x1S1 +
x2S2) ∈ A×. Applying this to [z0 : z1 : z2] ∈ P2 identified with the class of
z0 + z1S1 + z2S2 ∈ A we obtain

(x1, x2) · [z0 : z1 : z2] = exp(x1S1 + x2S2)(z0 + z1S1 + z2S2)
= (1 + x1S1 + x2S2)(z0 + z1S1 + z2S2)
= z0 + (z1 + x1z0)S1 + (z2 + x2z0)S2

= [z0 : z1 + x1z0 : z2 + x2z0].

It is an action of G2
a on P2 with open orbit {z0 ̸= 0}. The other orbits are fixed

points, which form the line {z0 = 0}, so there are infinitely many orbits in this
case.

Example 1.18. Consider the remaining local algebra of dimension 3: A =
K[S]/(S3) with m = ⟨S, S2⟩. As above, the action of (x1, x2) ∈ G2

a on
[z0 : z1 : z2] ∈ P2 is given by

(x1, x2) · [z0 : z1 : z2] = exp(x1S + x2S
2)(z0 + z1S + z2S

2)

=
(

1 + x1S +
(
x2 +

x2
1

2

)
S2

)
(z0 + z1S + z2S

2)

= z0 + (z1 + x1z0)S +
(
z2 + x1z1 +

(
x2 +

x2
1

2

)
z0

)
S2

=
[
z0 : z1 + x1z0 : z2 + x1z1 +

(
x2 +

x2
1

2

)
z0

]
.

It is an action of G2
a on P2 with open orbit {z0 ̸= 0}. The other orbits are {z0 = 0,

z1 ̸= 0} and {z0 = z1 = 0}, so there are three orbits for this action.

1.4. Polynomials and differential operators. We begin with some auxiliary
definitions and bijections required for the Hassett–Tschinkel correspondence. Sim-
ilar results were explained in [72] with a reference to [86]. Let K be a field of char-
acteristic zero. Fix n ∈ Z>0 and consider two polynomial algebras K[x1, . . . , xn]

and K[S1, . . . , Sn]. If we identify Si with
∂

∂xi
, 1 ⩽ i ⩽ n, then K[S1, . . . , Sn] can

be considered as the polynomial algebra K
[
∂

∂x1
, . . . ,

∂

∂xn

]
of differential operators

with constant coefficients.

Construction 1.19. Consider the pairing between K[x1, . . . , xn] and K[S1,
. . . , Sn]:

K[S1, . . . , Sn]×K[x1, . . . , xn] → K, (g, f) 7→ g[f ]
∣∣
(0,...,0)

=: ⟨g | f⟩. (1.1)

In particular, ⟨Si11 . . . Sinn | xj11 . . . xjnn ⟩ equals i1! · · · in! if ik = jk, 1 ⩽ k ⩽ n, and 0
otherwise. This pairing is non-degenerate:
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• f ∈ K[x1, . . . , xn] with ⟨g | f⟩ = 0 for all g ∈ K[S1, . . . , Sn] implies that
f = 0;

• g ∈ K[S1, . . . , Sn] with ⟨g | f⟩ = 0 for all f ∈ K[x1, . . . , xn] implies that
g = 0.

Moreover, it induces the perfect pairing K[S1, . . . , Sn]⩽d × K[x1, . . . , xn]⩽d → K
between the polynomials and differential operators of total degree at most d, since
these vector spaces are of finite dimension and the restriction of the pairing is
non-degenerate as well.

For a subspace V ⊆ K[x1, . . . , xn] one can define the subspace

IV = {g ∈ K[S1, . . . , Sn] : ⟨g | f⟩ = 0 ∀ f ∈ V },

and for a subspace I ⊆ K[S1, . . . , Sn] one can consider

VI = {f ∈ K[x1, . . . , xn] : ⟨g | f⟩ = 0 ∀ g ∈ I}.

Example 1.20. Let V = ⟨x2
1⟩ ⊆ K[x1]. Then IV consists of the elements g =∑

i⩾0 αiS
i
1 such that ⟨g | x2

1⟩ = 2!α2 = 0, that is, IV = ⟨Si1, i ̸= 2⟩. Conversely, for
I = ⟨Si1, i ̸= 2⟩ ⊆ K[S1] we obtain VI = ⟨x2

1⟩ since any f =
∑
i⩾0 αix

i
1 ∈ VI satisfies

⟨Si1 | f⟩ = i!αi = 0 for all i ̸= 2.

Example 1.21. Consider the ideal I = (S2
1 − 1) ⊆ K[S1], that is, I = ⟨Si+2

1 − Si1,
i ⩾ 0⟩. Any f =

∑
i⩾0 αix

i
1 ∈ VI satisfies

⟨Si+2
1 − Si1 | f⟩ = (i+ 2)!αi+2 − i!αi = 0

for all i ⩾ 0. Then

0!α0 = 2!α2 = 4!α4 = · · ·

and

1!α1 = 3!α3 = 5!α5 = · · · ;

hence f = 0 since it cannot contain infinitely many non-zero coefficients. Thus
VI = {0}. It follows that the correspondences between subspaces of K[x1, . . . , xn]
and K[S1, . . . , Sn] in Construction 1.19 are not bijective.

Lemma 1.22. For fixed d,m ∈ Z⩾0 Construction 1.19 defines a bijection between
(a) the subspaces V ⊆ K[x1, . . . , xn]⩽d with dimV = m

and
(b) the subspaces I ⊆ K[S1, . . . , Sn] with I ⊇ K[S1, . . . , Sn]>d and

codimK[S1,...,Sn] I = m.

Proof. It is easy to see that IV ⊇ K[S1, . . . , Sn]>d. Note that dimV =
codimK[S1,...,Sn] IV because the pairing between K[x1, . . . , xn]⩽d and K[S1, . . . , Sn]⩽d
is perfect. Since V ⊆ V(IV ) and dimV = codim IV = dimV(IV ), we obtain
V = V(IV ). Analogously, I = I(VI). 2
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Now we are going to precise the correspondence constructed in a series of lemmas.
The main result of this subsection is formulated in Proposition 1.33.

Notice that there is a canonical action of the group Gn
a by translations on the

linear span ⟨x1, . . . , xn⟩. It can be extended to an action of Gn
a on K[x1, . . . , xn]:

a group element β = (β1, . . . , βn) ∈ Gn
a maps a polynomial f(x) = f(x1, . . . , xn) to

f(x+ β) = f(x1 + β1, . . . , xn + βn).

We recall Taylor’s theorem:

f(x+ β) =
∑

i1,...,in

βi11 · · ·βinn
i1! · · · in!

∂i1+···+inf(x)
∂xi11 · · · ∂x

in
n

.

It follows that
f(x+ β) = exp(β1S1 + · · ·+ βnSn)[f(x)].

Definition 1.23. A subspace V ⊆ K[x1, . . . , xn] is called translation invariant if
the following equivalent conditions holds:

1) V is invariant under Si = ∂/∂xi for every 1 ⩽ i ⩽ n;
2) V is invariant under the Gn

a -action by translations.

That conditions 1) and 2) are equivalent follows from the fact that the subspace
V is Gn

a -invariant if and only if it is (Lie Gn
a)-invariant.

Example 1.24. Consider the vector subspace V = ⟨1, x1, x2⟩ ⊆ K[x1, x2]. It is
invariant under ∂/∂x1 and ∂/∂x2. On the other hand it is invariant under transla-
tions: the corresponding representation of (β1, β2) ∈ G2

a in V is given by1 β1 β2

0 1 0
0 0 1


in the basis 1, x1, x2.

Example 1.25. Let V = ⟨1, x1, x2 + x2
1/2⟩ ⊆ K[x1, x2]. It is translation invariant

according to both definitions. Since applying (β1, β2) ∈ G2
a to the basis vectors

1, x1, and x2 + x2
1/2 gives

1, x1 + β1, and x2 + β2 +
(x1 + β1)2

2
= x2 +

x2
1

2
+ β1x1 + β2 +

β2
1

2
,

respectively, the corresponding representation of G2
a in V is given by1 β1 β2 + β2

1/2
0 1 β1

0 0 1

 .

Lemma 1.26. Lemma 1.22 defines a bijection between the translation invariant
subspaces of K[x1, . . . , xn] and the ideals in K[S1, . . . , Sn]. Moreover, in this case

VI = {f ∈ V : g[f ] = 0 ∀ g ∈ I},
IV = {g ∈ I : g[f ] = 0 ∀ f ∈ V }.

(1.2)
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Proof. Let I be an ideal and let f ∈ VI , that is ⟨g | f⟩ = 0 for any g ∈ I. Since
g̃g ∈ I for any g̃ ∈ K[S1, . . . , Sn], it follows that 0 = ⟨g̃g | f⟩ = ⟨g̃ | g[f ]⟩. Hence
by the non-degeneracy of ⟨ · | · ⟩ we have g[f ] = 0. This implies the first formula
in (1.2), and thus VI is ∂/∂xi-invariant for any 1 ⩽ i ⩽ n.

Conversely, let V be a translation invariant subspace and let g ∈ IV .
Since g̃[f ] ∈ V for any g̃ ∈ K[S1, . . . , Sn] and f ∈ V , it follows that
0 = ⟨g | g̃[f ]⟩ = ⟨g̃ | g[f ]⟩. Hence g[f ] = 0. Then we obtain the second formula
in (1.2), which implies that IV is an ideal. 2

Example 1.27. The translation invariant vector subspace V = ⟨1, x1, x
2
1⟩ ⊆ K[x1]

corresponds to the ideal I = (S3
1) ⊆ K[S1].

Definition 1.28. We call a subspace V ⊆ K[x1, . . . , xn] non-degenerate if no
non-zero operator in ⟨S1, . . . , Sn⟩ annihilates V . A subspace I ⊆ K[S1, . . . , Sn]
is called non-degenerate if I ∩ ⟨S1, . . . , Sn⟩ = 0.

The following lemma is straightforward.

Lemma 1.29. The bijection in Lemma 1.22 restricts to a bijection between the
non-degenerate subspaces of K[x1, . . . , xn] and K[S1, . . . , Sn].

Definition 1.30. We call a subspace V ⊆ K[x1, . . . , xn] generating if one of the
following equivalent conditions hold:

1) V is translation invariant and non-degenerate;
2) V is translation invariant and generates K[x1, . . . , xn] as an algebra.

We prove that conditions 1) and 2) in Definition 1.30 are equivalent. Let V be
translation invariant and generate K[x1, . . . , xn]. Then there is no non-zero operator
in ⟨S1, . . . , Sn⟩ annihilating V since otherwise it would annihilate K[x1, . . . , xn].

Conversely, let a translation invariant and non-degenerate subspace V generate
a subalgebra A ⊊ K[x1, . . . , xn]. Set W = A ∩ ⟨x1, . . . , xn⟩. Choosing appropriate
variables in K[x1, . . . , xn] we can assume that W = ⟨x1, . . . , xk⟩ for some k < n.
Note that K[x1, . . . , xk] ⊆ A since it is generated by W ⊆ A. Let us prove that
A = K[x1, . . . xk]. Assume the converse and let f be a polynomial of smallest
degree in A\K[x1, . . . , xk]. Since V is invariant under translations, A is translation

invariant as well. Then the polynomials
∂f

∂xi
belong to A and are of degree less

than that of f , hence
∂f

∂xi
∈ K[x1, . . . , xk] for every 1 ⩽ i ⩽ n.

Let
f =

∑
j

bjx
j
n, bj ∈ K[x1, . . . , xn−1].

Since
∂f

∂xn
=

∑
j

jbjx
j−1
n is an element of K[x1, . . . , xk], we have f = b1xn + b0.

For every i, 1 ⩽ i < n, the polynomial
∂f

∂xi
=
∂b1
∂xi

xn +
∂b0
∂xi

does not contain xn

either. Hence
∂b1
∂xi

= 0 for any i, that is b1 ∈ K. Thus xn occurs only in a linear

term in f . The same holds for xk+1, . . . , xn−1, that is, f is a sum of a linear
polynomial in xk+1, . . . , xn and an element f0 ∈ K[x1, . . . , xk]. Since f, f0 ∈ A,



592 I. V. Arzhantsev and Yu. I. Zaitseva

this linear polynomial belongs to W . But W = ⟨x1, . . . , xk⟩. Hence this linear
polynomial is zero, that is, f = f0 ∈ K[x1, . . . , xk], which is a contradiction. Thus,

A = K[x1, . . . xk]. Then
∂

∂xn
annihilates A and therefore V , which contradicts the

non-degeneracy of V .
Consider the canonical action of the group GLn(K) on the vector space

⟨x1, . . . , xn⟩: x 7→ φx, where x ∈ ⟨x1, . . . , xn⟩ and φ ∈ GLn(K). It induces an action
of GLn(K) on the algebra K[x1, . . . , xn]: (φf)(x1, . . . , xn) := f(φx1, . . . , φxn). We
define an action of GLn(K) on K[S1, . . . , Sn] as follows: for g ∈ K[S1, . . . , Sn] and
φ ∈ GLn(K) set (φg)[f ] = g[φ−1f ] for any f ∈ K[x1, . . . , xn].

Definition 1.31. We say that two subspaces V1, V2 ⊆ K[x1, . . . , xn] (I1, I2 ⊆ K[S1,
. . . , Sn]) are GL-equivalent if there exists φ ∈ GLn(K) such that φV1 = V2 (φI1 = I2,
respectively).

Lemma 1.32. The bijection in Lemma 1.22 is well defined on classes of GL-
equivalence.

Proof. Let φV1 = V2. Then

IV2 = {h ∈ K[S1, . . . , Sn] : ⟨h | φf⟩ = 0 ∀ f ∈ V1}
= {h ∈ K[S1, . . . , Sn] : ⟨φ−1h | f⟩ = 0 ∀ f ∈ V1}
= {φg ∈ K[S1, . . . , Sn] : ⟨g | f⟩ = 0 ∀ f ∈ V1} = φIV1 .

In the same way φI1 = I2 implies that φV1 = V2. 2

We say that an ideal I ⊆ K[S1, . . . , Sn] is supported at the origin if I contains
some powers of Si for every 1 ⩽ i ⩽ n. It can easily be checked that an ideal I is
supported at the origin if and only if I contains K[S1, . . . , Sn]>d for some d.

From Lemmas 1.22, 1.26, 1.29, and 1.32 we obtain the following result.

Proposition 1.33. Let m ∈ Z⩾0 . Formulae (1.2) give a bijection between the
classes of GL-equivalence of

(a) generating subspaces V ⊆ K[x1, . . . , xn] of dimension m; and
(b) non-degenerate ideals I ⊆ K[S1, . . . , Sn] of codimension m supported at the

origin.

Example 1.34. The generating subspace

V = ⟨1, x1, x2⟩ ⊆ K[x1, x2]

corresponds to the ideal

I = (S2
1 , S1S2, S

2
2) ⊆ K[S1, S2]

as the latter consists of the elements g =
∑
i,j⩾0 αijS

i
1S

j
2 with α00 = α01 = α11 = 0.

Example 1.35. The generating subspace

V =
〈

1, x1, x2 +
x2

1

2

〉
⊆ K[x1, x2]

corresponds to the ideal

I = (S2
1 − S2, S1S2) ⊆ K[S1, S2],

since g =
∑
i,j⩾0 αijS

i
1S

j
2 belongs to I if and only if α00 = α10 = α01+2!α20/2 = 0.



Equivariant completions of affine spaces 593

1.5. The Hassett–Tschinkel correspondence. In this subsection we describe
and study the correspondence presented in [62], § 2.4.

Definition 1.36. Let G be an algebraic group. Representations ρ1 : G→ GL(V1)
and ρ2 : G → GL(V2) are said to be equivalent if there exist an automorphism
ψ : G→ G and an isomorphism of vector spaces φ : V1 → V2 such that φ(ρ1(g)v) =
ρ2(ψ(g))φ(v) for any g ∈ G, v ∈ V1.

Definition 1.37. Consider pairs (A,U), where A is an algebra and U ⊆ A is
a subspace. Two such pairs (A1, U1) and (A2, U2) are equivalent if there is an
algebra isomorphism φ : A1 → A2 with φ(U1) = U2.

We arrive at the main result in this subsection.

Theorem 1.38. Let n,m ∈ Z⩾0 . There exist one-to-one correspondences between
(a) the faithful cyclic representations ρ : Gn

a → GLm(K);
(b) the pairs (A,U), where A is a local commutative associative unital algebra of

dimension m with maximal ideal m and U ⊆ m is a subspace of dimension n
generating the algebra A;

(c) the non-degenerate ideals I ⊆ K[S1, . . . , Sn] of codimension m supported
at the origin;

(d) the generating subspaces V ⊆ K[x1, . . . , xn] of dimension m.
These correspondences are given up to equivalences as in Definitions 1.31, 1.36,
and 1.37.

Proof. (a) → (b) Here we follow [12], § 1. Let ρ : Gn
a → GLm(K) be a faithful

representation. Its differential gives a representation dρ : g → glm(K) of the tangent
algebra g = Lie(Gn

a). This defines a representation τ : U(g) → Matm(K) of the
universal enveloping algebra U(g) = K[S1, . . . , Sn].

Let A := τ(U(g)) and U := τ(g). The subspace U generates the algebra A
since g generates U(g). The group Gn

a is commutative, so g is a commutative
Lie algebra. Thus U(g) is isomorphic to a polynomial algebra in n variables with
maximal ideal (g) consisting of polynomials without constant term. The algebra
A is a commutative associative unital algebra. Since Gn

a is a unipotent group, the
image dρ(g) ⊆ glm(K) consists of commuting nilpotent matrices. By definition,
τ
∣∣
g

= dρ, so (U) = τ((g)) is a nilpotent ideal in A of codimension 1 and the algebra
A is local. Since ρ is faithful, it follows that τ

∣∣
g
: g → U is an isomorphism of vector

spaces and dimU = n.
Let v be a cyclic vector, that is, ⟨ρ(Gn

a)v⟩ = Km. Note that the subspace
Av = τ(U(g))v is g- and Gn

a -invariant and contains v, hence Av = Km. Consider
π : A→ Km, a 7→ av. Note that Kerπ = 0. Indeed, if av = 0 for some a ∈ A, then
aKm = aAv = Aav = 0, hence a = 0. Thus, π is an isomorphism of vector spaces
and dimA = m.

Equivalence. Let ρ1 : Gn
a → GLm(K) and ρ2 : Gn

a → GLm(K) be two equivalent
representations, that is, there exist isomorphisms φ : Km → Km and ψ : Gn

a → Gn
a
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such that the first of the diagrams

Km

ρ1(g)

��

φ

∼
// Km

ρ2(ψ(g))

��
Km

φ

∼
// Km

A1
π1

∼
//

mult. by
τ1(y)��

Km
φ

∼
//

τ1(y)

��

Km
π−1
2

∼
//

τ2(Ψ(y))

��

A2

mult. by
τ2(Ψ(y))

��
A1

π1

∼
// Km

φ

∼
// Km

π−1
2

∼
// A2

U(g)

τ1

��

Ψ // U(g)

τ2

��
A1

π−1
2 φπ1

∼
// A2

is commutative for any g ∈ Gn
a . If we differentiate it and extend dψ : g → g

to Ψ: U(g) → U(g), we obtain the central part of the second diagram for every
y ∈ U(g). Denote a cyclic vector of ρ1 by v1 and set v2 = φ(v1). Then v2 is a cyclic
vector for ρ2. Identifying Ai with Km by means of the correspondences πi, i = 1, 2,
and applying the diagram to 1 ∈ A1, we obtain that π−1

2 φπ1 maps τ1(y) to τ2(Ψ(y))
for any y ∈ U(g), which implies that π−1

2 φπ1 is an algebra isomorphism. The third
diagram implies that π−1

2 φπ1(U1) = U2, since dψ = Ψ
∣∣
g

maps g to g.
(b) → (a) Let A be a local algebra with maximal ideal m, let U ⊆ m generate A,

and let dimA = m and dimU = n. Since U consists of nilpotent elements, one can
consider the subgroup expU ∼= Gn

a in A× and its representation ρ : expU → GL(A)
that maps a ∈ expU ⊆ A to the operator of multiplication by a in A.

Clearly, ρ is faithful. Let us prove that ρ is cyclic with a cyclic vector 1 ∈ A.
Let W := ⟨expU⟩. Note that W is (expU)-invariant. Therefore, W is Lie(expU)-
invariant, that is, W is invariant under multiplication by elements in U . Since U
generates the algebra A, we obtain W = A.

Equivalence. Let φ : A1 → A2 be an algebra isomorphism such that
φ(U1) = U2. Then φ(expU1) = expU2, and for any u ∈ U1 we have ρ1(expu)◦φ =
φ ◦ ρ2(φ(expu)).

Let us show that the two maps constructed are inverse to each other. Given
a representation ρ, we have A = τ(U(g)) ⊆ Matm(K) and U = τ(g) = dρ(g).
The corresponding representation maps expU to the operators of multiplication
by elements of expU in A. It is equivalent to the original representation since
expU ⊆ Matm(K) coincides with exp dρ(g) = ρ(Gn

a).
Conversely, given (A,U), let ρ : expU → GL(A) be the corresponding represen-

tation. Then dρ : U → gl(A) maps u to the operator of multiplication by u. Since
the image of τ coincides with the associative algebra generated by dρ(U) and U
generates A, we obtain the algebra of operators of multiplication by elements of A,
which is isomorphic to A.

(b) → (c) Denote a basis of the vector space U by s1, . . . , sn. Since U gen-
erates A, the algebra A is the image of a polynomial algebra under the projec-
tion π : K[S1, . . . , Sn] → A, Si 7→ si. Then A ∼= K[S1, . . . , Sn]/I for some ideal
I ⊆ K[S1, . . . , Sn]. The si are nilpotent in A, so the ideal I contains some powers
of all variables Si. Since the si form a basis of U , it follows that I∩⟨S1, . . . , Sn⟩ = 0
and I is non-degenerate. Since dimA = m, we have codim I = m.

Equivalence. First we check that the above construction does not depend on the
choice of a basis in U . Let (s1, . . . , sn) and (s̃1, . . . , s̃n) be two bases of U , which
correspond to ideals I and Ĩ, respectively, and let (s1, . . . , sn) = (φs̃1, . . . , φs̃n)
for some φ ∈ GLn(K). Then g(S1, . . . , Sn) ∈ I if and only if (φg)(S1, . . . , Sn) =
g(φS1, . . . , φSn) ∈ Ĩ, hence I is equivalent to Ĩ.
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Now let (A1, U1) be equivalent to (A2, U2), that is, suppose there exists an iso-
morphism φ : A1 → A2 such that φ(U1) = U2. According to the above, we can
choose a basis in U2 to be the φ-image of a basis in U1 and obtain I1 = I2 ⊆
K[S1, . . . Sn].

(c)→ (b) Given an ideal I ⊆ K[S1, . . . , Sn], let A := K[S1, . . . , Sn]/I, si := Si+I,
and U := ⟨s1, . . . , sn⟩.

The elements si are nilpotent since some powers of Si belong to I. It follows that
the ideal (s1, . . . , sn) is nilpotent of codimension 1, hence the algebra A is local. As
above, dimU = n since I is non-degenerate, and dimA = codim I = m.

Equivalence. If I1 and I2 are equivalent ideals, then we have an automorphism
of K[S1, . . . , Sn] that induces the desired isomorphism of factor algebras A1 → A2.

Clearly, the two maps constructed are inverse to each other.
(c) ↔ (d) See Proposition 1.33. 2

Below we explain a method for computing the generating subspace V corre-
sponding to a given pair (A,U) (see [62], Proposition 2.11).

Construction 1.39. Suppose A is a local algebra of dimension m with maximal
ideal m, and a subspace U ⊆ m of dimension n generates the algebra A (see
Theorem 1.38, (b)). These data define a representation of A as a factor algebra
A = K[S1, . . . , Sn]/I: given a basis s1, . . . , sn of the subspace U , let the ideal I be
the kernel of the surjective homomorphism π : K[S1, . . . , Sn] → A, Si 7→ si.

For what follows we need a basis of A. Consider a homogeneous lexicographic
order on K[S1, . . . , Sn]. Let µ1, . . . , µk be the monomials that are not the leading
terms of any polynomials in I. Let us prove that the µi form a basis of A. They
are linearly independent in A since a linear combination of the µi has one of the µi
as a leading term and cannot belong to I. Further, consider any element of A. It is
a linear combination of some monomials; if one of these monomials is not equal to µi,
then it is the leading term of some f ∈ I and we can reduce this element using f .
In such a way we obtain a representation of the element as a linear combination of
the µi.

Since x1s1 + · · ·+ xnsn ∈ U ⊆ m is nilpotent for any x1, . . . , xn ∈ K and the µi
form a basis of A, we can expand

exp(x1s1 + · · ·+ xnsn) =
m∑
i=1

fi(x1, . . . , xn)µi.

For g ∈ K[S1, . . . , Sn], denote by gx the same polynomial in the variables ∂/∂xi.
One can easily check that

∂

∂xi
[exp(x1S1 + · · ·+ xnSn)] = Si exp(x1S1 + · · ·+ xnSn).

This leads to the identity

gx[exp(x1S1 + · · ·+ xnSn)] = g exp(x1S1 + · · ·+ xnSn).

Substituting Si = si into this identity we obtain
m∑
i=1

gx[fi(x1, . . . , xn)]µi = π(g)
m∑
i=1

fi(x1, . . . , xn)µi. (1.3)
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Note that {
∑
fi(x1, . . . , xn)µi : xi ∈ K} = expU by definition and ⟨expU⟩ = A by

the proof of the correspondence (b) → (a) in Theorem 1.38. In particular, the fi
are linearly independent. Then the right-hand side of (1.3) is zero for all xi ∈ K
if and only if π(g) = 0 in A, that is, g ∈ I. On the other hand, the left-hand side
equals zero for any xi ∈ K if and only if gx[fi] = 0 for all 1 ⩽ i ⩽ m. It follows that
fi ∈ V for each i, where V is the generating subspace corresponding to the ideal I
(see Lemma 1.26). So we obtain the following.

Lemma 1.40. The polynomials fi , 1 ⩽ i ⩽ m, form a basis of the generating
subspace V corresponding to the given pair (A,U).

Example 1.41. Consider the local algebra A = K[S]/(S3) with maximal ideal
m = ⟨S, S2⟩.

(i) Take U = m. In accordance with Construction 1.39, choose a basis s1 = S +
(S3), s2 = S2+(S3) of U and let I be the kernel of the projection π : K[S1, S2] → A,
Si 7→ si:

I = (S2
1 − S2, S1S2), A = K[S1, S2]/I,
s1 = S1 + I, s2 = S2 + I.

We omit ‘+ I’ for convenience. The elements µ1 = 1, µ2 = S1, and µ3 = S2 form
a basis of A. Since S2 = S2

1 and S3
1 = 0 in A, it follows that

exp(x1s1 + x2s2) = exp(x1S1 + x2S
2
1)

= 1 + x1S1 +
(
x2 +

x2
1

2

)
S2

1 = 1 + x1µ1 +
(
x2 +

x2
1

2

)
µ2,

hence f1 = 1, f2 = x1, and f3 = x2 +x2
1/2. By Lemma 1.40, V = ⟨1, x1, x2 +x2

1/2⟩.
This agrees with Example 1.35.

(ii) Take U = ⟨S⟩. Its basis s1 = S + (S3) corresponds to

I = (S3
1) ⊆ K[S1], A = K[S1]/I,

s1 = S1 + I.

For µ1 = 1, µ2 = S1, and µ3 = S2
1 we have

exp(x1S1) = 1 + x1S1 +
x2

1

2
S2

1 ,

whence V = ⟨1, x1, x
2
1⟩ in K[x1]. This agrees with Example 1.27.

Example 1.42. In the same way one can see that the algebra A = K[S1, S2]/
(S2

1 , S1S2, S
2
2) with U = m = ⟨S1, S2⟩ corresponds to the generating vector space

⟨1, x1, x2⟩ ⊆ K[x1, x2], which agrees with Example 1.34. There is no other subspace
U ⊆ m generating the algebra A.

Now we are going to discuss the duality properties for modules under consider-
ation. In particular, we provide complete proofs for the results mentioned in [62],
Remark 2.13. Recall that the generating subspace V contains constants, so the
action of Gn

a on V by translations is linear.
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Lemma 1.43. In the notation of Theorem 1.38 the dual of the representation
ρ : Gn

a → GLm(K) is equivalent to the representation τ : Gn
a → GL(V ) by trans-

lations.

Proof. Let ⟨ · | · ⟩ be the pairing between K[S1, . . . , Sn] and K[x1, . . . , xn] as in Con-
struction 1.19. Note that〈

exp(β1S1 + · · ·+ βnSn)g | f(x)
〉

=
〈
g | f(x+ β)

〉
(1.4)

for any β = (β1, . . . , βn) ∈ Gn
a , f ∈ K[x1, . . . , xn], and g ∈ K[S1, . . . , Sn]. Indeed,

the left-hand side equals ⟨g | exp(β1S1 + · · · + βnSn)[f(x)]⟩, which coincides with
⟨g | f(x + β)⟩ by Taylor’s theorem. Since ⟨IV | V ⟩ = 0, we can consider ⟨ · | · ⟩ as
a pairing between A = K[S1, . . . , Sn] / IV and V ⊆ K[x1, . . . , xn]. According to the
proof of Theorem 1.38, we have ρ : expU → GL(A), where U = ⟨S1, . . . , Sn⟩, so
equation (1.4) implies that

⟨ρ(−β)g | f⟩ = ⟨g | τ(β)f⟩

for any β ∈ Gn
a , f ∈ V , and g ∈ A (we identify β1S1 + · · · + βnSn with −β for

expU ∼= Gn
a). It follows that the representations ρ and τ are dual. 2

Example 1.44. Let

A = K[S]/(S3) and U = m = ⟨S, S2⟩

as in Example 1.41, (i). According to the correspondence (b)→ (a) in Theorem 1.38,
the corresponding representation ρ : G2

a → GL3(K) is the representation of expU
in A via multiplication. For an element x1S + x2S

2 in U we have

exp(x1S + x2S
2) = 1 + x1S +

(
x2 +

x2
1

2

)
S2,

so in the basis 1, S, S2 of A the representation ρ is given by

ρ(x1, x2) =

 1 0 0
x1 1 0

x2 + x2
1/2 x1 1

 .

For A = K[S1, S2]/(S2
1 , S1S2, S

2
2) and U = m = ⟨S1, S2⟩ we obtain

ρ(x1, x2) =

 1 0 0
x1 1 0
x2 0 1

 .

This agrees with Lemma 1.43: the matrices of representations in V in Examples 1.25
and 1.24 are the transposes of the above ones.

In other words, Lemma 1.43 states that A and V are dual Gn
a -modules.
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Proposition 1.45. In the notation of Theorem 1.38 the following conditions are
equivalent:

(a) Gn
a -modules A and V are equivalent;

(b) the Gn
a -module V is cyclic;

(c) the algebra A is Gorenstein.

Proof. (a) ⇒ (b) The module V ∼= A is cyclic since the algebra A contains a unity
element.

(b) ⇒ (a) Since the module structure on V is given by translation operators in
expU , U = ⟨S1, . . . , Sn⟩, and V is cyclic, it follows that there exists a polynomial
f0 ∈ V such that V = ⟨(expU)[f0]⟩ = (K[S1, . . . , Sn])[f0]. Hence the kernel of the
valuation π : K[S1, . . . , Sn] → V , g 7→ g[f0], is equal to

Kerπ = {g ∈ K[S1, . . . , Sn] : g[f0] = 0} = {g ∈ K[S1, . . . , Sn] : g[V ] = 0} = I.

Thus π gives an isomorphism between A = K[S1, . . . , Sn]/I and V , which is an
isomorphism of Gn

a -modules since the module structure on A is given by expU as
well.

(b) ⇔ (c) Invariant one-dimensional subspaces ⟨a⟩ in A correspond to invariant
hyperplanes ⟨a⟩⊥ in the dual module V . Since Gn

a is unipotent, a one-dimensional
vector space is invariant if and only if it consists of fixed points. Notice that SocA
is the set of fixed points in A. Indeed, (expU)a = a if and only if Ua = 0, that is,
ma = 0.

If dim SocA > 1, then the corresponding invariant hyperplanes cover V . Indeed,
any f ∈ V is contained in ⟨a⟩⊥, where a ∈ SocA∩⟨f⟩⊥. So there is no cyclic vector
in this case.

If dim SocA = 1, then there is a unique invariant hyperplane in V . Let us
prove that any vector in the complement of this hyperplane is cyclic. It is suffi-
cient to show that any proper invariant subspace in V is contained in an invariant
hyperplane. Indeed, for W ⊆ V consider the invariant subspace W⊥ ⊆ A; by the
Lie–Kolchin theorem there exists an invariant one-dimensional subspace ⟨a⟩ ⊆W⊥;
it corresponds to the required hyperplane ⟨a⟩⊥ ⊇W .

1.6. The case of additive actions. In this subsection we combine the results of
the two previous subsections.

Definition 1.46. A generating subspace V ⊆ K[x1, . . . , xn] is called basic if
dimV = n+ 1.

Basic subspaces are minimal generating subspaces of a polynomial algebra.

Example 1.47. One can check that the following vector subspaces of K[x1, x2,
x3, x4] are basic:

V1 = ⟨1, x1, x2, x3, x4⟩, V2 =
〈

1, x1, x2, x3 +
x2

1

2

〉
,

V3 = ⟨1, x1, x2, x3 + x1x2⟩, V4 =
〈

1, x1, x2 +
x2

1

2
, x3 + x1x2 +

x3
1

6

〉
.
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The Hassett–Tschinkel correspondence for m = n+1 (see [62], Proposition 2.15)
or the Knop–Lange theorem for r = 0 implies a description of additive actions on
projective spaces. In view of the correspondence (b) → (d) in Theorem 1.38, the
basic subspace is determined just by the algebra A as we have to set U = m.

Theorem 1.48. There are one-to-one correspondences between the following
objects:

(a) the additive actions on Pn , that is, effective actions α : Gn
a × Pn → Pn with

open orbit;
(b) the faithful cyclic representations ρ : Gn

a → GLn+1(K);
(c) the local commutative associative unital algebras A of dimension n+ 1;
(d) the basic subspaces V ⊆ K[x1, . . . , xn].

These correspondences are considered up to equivalences as in Definitions 1.9, 1.31,
1.36, and 1.37.

From Theorem 1.4 we obtain the following statement.

Corollary 1.49. The projective space Pn admits a finite number of additive actions
if and only if n ⩽ 5.

Example 1.50. According to Table 1, there are two local algebras of dimension 3.
The corresponding additive G2

a-actions on P2 were found in Examples 1.17 and 1.18,
and the basic subspaces were given in Examples 1.41, (i), and 1.42. Faithful cyclic
representations were written out in Example 1.44. We gather these results in
Table 3. In the same way it can be proved that the basic subspaces in Exam-
ple 1.47 correspond to the four local algebras of dimension 4 in Table 1, and so
they are the only basic subspaces in this case.

Table 3

Additive actions [z0 : z1 + αz0 : z2 + βz0] [z0 : z1 + αz0 : z2 + αz1 + (β + α2/2)z0]

Representations

1 0 0

α 1 0

β 0 1


 1 0 0

α 1 0

β + α2/2 α 1


Local algebras K[S1, S2]/(S2

1 , S1S2, S
2
2) K[S]/(S3)

Basic vector
subspaces

⟨1, x1, x2⟩ ⟨1, x1, x2 + x2
1/2⟩

Recall that by Corollary 1.14 there is a unique additive action on Pn with finitely
many orbits; it corresponds to the local algebra A = K[S]/(Sn+1). One may look
for a generalization of this result. Namely, the modality of an action of a connected
algebraic group G on a variety X is the maximum value of the smallest codimension
of a G-orbit in Y over all irreducible G-invariant subvarieties Y in X. In other
words, the modality is the maximum number of parameters in a continuous family
of G-orbits on X. In particular, the modality is zero if and only if the number of
G-orbits on X is finite.
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A classification of additive actions on Pn of modality 1 was obtained in [12],
Theorem 3.1. Such actions correspond to the following 2-generated pairwise non-
isomorphic local algebras:

Aa,b = K[S1, S2]/(Sa+1
1 , Sb+1

2 , S1S2), a ⩾ b ⩾ 1;

Ba,b = K[S1, S2]/(S1S2, S
a
1 − Sb2), a ⩾ b ⩾ 2;

Ca = K[S1, S2]/(Sa+1
1 , S2

2 − S3
1), a ⩾ 3;

C1
a = K[S1, S2]/(Sa+1

1 , S2
2 − S3

1 , S
a
1S2), a ⩾ 3;

C2
a = K[S1, S2]/(Sa+1

1 , S2
2 − S3

1 , S
a−1
1 S2), a ⩾ 3;

C3
a = K[S1, S2]/(S2

2 − S3
1 , S

a−2
1 S2), a ⩾ 4;

D = K[S1, S2]/(S3
1 , S

2
2);

E = K[S1, S2]/(S3
1 , S

2
2 , S

2
1S2).

Clearly, the maximum possible value of modality of a non-trivial action of a con-
nected algebraic group on an irreducible n-dimensional algebraic variety is n− 1.
It follows from Corollary 1.13 that this maximum value is attained at a unique
additive action on Pn. This action corresponds to the local algebra A with con-
dition m2 = 0, so that A = K[S1, . . . , Sn]/(SiSj , 1 ⩽ i ⩽ j ⩽ n). In this case
the hyperplane P(m), which is the complement of the open orbit in Pn, consists of
Gn
a -fixed points.
In this case we can consider the blowup X of the projective space Pn along

a smooth subvariety contained in P(m) and lift the additive action from Pn to X.
This proves the following result, providing many projective varieties admitting an
additive action.

Proposition 1.51. Let X be the blowup of the projective space Pn along a smooth
subvariety contained in a hyperplane in Pn . Then X admits an additive action.

We finish this section with a characterization of Gorenstein local algebras in
terms of the Hassett–Tschinkel correspondence. Any action of an algebraic group G
on a varietyX has a closed G-orbit. IfX is complete, any closed orbit is complete as
well. If G is unipotent, such an orbit is a G-fixed point. So, an action of a unipotent
group G on a complete variety X has a fixed point.

Proposition 1.52. In the notation of Theorem 1.48 the following conditions are
equivalent:

(a) an additive action on Pn has a unique fixed point;
(b) the corresponding local algebra A is Gorenstein.

Proof. As observed in the proof of (b) ⇔ (c) in Proposition 1.45, the set of fixed
points of the action of Gn

a on A is SocA. Since a unipotent group has no non-trivial
characters, the set of fixed points of the corresponding additive action on Pn =
P(A) is P(SocA). So a fixed point is unique if and only if the ideal SocA is
one-dimensional. By definition this means that the algebra A is Gorenstein. 2
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2. Generalizations of the Hassett–Tschinkel correspondence

In this section we adapt the method of Hassett and Tschinkel to the study of
additive actions on projective varietiesX different from projective spaces. We intro-
duce an induced additive action as an additive action on X that can be extended
to an ambient projective space. It turns out that every such action comes from
an additive action on the projective space via the restriction to a subgroup of the
acting vector group. So such actions are given by pairs (A,U), where A is a local
algebra defining an additive action on the projective space and U is the subspace
in m that represents the subgroup.

In § 2.2 we consider the case when the projective subvariety X is a hypersurface
and describe a method for writing down explicitly the homogeneous equation for X
in terms of the pair (A,U). In particular, the degree of this equation is equal
to the maximum number d such that the ideal md is not contained in U . These
results imply that smooth projective hypersurfaces that admit an additive action
are precisely hyperplanes and non-degenerate quadrics. Moreover, if a hypersurface
in Pn admits an additive action, then its degree does not exceed n.

In the next three subsections, §§ 2.3–2.5, we apply the methods of multilinear
algebra to additive actions on projective hypersurfaces. Namely, we consider the
d-linear form on the algebra A that is the polarization of the equation defin-
ing the hypersurface X and characterize additive actions on X in terms of this
form. This allows us to describe additive actions on non-degenerate and degener-
ate quadrics, some cubics, and to prove in Theorem 2.32 that any non-degenerate
projective hypersurface admits at most one additive action. We also show that
induced additive actions on non-degenerate hypersurfaces come from Gorenstein
local algebras.

2.1. Additive actions on projective subvarieties. Let X be a closed sub-
variety of dimension n in a projective space Pm−1. Throughout this section we
assume that X is not contained in any hyperplane of Pm−1, that is, the subvari-
ety X is linearly non-degenerate. In this subsection we introduce the notion of an
induced additive action and give a variant of the Hassett–Tschinkel correspondence
for induced additive actions.

Definition 2.1. An additive action Gn
a×X → X is induced if it can be extended to

an action Gn
a × Pm−1 → Pm−1. Two induced additive actions αi : Gn

a ×Xi → Xi,
Xi ⊆ Pm−1, i = 1, 2, are said to be equivalent if there exist automorphisms of
groups ψ : Gn

a → Gn
a and automorphisms of varieties φ : Pm−1 → Pm−1 such that

φ(X1) = X2 and φ ◦ α1 = α2 ◦ (ψ × φ).

Example 2.2. Consider a cuspidal cubic plane curve

X = {z2
0z3 = z3

1} ⊆ P2.

Let us show that X admits an additive action, but has no induced additive action.
We act in the affine chart {z0 ̸= 0} by translations on z1/z0, that is, an element
a ∈ Ga acts by the formula

[z0 : z1 : z3] =
[
1 :

z1
z0

:
(
z1
z0

)3]
7→

[
1 :

z1
z0

+ a :
(
z1
z0

+ a

)3]
.
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Notice that we have the identity

z1
z0

+ a =
(
z1

(
z1
z0
− a

))−1

(z3 − a2z1),

which follows from the equation of X. Substituting in this identity, multiplying
the homogeneous coordinates by (z1(z1/z0 − a))3, and using the equation of X we
obtain that a ∈ Ga acts on [z0 : z1 : z3] by the formula[

1 :
z3 − a2z1

z1(z1/z0 − a)
:
(

z3 − a2z1
z1(z1/z0 − a)

)3]
=

[
z3
1

(
z1
z0
− a

)3

: z2
1

(
z1
z0
− a

)2

(z3 − a2z1) : (z3 − a2z1)3
]

= [z0z2
3 − 3az2

1z3 + 3a2z0z1z3 − z3
1a

3

: (z1z3 − 2az0z3 + z2
1a

2)(z3 − a2z1) : (z3 − a2z1)3],

which is also well defined at the unique point [0 : 0 : 1] ∈ X not belonging to
the affine chart {z0 ̸= 0}. Thus we obtain an additive action on X. However, by
Corollary 2.16 below the degree of a curve admitting an induced additive action
on P2 is at most 2, that is, X has no induced additive action.

This example was also treated in [62], § 4.1. An action on X was constructed
there from an additive action on the normalization P1 of X.

Remark 2.3. We denote the third coordinate by z3 instead of z2 for a good reason:
see Remark 2.11.

Consider the case of a smooth hypersurface X ⊆ Pm−1 of degree d. Denote by
Aut(X) the group of (regular) automorphisms of X and by Autl(X) ⊆ PGLm(X)
the group of linear automorphisms of X. By Theorem 2 in [87] we have Aut(X) =
Autl(X) if m ⩾ 5 or d ̸= m. Under these assumptions, if X admits an additive
action, then it admits an induced additive action. This theorem covers all smooth
hypersurfaces except for the cases (d,m) = (3, 3) and (d,m) = (4, 4). For (d,m) =
(3, 3) we have a cubic curve with genus 1. It does not admit an additive action since
any variety admitting an additive action is rational. By Theorem 4 in [87], in the
case (d,m) = (4, 4) the connected component Aut(X)0 of the automorphism group
is trivial, which implies that there is no additive action as well. By Theorem 1
in [87], if m ⩾ 4 and d ⩾ 3, then the group Autl(X) is finite, so X admits no
induced additive action. Thus, we have the following result.

Proposition 2.4. There is no additive action on smooth hypersurfaces X ⊆ Pm−1

of degree d for m ⩾ 3 and d ⩾ 3.

As we will see in Theorem 2.25, there is a unique additive action on the non-
degenerate quadric of any dimension.

An irreducible subvariety X ⊆ Pm−1 is called linearly normal if the map
H0(Pm−1,O(1)) → H0(X,O(1)) is surjective, or, equivalently, this subvariety is
not contained in any hyperplane, neither is it a linear projection of a subvariety of
a larger projective space.



Equivariant completions of affine spaces 603

Proposition 2.5 ([10], § 2). Let X be linearly normal in Pm−1 and admit an addi-
tive action. Then this action is induced.

Recall that in § 1 we established the Hassett–Tschinkel correspondence between
the faithful cyclic Gn

a -representations, the pairs (A,U) of local algebras and sub-
spaces of these algebras, and ideals and subspaces in polynomial algebras satisfying
some conditions up to equivalences; see Theorem 1.38, (a)–(d). Now we are ready
to add one more item, (e), to this list; it characterizes induced additive actions on
projective subvarieties.

Theorem 2.6. Let n,m ∈ Z⩾0 . There are one-to-one correspondences between
(a) the faithful cyclic representations ρ : Gn

a → GLm(K);
(b) the pairs (A,U), where A is a local commutative associative unital algebra of

dimension m with maximal ideal m and U ⊆ m is a subspace of dimension n
generating A;

(c) the non-degenerate ideals I ⊆ K[S1, . . . , Sn] of codimension m supported at
the origin;

(d) the generating subspaces V ⊆ K[x1, . . . , xn] of dimension m;
(e) the classes of equivalence of induced additive actions on projective subvari-

eties of dimension n in Pm−1 that are not contained in a hyperplane.

Proof. Let us construct the correspondence between (a) and (e). Consider the
canonical projections p : Km \ {0} → Pm−1 and π : GLm(K) → PGLm(K).

A faithful representation Gn
a → GLm(K) defines a subgroup Gn

a ⊆ GLm(K). For
the group K× of non-zero scalar matrices we have the direct product H = K××Gn

a

in GLm(K). Let v be a cyclic vector in Km and X be the projectivization of the
closure of the orbit Hv ⊆ Km \ {0}, that is,

X = p(Hv) ⊆ Pm−1.

Let the effective action on X be given by π(H) ⊆ PGLm(K) = Aut(Pm−1). Note
that π(H) ∼= Gn

a since Kerπ = K× ⊆ H. Then p(Hv) is an open orbit in X, and
X is not contained in any hyperplane since v is a cyclic vector. We will see below
that the resulting subvariety X and the additive action on it do not depend on the
choice of a cyclic vector v.

Conversely, let the subvarietyX ⊆ Pm−1 admit an induced additive action. Then
X is the closure of an orbit of the effective action Gn

a×Pm−1 → Pm−1. Consider Gn
a

as a subgroup of PGLm(K), and let H = π−1(Gn
a) ⊆ GLm(K). Then H ∼= K××Gn

a ,
where K× is a subgroup of scalar matrices as above and the subgroup {1}×Gn

a ⊆ H
gives the corresponding faithful representation of Gn

a . Let ⟨v⟩ ∈ Pm−1 be a point
in the open orbit ofX for some v ∈ Km. SinceX is not contained in any hyperplane,
the same holds for its open orbit Gn

a⟨v⟩, so Hv = p−1(Gn
a⟨v⟩) ⊆ Km is not contained

in any hyperplane of Km and v is a cyclic vector for Gn
a .

Thus, a subvariety of Pm−1 of dimension n with induced additive action is the
projectivization of the closure of an orbit of a cyclic vector for a K××Gn

a -representa-
tion in Km. In order to show that this construction does not depend on the choice
of a cyclic vector we use (b). The representation Gn

a → GLm(K) corresponding to
a pair (A,U) is constructed in the following way: expU ∼= Gn

a acts on A ∼= Km by
multiplication in the algebra A. In these terms, the representation of K× ×Gn

a we
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are interested in is the representation of the group K× expU in A by operators of
multiplication, and the orbit of an element a ∈ A is the set K× expU · a.

Recall that any element of the maximal ideal m in the local algebra A is nilpotent,
and any element of A\m is invertible. If a ∈ m, then a is nilpotent, and all elements
in K× expU · a are nilpotent as well, so K× expU · a ⊆ m. This implies that
X ⊆ P(A) is contained in the hyperplane P(m), so we do not consider this case. If
a ∈ A\m, then a is invertible, so the orbit K× expU ·1 is isomorphic to K× expU ·a
via the linear operator La of multiplication by a. This isomorphism commutes with
the Gn

a -actions on these orbits by the commutativity of multiplication in A. Thus,
for any pair (A,U) there is a unique induced additive action corresponding to this
pair up to equivalence of induced additive actions; this action does not depend on
the choice of a cyclic vector. 2

We finish the discussion by the correspondence (b) → (e) between pairs (A,U)
and induced additive actions.

Construction 2.7. Suppose that A is a local commutative associative unital alge-
bra of dimension m with maximal ideal m, U ⊆ m is a subspace of dimension n
generating the algebra A, and let p : A \ {0} → P(A) = Pm−1 be the canonical
projection. According to the proof of Theorem 2.6, the corresponding projective
subvariety is the projectivization of an orbit of a cyclic vector, that is,

X = p(K× expU),

the additive action on X is given by the operators of multiplication by elements
of Gn

a
∼= expU ⊆ A, and the set p(K× expU) = p(expU) is an open orbit in X.

Denote the coordinate along K in A = K ⊕ m by z0 and consider the affine chart
{z0 = 1} = 1 + m on the projective space Pm−1 = P(A). Notice that (K× expU) ∩
(1 + m) = expU is closed as an orbit of a unipotent group, which implies that
X ∩ {z0 ̸= 0} = p(expU) is the open orbit.

Example 2.8. Let n = 1, that is, we are interested in the induced Ga-actions
on curves in Pm−1. By Theorem 2.6 the equivalence classes of such actions are in
bijection with the equivalence classes of pairs (A,U), where A is a local commutative
algebra of dimension m with maximal ideal m and U is a line in m generating
the algebra A. Then we may assume that A = K[S]/(Sm) and U = ⟨S⟩ up to
an automorphism of A. The pair (A,U) corresponds to an additive action on the
rational normal curve of degree m− 1 in Pm−1. In particular, we have a unique
class of equivalence of induced additive Ga-actions on curves in Pm−1. For explicit
computations in the case m = 4, see Example 2.10 below.

2.2. The case of projective hypersurfaces: equations. In this subsection we
obtain the equation of a projective hypersurface X ⊆ Pn+1 admitting an induced
additive action in terms of the corresponding pair (A,U) (see Theorem 2.6 and
Definition 2.12). First we consider a subvariety that is not necessarily a hyper-
surface. The following proposition provides a condition that gives the open orbit
expU ⊆ 1 + m (see Construction 2.7).

By ln we mean the standard logarithm series

ln(1 + z) =
∞∑
k=1

(−1)k−1

k
zk,
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which is inverse to the exponential map exp. Applying ln to 1 + z with nilpotent
element z, we obtain a polynomial in z.

Proposition 2.9. Let A be a local commutative associative unital algebra of dimen-
sion m with maximal ideal m, and let U ⊆ m be a subspace of dimension n generating
the algebra A. Denote by π : m → m/U the canonical projection of vector spaces.
Then expU is given in 1 + m by the condition

π(ln(1 + z)) = 0 (2.1)

for 1 + z ∈ A = K⊕m, z ∈ m.

Proof. An element 1 + z ∈ 1 + m belongs to expU if and only if ln(1 + z) ∈ U .

The above proposition helps us to find the subvariety X ⊆ Pm−1 corresponding
to a given pair (A,U).

Example 2.10. Let A = K[S]/(S4) and U = ⟨S⟩ ⊆ m = ⟨S, S2, S3⟩. Let π : m →
m/U be the projection onto ⟨S2, S3⟩ along ⟨S⟩. By Proposition 2.9 the set of points
z = z1S + z2S

2 + z3S
3 that belong to expU ⊆ 1 + m is given by the condition

π

(
z1S + z2S

2 + z3S
3 − (z1S + z2S

2 + z3S
3)2

2
+

(z1S + z2S
2 + z3S

3)3

3
− · · ·

)
=

(
z2 −

z2
1

2

)
S2 +

(
z3 − z1z2 +

z3
1

3

)
S3 = 0,

that is, the open orbit of X in the affine chart {z0 = 1} is given by the system
z2 − z2

1/2 = 0, z3 − z1z2 + z3
1/3 = 0, or, substituting the first equation into the

second, by the parametrization

[z0 : z1 : z2 : z3] =
[
1 : z1 :

z2
1

2
:
z3
1

6

]
⊆ P3.

Taking the closure, we add one more (fixed) point [0 : 0 : 0 : 1] and obtain a twisted
cubic in P3.

Notice that the closure of the intersection of hypersurfaces may not be equal to
the intersection of their closures, soX may not be given by a system of homogenized
equations. For example, in our case, outside the affine chart {z0 = 1} under
consideration the system z0z2 − z2

1/2 = 0, z2
0z3 − z0z1z2 + z3

1/3 = 0 gives the
projective line z0 = z1 = 0, rather than a point.

Remark 2.11. Although the additive action in Example 2.2 is not induced, it is the
projection of the induced additive action in Example 2.10 along the coordinate z2.

Let us apply the above theory to the case of codimension 1. Suppose that
X ⊆ Pm−1 is a projective hypersurface that is not a hyperplane and (A,U) is the
corresponding pair, that is, A is a local commutative associative unital algebra of
dimension m with maximal ideal m and U ⊆ m is a subspace of dimension m− 2
generating A. The next definition is taken from [12].

Definition 2.12. The H-pair corresponding to an induced additive action on a
hypersurface X ⊆ Pn+1 is the pair (A,U) corresponding to it, where A is a local
commutative associative unital algebra of dimension n+ 2 with maximal ideal m
and U ⊆ m is a subspace of dimension n generating the algebra A.
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Now we prove the following technical lemma.

Lemma 2.13. Suppose m is the maximal ideal of a local commutative associative
algebra A and U is a subspace of m. Then md ⊆ U if and only if zd ∈ U for
all z ∈ m.

Proof. Let

fd(t) =
d∑
k=0

zkt
k

be a polynomial with coefficients in A and let fd(t) ∈ U for all t ∈ K. We show
that z0, z1, . . . , zd ∈ U . First, z0 = fd(0) ∈ U . Then for a polynomial fd−1(t) =∑d
k=1 zkt

k−1 we have fd−1(t) =
fd(t)− fd(0)

t
∈ U for any t ∈ K×. Note that for

t = 0 we also have fd−1(t) ∈ U since the set {t ∈ K : fd−1(t) ∈ U} is closed in K. So
z1 = fd−1(0) ∈ U . Arguing as above for polynomials fd−1(t) of degree d− 1, fd−2(t)
of degree d− 2, . . . , and f0(t) of degree 0, we finally obtain z0, z1, . . . , zd ∈ U .

Now let zd ∈ U for all z ∈ m. Then

f(t1, . . . , td) = (t1z1 + · · ·+ tdzd)d ∈ U

for any t1, . . . , td ∈ K and z1, . . . , zd ∈ m. Fixing arbitrary t2, . . . , td ∈ K and
applying the above argument we see that all coefficients of f as a polynomial in t1
belong to U for any t2, . . . , td ∈ K. We consider these coefficients for fixed t3, . . . , td
as polynomials in t2 and obtain that they also belong to U for any t3, . . . , td ∈ K.
Finally, we see that all the coefficients of f belong to U . In particular, the coefficient
d! z1 · · · zd of t1 · · · td is an element of U , so md ⊆ U . The converse is immediate. 2

If f(1 + z) = 0, z ∈ m, is an equation of degree d defining the open orbit expU
in the affine chart 1 + m, then X ⊆ Pn+1 is given by the homogenization hf of the
polynomial f : hf(z0 + z) = zd0f(1+ z/z0), z0 ∈ K, z ∈ m. In particular, the degree
of the projective hypersurface X equals the degree d of the affine hypersurface
expU ⊆ 1 + m.

The first statement in the theorem below was proved in [12], Theorem 5.1.

Theorem 2.14. Let X ⊆ Pn+1 be a projective hypersurface admitting an induced
additive action and (A,U) be the corresponding H-pair. Denote by π : m → m/U ∼=
K the canonical projection. Then

1) the degree of the hypersurface X equals the largest exponent d such that
md ⊈ U ;

2) X is given by the homogeneous equation of degree d

zd0 π

(
ln

(
1 +

z

z0

))
= 0 (2.2)

for z0 + z ∈ A = K⊕m, z0 ∈ K, and z ∈ m.

Proof. By Proposition 2.9 the open orbit in the affine chart expU ⊆ 1 + m is given
by the polynomial f(1 + z) = π(ln(1 + z)), z ∈ m. By the definition of d we have
mk ⊆ U for all k > d. It follows that f is of degree at most d since π takes all terms
of the logarithm series with exponents greater than d to zero. On the other hand
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md ⊈ U , so by Lemma 2.13 there exists z ∈ m with π(zd) ̸= 0. Thus, the degree of
the polynomial f equals d.

Let us prove that f is irreducible. Since md ⊈ U , we have md∩U ⊊ md. Since the
codimension of U in m equals 1, the codimension of md∩U in md is at most 1, so by
the above we can consider the decomposition md = (md ∩U)⊕ ⟨S⟩ for some vector
S ∈ md. Since S /∈ U and U in m is of codimension 1, we also have m = U ⊕ ⟨S⟩ in
this case. Let

z = zU + zn+1S, zU ∈ U, zn+1 ∈ K,

be the corresponding decomposition of z ∈ m. Then

π(ln(1 + z)) = π

( d∑
k=1

(−1)k−1

k
(zU + zn+1S)k

)
,

and one can see that π takes all the zn+1 to zero except for the occurrence of zn+1

in the term with k = 1 since mS ⊆ md+1 ⊆ U . So the variable zn+1 appears in the
polynomial f only in the linear term and f is irreducible.

Thus, expU is given by the irreducible polynomial f of degree d. Hence the
hypersurface X has degree d and X is given by the homogenization hf as in (2.2).
2

Example 2.15. Let

A = K[S1, S2, S3]/(S2
1 , S

2
2 , S1S3, S2S3, S1S2 − S3

3)

be 6-dimensional algebra no. 30 from Table 1. Notice that A = ⟨1, S1, S2, S3,
S2

3 , S
3
3 = S1S2⟩ and consider U = ⟨S1, S2, S3, S

2
3⟩ ⊆ m. Since m3 = ⟨S3

3⟩ ⊈ U and
m4 = 0, the H-pair (A,U) corresponds to an induced additive action on a cubic
hypersurface X ⊆ P5. According to (2.2), for the projection π : m → ⟨S3

3⟩ along U
the left-hand side of the equation of X is

z3
0π

(
ln

(
1 +

z1
z0
S1 +

z2
z0
S2 +

z3
z0
S3 +

z4
z0
S2

3 +
z5
z0
S3

3

))
= z3

0

(
z5
z0
− 1

2
· 2z3
z0

z4
z0
− 1

2
· 2z1
z0

z2
z0

+
1
3
z3
3

z3
0

)
,

which gives X = {z2
0z5 − z0z3z4 − z0z1z2 + 1

3z
3
3 = 0}.

Corollary 2.16 (see [12], Corollary 5.2). If X ⊆ Pn+1 is a hypersurface of degree d
admitting an induced additive action, then d ⩽ n+ 1.

Proof. Since m ⊋ m2 ⊋ · · · and dim m = n+ 1, we have mn+2 = 0 ⊆ U . 2

Let us illustrate the method developed by proving a variant of Proposition 2.4.

Corollary 2.17 (see [10], Proposition 4). If X is a smooth hypersurface admitting
an induced additive action, then X is a non-degenerate quadric or a hyperplane.

Proof. As in the proof of Theorem 2.14, we choose a vector S ∈ md \U and obtain
the decomposition of vector spaces

A = K⊕m = K⊕ U ⊕ ⟨S⟩.
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For the compatible coordinates z0, . . . , zn+1 the variable zn+1 appears in the equa-
tion hf(z0, . . . , zn+1) = 0 of X only in the term zd−1

0 zn+1 since zn+1 appears in the
polynomial f only in a linear term. Thus, the point [0 : · · · : 0 : 1] lies on X and is
singular, provided that d ⩾ 3. It remains to note that the only smooth quadric
is a non-degenerate one. 2

Corollary 2.18. If a hypersurface X of degree d admits an induced additive action
and (A,U) is the corresponding H-pair, then the complement of the open orbit
in X ⊆ P(A) is

p({z ∈ m : zd ∈ U}),

where p : A \ {0} → P(A) is the canonical projection.

Proof. According to Construction 2.7 the complement of the open orbit consists of
the points z ∈ X with zero z0-coordinate. Substituting z0 = 0 into (2.2) annihilates
all terms of the logarithm series, except the last term of degree d, so we obtain the

equation π
(

(−1)d

d!
(0 + z)d

)
= 0, or zd ∈ U .

2.3. The case of projective hypersurfaces: invariant multilinear forms.
It is well known that the quadratic forms f(z) on a vector space V are in
one-to-one correspondence with the bilinear maps F : V × V → K. If X is
a quadric given by a quadratic equation f(z) = 0, then the corresponding bilinear
form F gives a lot of information on X. Recall that in the same way any
homogeneous polynomial f(z) of degree d corresponds to a d-linear symmetric form
F : V × · · · × V︸ ︷︷ ︸

d

→ K: any d-linear form F gives a polynomial f(z) = F (z, . . . , z)

and, conversely, F (z(1), . . . , z(d)) can be found from f as a coefficient of t1 · · · td in
the polynomial f(t1z(1) + · · ·+ tdz

(d)). This fact allows us to study hypersurfaces
admitting induced additive actions in terms of multilinear forms.

Suppose (A,U) is an H-pair. Following § 4 in [10], we call a d-linear form
F : A× · · · ×A︸ ︷︷ ︸

d

→ K invariant if the following conditions hold:

(i) F (1, . . . , 1) = 0;
(ii) for any u ∈ U , z(1), . . . , z(d) ∈ A we have

F (uz(1), z(2), . . . , z(d)) + F (z(1), uz(2), . . . , z(d)) + · · ·
+ F (z(1), z(2), . . . , uz(d)) = 0. (2.3)

Suppose that an H-pair (A,U) corresponds to an induced additive action on a hyper-
surface X ⊆ Pn+1 = P(A) given by the polynomial f of degree d on A. By the
above there is a d-linear form F : A× · · · ×A︸ ︷︷ ︸

d

→ K corresponding to the polyno-

mial f . It is an invariant d-linear form on (A,U). Indeed, property (i) follows from
the construction: we take 1 as a cyclic vector in A, so F (1, . . . , 1) = f(1) = 0. For
equation (2.3) notice that X = {f(x) = 0} is invariant with respect to the action of
the group Gn

a
∼= expU , that is, the polynomial f is semi-invariant. But the group

Gn
a has no non-trivial character, so f is invariant with respect to Gn

a
∼= expU and

therefore with respect to the Lie algebra U , that is, we have (2.3). The invariant



Equivariant completions of affine spaces 609

d-linear form corresponding to a hypersurface X ⊆ P(A) is defined up to a scalar.
Notice also that the number d is determined by the pair (A,U).

Let F be a d-linear form on a vector space V . Then we define
• L⊥ = {x ∈ V : F (x, z(2), . . . , z(d)) = 0 ∀ z(2), . . . , z(d) ∈ L} for a sub-

set L ⊆ V ;
• the kernel KerF = V ⊥.

Lemma 2.19. Let F : A× · · · ×A︸ ︷︷ ︸
d

→ K be an invariant d-linear form on an

H-pair (A,U). Then
(a) U ⊆ 1⊥ ;
(b) KerF is the maximal ideal of A contained in U .

Proof. Assertion (a) follows from (2.3) for z(1) = z(2) = · · · = z(d) = 1.
We prove (b). First we show that KerF is an ideal of A. If z ∈ KerF and u ∈ U ,

then

F (uz, z(2), . . . , z(d)) = −F (z, uz(2), . . . , z(d))− · · · − F (z, z(2), . . . , uz(d)) = 0

for any z(2), . . . , z(d) ∈ A, so uz ∈ KerF for any u ∈ U . Since U generates A as an
algebra, it follows that Az ⊆ KerF .

Now we prove that KerF ⊆ U . Since KerF is an ideal in A and F is not
equal to 0, the kernel KerF contains no invertible elements, that is, let KerF ⊆ m.
Assume the converse, that is, KerF ⊈ U . Since dim m = n + 1 and dimU = n, it
follows that m = KerF + U .

Using induction on k we prove that F (u(1), . . . , u(k), 1 . . . , 1) = 0 for any u(1), . . . ,
u(k) ∈ U . For k = 0 we have F (1, . . . , 1) = 0. Suppose the assertion holds for
some k. According to (2.3) we have

k∑
i=1

F (u(1), . . . , u(k+1)u(i), . . . , u(k), 1, . . . , 1)

+
d∑

i=k+1

F (u(1), . . . , u(k), 1, . . . , u(k+1)

i
, . . . , 1) = 0.

All the d− k terms of the second sum equal F (u(1), . . . , u(k+1), 1, . . . , 1) since F is
a symmetric form. For a summand of the first sum one can decompose an element
u(k+1)u(i) ∈ m as u(k+1)u(i) = zi + ui, where zi ∈ KerF , ui ∈ U . Then this
summand becomes

F (u(1), . . . , zi, . . . , u
(k), 1, . . . , 1) + F (u(1), . . . , ui, . . . , u

(k), 1, . . . , 1),

and the first term is zero by the kernel condition, while the second vanishes by the
induction hypothesis. Thus,

(d− k)F (u(1), . . . , u(k+1), 1, . . . , 1) = 0,

which completes the induction.
Since F is multilinear, it follows that 1 ∈ ⟨1, U⟩⊥. Moreover, 1 ∈ (KerF )⊥ and

m = KerF + U , so 1 ∈ A⊥ = KerF ⊆ m, which is a contradiction.
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It remains to prove maximality. Let J ⊆ U be an ideal of the algebra A. Using
induction on k we prove that F (z(1), . . . , z(k), y, 1, . . . , 1) = 0 for any y ∈ J and
z(1), . . . , z(k) ∈ A. For k = 0, according to (2.3) we have

d∑
k=1

F (1, . . . , y
i
, . . . , 1) = 0

since y ∈ J ⊆ U , which gives F (y, 1, . . . , 1) = 0 because F is a symmetric form.
Suppose that the assertion has been proved for k − 1. Then

k∑
i=1

F (z(1), . . . , yz(i), . . . , z(k), 1, . . . , 1) +
d∑

i=k+1

F (z(1), . . . , z(k), 1, . . . , y
i
, . . . , 1) = 0.

All the d− k terms of the second sum equal F (z(1), . . . , z(k), y, 1, . . . , 1) since F is
symmetric. Each term of the first sum equals zero by the induction hypothesis since
yz(i) ∈ J . Thus, F (z(1), . . . , z(k), y, 1, . . . , 1) = 0, which completes the induction.

For k = d − 1 we obtain F (z(1), . . . , z(d−1), y) = 0 for any z(1), . . . , z(d−1) ∈ A
and y ∈ J . It follows that y ∈ KerF , that is, for any ideal J ⊆ U of A we have
J ⊆ KerF . 2

Now let us define the reduction of an induced additive action. First we return to
the general case of a projective subvariety which is not necessarily a hypersurface.

Proposition 2.20. Let a pair (A,U) correspond to an induced additive action on
a projective subvariety X ⊆ P(A). Suppose there is an ideal J of A such that J ⊆ U .
Then the pair (A/J,U/J) corresponds to an induced additive action on a projective
subvariety X0 ⊆ P(A/J), and X is the projective cone over X0 . In other words, if
coordinates in Pn+1 = P(A) are compatible with the inclusions A = K⊕m ⊇ m ⊇ J ,
then X does not depend on the coordinates in J . Moreover, the additive action
on X is coherent with the additive action on X0 , that is, the following diagram,
where φ : A→ A/J is the projection, is commutative:

expU ×A

φ×φ
��

mult. in A // A

φ

��
exp(U/J)× (A/J)

mult. in A/J // A/J

Proof. If J is an ideal in a local commutative unital algebra A = K ⊕ m with
maximal ideal m, then A/J = K ⊕ (m/J) is a local commutative unital algebra
with maximal ideal m/J . Since the subspace U ⊆ m generates A, the subspace U/J
generates the algebra A/J . Fix some decomposition m = J ⊕ m′, and for z ∈ m
let z = zJ + z′. Let us find the equation of X in accordance with Proposition 2.9.
Since J is an ideal of A, we have

ln(1 + z) =
∞∑
k=1

(−1)k−1

k
(zJ + z′)k ∈ ln(1 + z′) + J ⊆ ln(1 + z′) + U,

that is, π(ln(1 + z)) does not depend on the coordinates in J .
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To show coherence, fix a decomposition U = J ⊕U ′ and let φ : A→ A/J be the
projection onto U ′ along J . For u = uJ + u′ ∈ U = J ⊕ U ′ notice that

exp(u) =
∞∑
k=1

1
k!

(uJ + u′)k ∈ exp(u′) + J,

since J is an ideal in A; hence φ(expU) = expU ′. Consider any a ∈ A. Then

exp(u)a =
∞∑
k=1

1
k!

(uJ + u′)ka ∈ exp(u′)a+ J = (exp(u′) + J)(a+ J),

which proves that the diagram is commutative as required. 2

Proposition 2.20 motivates the following definition; see [12], § 4.

Definition 2.21. The induced additive action corresponding to a pair (A,U) is
reducible to the induced additive action corresponding to a pair (A′, U ′) if there
exists an algebra homomorphism φ : A→ A′ such that φ(U) = U ′ and codimA U =
codimA′ U

′.

In such a case φ is surjective since U ′ generates A′. So there exists an ideal J =
Kerφ of the algebra A such that J ⊆ U and the factorization A→ A/J ∼= A′ maps
U to U ′, that is, we are in the situation of Proposition 2.20.

Definition 2.22. Suppose a projective hypersurface X ⊆ P(V ) of degree d is given
by an equation f(z1, . . . , zn) = 0 and F is the corresponding d-linear form. Then
X is called non-degenerate if one of the following equivalent conditions holds:

(a) KerF = 0;

(b)
∂f

∂z1
, . . . ,

∂f

∂zn
are linearly independent (d− 1)-linear forms;

(c) there is no linear transformation of variables that reduces the number of
variables in f .

Corollary 2.23. Any induced additive action on a hypersurface is reducible to
an induced additive action on a non-degenerate hypersurface. More precisely, an
induced additive action corresponding to the H-pair (A,U) is reducible to the induced
additive action corresponding to the H-pair (A/KerF,U/KerF ), where F is the
invariant multilinear form of X .

Proof. This follows from Proposition 2.20 and Lemma 2.19, (b). 2

In [10], Lemma 1, an explicit formula for the form F corresponding to a pair
(A,U) was obtained. Since A = K⊕m and F is multilinear, it is sufficient to define
F for arguments that belong to m or are equal to 1. Let π : m → m/U ∼= K be the
canonical projection. Then

F (z(1), z(2), . . . , z(d)) = (−1)kk! (d− k − 1)!π(z(1) · · · z(d)), (2.4)

where k is the number of ones among z(1), z(2), . . . , z(d), while the other arguments
belong to m, and for k = d we let F (1, . . . , 1) = 0. One can check that this agrees
with the equation f(z0 + z) = zd0π(ln(1 + z/z0)) = 0 obtained in Theorem 2.14.
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Indeed, for a multilinear form F defined by (2.4) and any z0 + z ∈ A = K⊕ m we
have

F (z0 + z, . . . , z0 + z) =
d∑
k=0

(
d
k

)
F (z0, . . . , z0︸ ︷︷ ︸

k

, z, . . . , z︸ ︷︷ ︸
d−k

)

=
d∑
k=0

zk0
d!

k! (d− k)!
(−1)kk! (d− k − 1)!π(zd−k)

= d!(−1)d zd0π
(

ln
(

1 +
z

z0

))
.

2.4. The case of quadrics and cubics. Let us start with the following well-
known fact.

Lemma 2.24. The automorphism group of the non-degenerate quadric Qn ⊆ Pn+1

is PSOn+2(K).

Proof. Notice that the Picard group of the quadric PicQn ∼= Z is generated by the
line bundle O(1) for n ⩾ 3. Any automorphism of Qn induces an automorphism of
the Picard group, which can take the generator O(1) either to O(1) or to O(−1).
The last case is impossible since O(−1) has no global section, so any hyperplane
section of Qn is mapped to a hyperplane section. The last assertion holds for
n = 1, 2 as well. Thus, any automorphism of Qn corresponds to a transformation
of P(H0(O(1))) = (Pn+1)∗. The dual of this transformation is the extension of the
initial automorphism of Qn to an automorphism of Pn+1. 2

The following theorem answers Question 3.1, (4), in [62].

Theorem 2.25 (see [103], Theorem 4). Let Qn be a non-degenerate quadric
in Pn+1 . Then there is a unique additive action on Qn up to equivalence. It
corresponds to the H-pair (An, Un), where

An = K[S1, . . . , Sn]/(S2
i − S2

j , SiSj , i ̸= j) and Un = ⟨S1, . . . , Sn⟩ if n ⩾ 2;

A1 = K[S1]/(S3
1) and U1 = ⟨S1⟩.

Proof. By Lemma 2.24 any additive action on X is induced. Let (A,U) be the
corresponding H-pair, so that A is a local algebra of dimension n+ 2 and U ⊆ m
is a subspace of dimension n generating A. By the first assertion of Theorem 2.14,
m2 ⊈ U and m3 ⊆ U . Since Qn is non-degenerate, the corresponding multilinear
form has a trivial kernel (see Definition 2.22). From Lemma 2.19, (b), it follows
that there is no non-zero ideal of A in U . Then m3 ⊆ U implies that m3 = 0. Hence
m2 ∩ U is an ideal in U , so m2 ∩ U = 0 as well. Since m2 ⊈ U implies m2 ̸= 0, we
have m = U ⊕m2, and dim m2 = 1 for reasons of dimension.

It remains to prove that there is a unique pair (A,U) satisfying the above condi-
tions. Notice that multiplication in the algebra A = K⊕ U ⊕m2 is determined by
the restriction B : U × U → m2. Indeed, U · U ⊆ m2 since U ⊆ m, U · m2 = 0 and
m2 ·m2 = 0 since m3 = 0, and 1 · x = x for any x ∈ A. Since dim m2 = 1, it follows
that B is a bilinear form on U , and now we are going to prove that this form is
non-degenerate. A non-degenerate bilinear form on a vector space is unique up to
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a linear change of variables, so the non-degeneracy of B will imply the uniqueness
of the pair (A,U) and the corresponding additive action.

In our situation the left-hand side of equation (2.2) of the quadric Qn turns to

z2
0π

(
ln

(
1 +

z

z0

))
= z2

0π

(
z

z0
− 1

2
z2

z2
0

)
= z0π(z)− 1

2
π(z2),

where π : m → m/U ∼= K is a projection. Recall that m = U⊕m2, so π can be chosen
to be the projection π : m → m2 along U . For z ∈ m set z = zU +zm2 , where zU ∈ U
and zm2 ∈ m2. Then z2 = z2

U since m3 = 0, so the equation z0π(z) − 1
2π(z2) = 0

of Qn turns to

z0zm2 − 1
2
B(zU , zU ) = 0.

It defines a non-degenerate quadric if and only if the form B is non-degenerate, so
we arrive at the desired uniqueness.

Now it is easy to calculate the pair (A,U). Denote a non-zero vector in m2

by S, and let S1, . . . , Sn be a basis of U such that B(zU , zU ) = (z2
1 + · · · + z2

n)S
for zU = z1S1 + · · ·+ znSn. From the definition of B it follows that S2

i = S2
j = S,

SiSj = 0 for i ̸= j, and mS = 0 since S ∈ m2. Thus, the algebra A is isomorphic
to K[S1, . . . , Sn]/(S2

i − S2
j , SiSj , i ̸= j) if n ⩾ 2 and to K[S1]/(S3

1) if n = 1, as
required. 2

The next result was observed in [12], Proposition 4.2.

Corollary 2.26. An H-pair (A,U) corresponds to an induced additive action on
a quadric if and only if there exists a homomorphism of H-pairs (A,U) → (An, Un).

Denote projective quadrics in Pn+1 by

Q(n, k) = {[z0 : · · · : zn+1] | q(z0, . . . , zn+1) = 0},

where q is a quadratic form of rank k + 2, where 1 ⩽ k ⩽ n. In this notation the
non-degenerate quadric Qn ⊆ Pn+1 is Q(n, n).

In [20] the authors obtained a generalization of the Hassett–Tschinkel correspon-
dence for induced actions of commutative linear algebraic groups on non-degenerate
quadrics with open orbit. In [20], Theorem 3, it was proved that, apart from the
unique additive action from Theorem 2.25, there are only three cases: a Gm-action
on Q1, a Ga ×Gm-action on Q2, and a G2

m-action on Q2.
At the same time, additive actions on degenerate quadrics are not unique. In

particular, there is an infinite family of pairwise non-equivalent induced additive
actions on the quadrics Q(n, n− 1) for n ⩾ 4: see [12], § 4.

Proposition 2.27 ([10], Proposition 7). The H-pairs corresponding to induced
additive actions on quadrics Q(n, n− 1) ⊆ Pn+1 are:

(a) A = K[S1, . . . , Sn]
/SiSj − λijSn, S

2
i − S2

j

−(λii − λjj)Sn, 1 ⩽ i < j ⩽ n− 1
SlSn, 1 ⩽ l ⩽ n

, where

n ⩾ 3 and the λij are the elements of a symmetric (n− 1)× (n− 1) block-diagonal
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matrix Λ such that each block Λl has the form

λl 1 0 . . . 0

1 λl 1
. . .

...

0 1 λl
. . . 0

...
. . . . . . . . . 1

0 . . . 0 1 λl


+



0 . . . 0 ı/2 0
...

. . . ı/2 0 −ı/2

0
. . . 0 −ı/2 0

ı/2
. . . . . . . . .

...
0 −ı/2 0 . . . 0


, ı2 = −1,

and U = ⟨S1, . . . , Sn⟩;
(b) K[S1, S2]/(S3

1 , S1S2, S
2
2), U = ⟨S1, S2⟩;

(c) K[S1]/(S4
1), U = ⟨S1, S

3
1⟩.

The matrix Λ is defined up to a permutation of blocks, scalar multiplication, and
addition of a scalar matrix.

In [12], § 4, an explicit description of the actions for n = 4 was also given.
Using the same techniques, a classification of additive actions on quadrics of

corank 2 having at least one singular point that is not fixed by the Gn
a -action was

presented in [82].

Remark 2.28. In [99], § 5, a classification of additive actions on quadrics of small
dimension was presented. It was proved that the surface Q(2, 1) admits two additive
actions (cf. Proposition 2.27, (b) and (c)) and the 3-folds Q(3, 1) and Q(3, 2) admit
seven and three additive actions, respectively. The number of additive actions on
Q(4, 1) is finite, but is at least 25. Finally, there are infinitely many additive actions
on Q(4, 2). They are classified in terms of H-pairs.

In [18] the case of cubic hypersurfaces was studied and the following theorem
was proved.

Theorem 2.29. A cubic hypersurface {f = 0} in Pn+1 admits an induced additive
action if and only if for some 1 ⩽ k ⩽ s ⩽ n − k one can choose homogeneous
coordinates z0, z1, . . . , zs, w0, w1, . . . , wn−s in Pn+1 such that the polynomial f has
the form

f = z2
0w0 + z0(z1w1 + · · ·+ zkwk) + z0(z2

k+1 + · · ·+ z2
s) + g(z1, . . . , zk),

where g in a non-degenerate cubic form in k variables. Moreover, an induced addi-
tive action is unique if and only if this hypersurface is non-degenerate, that is,
k + s = n.

2.5. Non-degenerate hypersurfaces and Gorenstein algebras. Let A be
a Gorenstein local algebra. The socle of A is equal to the one-dimensional ideal md.
A hyperplane U in m is called complementary if m = U ⊕md.

Theorem 2.30. The induced additive actions on non-degenerate hypersurfaces X
of degree d in Pn+1 are in bijection with the H-pairs (A,U), where A is a Gorenstein
algebra of dimension n+ 2 with socle md and U is a complementary hyperplane.

Proof. We observe first that a subspace U of the maximal ideal m of a local algebra
A contains no non-zero ideal of A if and only if (SocA) ∩ U = 0. The ‘only if’
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part is clear since (SocA) ∩ U is an ideal of A in U . Conversely, if J is a non-zero
ideal of A in U , then, given a maximal s such that Jms is non-zero, we have
Jms ⊆ (SocA) ∩ J ⊆ (SocA) ∩ U .

This shows that if (A,U) is the H-pair corresponding to an induced additive
action on a non-degenerate hypersurface in Pn+1, then m = U ⊕ (SocA) and A is
Gorenstein for reasons of dimension.

Conversely, let A be a Gorenstein local algebra of dimension n + 2 and U be
a complementary hyperplane in m. Since A = K ⊕ U ⊕ (SocA), we conclude that
U generates A, so (A,U) is an H-pair corresponding to an induced additive action
on a hypersurface X in Pn+1. Since (SocA) ∩ U = 0, it follows that U contains no
non-zero ideal, so the hypersurface X is non-degenerate.

Finally, we notice that by Theorem 2.14 the degree of X is d, where SocA = md.
2

Remark 2.31. We know of no example where two different complementary hyper-
planes U and U ′ in the maximal ideal m of the same Gorenstein local algebra A
give rise to additive actions on non-isomorphic hypersurfaces.

As an application of Theorem 2.30, we see from Table 1 that for n ⩽ 5 there
are induced additive actions on non-degenerate hypersurfaces in Pn of all degrees
from 2 to n. Moreover, there are three types of non-degenerate cubic hypersurfaces
in P5, which come from different Gorenstein algebras.

Now let us prove a generalization of the uniqueness of an additive action on
non-degenerate quadrics and cubics.

Theorem 2.32. Let X ⊆ Pn+1 be a non-degenerate hypersurface. Then there is
at most one induced additive action on X up to equivalence.

Proof. Let (A,U) be the H-pair corresponding to an induced additive action
on X. The hypersurface X defines the corresponding invariant multilinear form F
(see § 2.3). We have to prove that F defines the pair (A,U) uniquely up to
equivalence (see Theorem 2.6).

Denote by d the degree of the hypersurface X. Since X is non-degenerate, by
Theorem 2.30 the algebra A is Gorenstein, md+1 = 0, m = U⊕md, and dim md = 1.
Since 1 · a = a for any a ∈ A and md · m = 0, it remains to define multiplication
of elements in U . Let π : m → md ∼= K be the canonical projection along U , and
B : U × U → md ∼= K be the bilinear map defined by B(u1, u2) = π(u1u2).

Let us prove that KerB is an ideal of A. If u ∈ KerB, then B(u, u2) =
π(uu2) = 0 for any u2 ∈ U , that is, uu2 ∈ U for any u2 ∈ U . Moreover, uU ⊆ U
implies that uA ⊆ U since u · 1 ∈ U and u · md = 0. Then for any elements
a ∈ A and u2 ∈ U we have uau2 ⊆ uA ⊆ U , so B(ua, u2) = π(uau2) = 0. Thus,
ua ∈ KerB for any a ∈ A, so KerB is an ideal of A. By Lemma 2.19, (b), KerF is
the maximal ideal of A contained in U , so KerB ⊆ KerF . But F is non-degenerate,
so B is non-degenerate as well.

Denote a non-zero vector in md by S, and let S1, . . . , Sn be a basis of U such
that B(zU , zU ) = (z2

1 + · · ·+ z2
n)S for zU = z1S1 + · · ·+ znSn. It follows from the

definition of B that S2
i −S ∈ U and SiSj ∈ U for i ̸= j. Denote S2

i −S =
∑
l αilSl

and SiSj =
∑
l βijlSl. According to (2.4),

F (z(1), . . . , z(d)) = (−1)kk! (d− k − 1)!π(z(1) · · · z(d)),
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where all arguments are either equal to 1 or nilpotent and k is the number of ones. In
particular, F (z(1), z(2), 1, . . . , 1) = (−1)d−2(d − 2)!π(z(1)z(2)) for all z(1), z(2) ∈ m,
so the bilinear form B is uniquely defined by the multilinear form F . Notice that
B(S2

i − S, Sl) = αilS and B(SiSj , Sl) = βijlS. Hence the coefficients αil and βijl
and, consequently, the products S2

i and SiSj , i ̸= j, are uniquely defined by the
form F . Thus, F defines multiplication on U . 2

Example 2.33. Let A = K[S1, S2, S3]/(S2
1 , S

2
2 , S1S3, S2S3, S1S2 − S3

3) be the 6-
dimensional Gorenstein algebra no. 30 from Table 1 and U = ⟨S1, S2, S3, S

2
3⟩ ⊆ m

(see Example 2.15). Recall that A = ⟨1, S1, S2, S3, S
2
3 , S

3
3 = S1S2⟩ and the H-pair

(A,U) corresponds to an induced additive action on a cubic hypersurface X ⊆ P5.
Since SocA = m3 and m = U ⊕ m3, we conclude that X is non-degenerate. By
Theorem 2.32 there is a unique induced additive action on X. One can write
it down explicitly by Theorem 2.6: identifying [z0 : z1 : z2 : z3 : z4 : z5] ∈ P5 with
z0 + z1S1 + z2S2 + z3S3 + z4S

2
3 + z5S

3
3 ∈ A and multiplying by

exp(α1S1 + α2S2 + α3S3 + α4S
2
3)

= 1 + α1S1 + α2S2 + α3S3 + α4S
2
3 +

(
α1α2 + α3α4 +

α3
3

6

)
S3

3 ,

we obtain that the action of (α1, α2, α3, α4) ∈ G4
a is given by[

z0 : z1 + α1z0 : z2 + α2z0 : z3 + α3z0 : z4 + α3z3 + α4z0

: z5 + α3z4 + α4z3 + α1z2 + α2z1 +
(
α1α2 + α3α4 +

α3
3

6

)
z0

]
.

Finally, the linear change of coordinates

Z0 = −z0, W0 = z5, Z1 = z3, W1 = z4, Z2 =
ı(z2 − z1)

2
, Z3 =

z2 + z1
2

takes the equation of X to the form given in Theorem 2.29 with k = 1, s = 3,
and n = 4.

3. Additive actions on flag varieties

The main aim of this section is to describe additive actions on flag varieties G/P
of a semisimple linear algebraic group G.

We begin with a brief overview of the geometric properties of varieties X admit-
ting an additive action: such a variety is rational and it has a free finitely gener-
ated divisor class group that is generated by the classes of boundary divisors. If
the variety X is complete, then the classes of boundary divisors generate freely the
monoid of classes of effective divisors. Moreover, for smooth X the anti-canonical
class −KX is an integer linear combination of classes of boundary divisors with
coefficients at least 2. We also observe that if a commutative subgroup of the auto-
morphism group of a variety X acts on X with open orbit, then it is a maximal
commutative subgroup of Aut(X).
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In § 3.2 we classify flag varieties G/P which admit an additive action. It turns
out that in this case the parabolic subgroup P is maximal and the existence of an
additive action on G/P is almost equivalent to the commutativity of the unipotent
radical Pu with few explicit exceptions.

In § 3.3 we discuss a uniqueness result: if a flag variety G/P is not isomorphic
to a projective space, then G/P admits at most one additive action.

Finally, in § 3.4 we present a construction due to Feigin that allows one to degen-
erate an arbitrary flag variety G/P to a projective variety with an additive action.

3.1. Generalities on additive actions on complete varieties. In this sub-
section we recall briefly some basic geometric properties of varieties admitting an
additive action.

Clearly, any variety X with an additive action Gn
a ×X → X contains an open

Gn
a -orbit that is isomorphic to an affine space. This implies that X is a rational

variety.
It is well known that the complement X \ U of an affine open subset U on an

irreducible variety X is a union D1 ∪ · · · ∪Dk of prime divisors. If X is a normal
variety with an additive action and U is the open orbit, then we call [D1], . . . , [Dk]
the boundary classes in Cl(X).

Proposition 3.1. Let X be a normal variety and U ⊆ X be an open subset iso-
morphic to an affine space. Then any invertible regular function on X is constant
and the divisor class group Cl(X) is a free finitely generated abelian group. More-
over, the boundary classes form a basis in Cl(X).

Proof. If f is an invertible regular function on X, then its restriction to U is invert-
ible and also regular. It follows that f is constant on U and so on X.

Since all divisors on U are principal, any divisor on X is linearly equivalent to
an integral linear combination of prime divisors in the complement X \ U . If such
a linear combination is zero in Cl(X), then it is a principal divisor corresponding to
some rational function f on X. The function f has neither zero nor pole on U , so it
is an invertible regular function on the affine space. Such a function is a constant,
hence the combination is trivial. 2

As the next step, let us formulate a result proved in [62], Theorems 2.5 and 2.7.

Theorem 3.2. Let X be a complete normal variety with an additive action. Then
the monoid of classes of effective divisors is generated freely by the boundary classes.
Moreover, if X is smooth, then the anti-canonical class −KX is an integer linear
combination of boundary classes, where all coefficients are ⩾ 2.

To obtain the first statement of Theorem 3.2 one should use a linearization of an
arbitrary divisor with respect to an action of a unipotent group. Namely, consider
an effective divisor D on X. The representation of Gn

a on the projectivization of
the space H0(X,O(D)) has a fixed point, which corresponds to an effective divisor
supported at the boundary and linearly equivalent to D. The proof of the second
statement is more delicate: it requires computations with vector fields and related
exact sequences.
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Remark 3.3. If a complete normal variety X admits an additive action, it need not
be projective. Examples of additive actions on smooth non-projective complete
toric varieties X in any dimension starting from 3 were constructed in [101].

We make one more observation. We say that a subgroup H of the automorphism
group Aut(X) of an algebraic variety X is algebraic if it carries the structure of
an algebraic group such that the action H × X → X is regular. Note that if the
group Aut(X) itself has the structure of an algebraic group such that the action
Aut(X) × X → X is regular, then the notion of an algebraic subgroup coincides
with the notion of an algebraic subgroup of an algebraic group.

Proposition 3.4. Assume that a commutative algebraic group H acts effectively
on an irreducible variety with open orbit. Then H is a maximal (with respect to
inclusion) commutative algebraic subgroup of the group Aut(X).

Proof. Assume that H is contained in a larger commutative algebraic subgroup F
and let g ∈ F \H. Then g permutes H-orbits on X and, in particular, it preserves
the open H-orbit U on X. Take a point x ∈ U . Then there is an element h ∈ H
such that gx = hx. This shows that h−1g fixes x. So h−1g acts identically on U
and on X, which is a contradiction. 2

This result shows that each additive action Gn
a×X → X provides a maximal com-

mutative unipotent subgroup of the automorphism group Aut(X). In particular,
the Hassett–Tschinkel correspondence allows one to construct many non-conjugate
maximal commutative unipotent subgroups of dimension n in GLn+1(K). At the
same time, there are maximal commutative unipotent subgroups of other dimen-
sions in GLn+1(K).

In the next subsections we study additive actions on (generalized) flag varieties,
that is, on homogeneous spaces G/P of a connected semisimple group G modulo
a parabolic subgroup P . The following proposition provides additional motivation
to concentrate on varieties of this type.

It is well known that the connected component Aut(X)0 of the automorphism
group of a complete variety is a connected linear algebraic group. In view of the
importance of the problem of the existence of a Kähler–Einstein metric, cases when
the group Aut(X)0 is reductive are of particular interest.

Proposition 3.5 (see [10], Proposition 1). Let X be a complete variety admitting
an additive action. Assume that the group Aut(X)0 is a reductive linear algebraic
group. Then X is a flag variety G/P for some semisimple group G and some
parabolic subgroup P .

Proof. Let X ′ be the normalization of X. The action of Aut(X)0 on X can be
lifted to X ′. This implies that some commutative unipotent group acts on X ′ with
open orbit. In particular, a maximal unipotent subgroup of the reductive group
Aut(X)0 acts on X ′ with open orbit. This means that X ′ is a spherical variety of
rank zero (see [107], § 1.5.1, for details). Hence X ′ is a flag variety G/P (see [107],
Proposition 10.1), and Aut(X)0 acts transitively on X ′. This implies that X = X ′.
2
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3.2. Existence of an additive action on a flag variety. In this subsection we
follow [3] and classify flag varieties that admit an additive action.

Let G be a connected semisimple linear algebraic group of adjoint type over an
algebraically closed field of characteristic zero, and P be a parabolic subgroup of G.
The homogeneous space G/P is called a (generalized) flag variety . Recall that G/P
is projective and the action of the unipotent radical P−u of the opposite parabolic
subgroup P− on G/P by left multiplication has an open orbit. This open orbit U
is called the big Schubert cell on G/P . Since U is isomorphic to the affine space
An, where n = dimG/P , every flag variety can be regarded as a completion of an
affine space.

Our goal is to find all flag varieties G/P that are equivariant completions of Gn
a .

Clearly, this is the case when the group P−u or, equivalently, the group Pu is com-
mutative.

It is a classical result that the connected component G̃ of the automorphism
group of G/P is a semisimple group of adjoint type and G/P = G̃/Q for some
parabolic subgroup Q ⊆ G̃. In most cases G̃ coincides with G, and all exceptions
are well known (see, for example, [92], Theorem 7.1, or [108], p. 118). If G̃ ̸= G, then
we say that (G̃,Q) is the covering pair of the exceptional pair (G,P ). For a simple
group G the exceptional pairs are (PSp(2r), P1), (SO(2r+1), Pr), and (G2, P1) with
the covering pairs (PSL(2r), P1), (PSO(2r+2), Pr+1), and (SO(7), P1), respectively,
where PH denotes the quotient of the group H by its centre and Pi is the maximal
parabolic subgroup associated with the ith simple root. It turns out that, given
a simple group G, the condition G̃ ̸= G implies that the unipotent radical Qu
is commutative and Pu is not. In particular, in this case G/P is an equivariant
completion of Gn

a . Our main result states that these are the only possible cases.

Theorem 3.6 (see [3], Theorem 1). Let G be a connected semisimple group of
adjoint type and P be a parabolic subgroup of G. Then the flag variety G/P is an
equivariant completion of Gn

a if and only if for every pair (G(i), P (i)), where G(i)

is a simple component of G and P (i) = G(i) ∩ P , one of the following conditions
holds:

(a) the unipotent radical P (i)
u is commutative;

(b) the pair (G(i), P (i)) is exceptional.

For the convenience of the reader, we list all pairs (G,P ), where G is a simple
group (up to local isomorphism) and P is a parabolic subgroup with commutative
unipotent radical:

(SLr+1, Pi), i = 1, . . . , r; (SO2r+1, P1); (Sp2r, Pr);
(SO2r, Pi), i = 1, r − 1, r; (E6, Pi), i = 1, 6; (E7, P7)

(see [97], § 2). Note that the unipotent radical of Pi is commutative if and only if the
simple root αi occurs with coefficient 1 in the highest root ρ (see [97], Lemma 2.2).
Another equivalent condition is that the fundamental weight ωi of the dual group
G∨ is minuscule, that is, the weight system of the simple G∨-module V (ωi) with
highest weight ωi coincides with the orbit Wωi of the Weyl group W .

Proof of Theorem 3.6. If the unipotent radical P−u is commutative, then the action
of P−u on G/P by left multiplication is the desired additive action. The same
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arguments work when for the connected component G̃ of the automorphism group
Aut(G/P ) one has G/P = G̃/Q and the unipotent radical Q−u is commutative.
Since

G/P ∼= G(1)/P (1) × · · · ×G(k)/P (k),

where G(1), . . . , G(k) are the simple components of the group G, G̃ is isomorphic
to the direct product G̃(1) × · · · × G̃(k). Moreover, Qu ∼= Q

(1)
u × · · · × Q

(k)
u , where

Q(i) = G̃(i) ∩ Q. Thus the group Q−u is commutative if and only if for every pair
(G(i), P (i)) either P (i)

u is commutative or the pair (G(i), P (i)) is exceptional.
Conversely, assume that G/P admits an additive action. We can identify Gn

a

with a commutative unipotent subgroup H of G̃ and the flag variety G/P with
G̃/Q, where Q is a parabolic subgroup of G̃.

Let T and B, T ⊆ B, be a maximal torus and a Borel subgroup of the group G̃
such that B ⊆ Q. Consider the root system Φ of the tangent algebra g = Lie(G̃)
defined by the torus T , its decomposition Φ = Φ+∪Φ− into the positive and negative
roots associated with B, the set of simple roots ∆ ⊆ Φ+, ∆ = {α1, . . . , αr}, and
the root decomposition

g =
⊕
β∈Φ−

gβ ⊕ t⊕
⊕
β∈Φ+

gβ ,

where t = Lie(T ) is a Cartan subalgebra of g and

gβ = {x ∈ g : [y, x] = β(y)x for all y ∈ t}

is a root subspace. Set q = Lie(Q) and ∆Q = {α ∈ ∆: g−α ⊈ q}. For every root
β = a1α1 + · · ·+ arαr we set deg(β) =

∑
αi∈∆Q

ai. This gives a Z-grading on the
Lie algebra g:

g =
⊕
k∈Z

gk, where t ⊆ g0 and gβ ⊆ gk with k = deg β.

In particular,
q =

⊕
k⩾0

gk and q−u =
⊕
k<0

gk.

Assume that the unipotent radical Q−u is not commutative and consider gβ ⊆
[q−u , q

−
u ]. For every x ∈ gβ \ {0} there exist z′ ∈ gβ′ ⊆ q−u and z′′ ∈ gβ′′ ⊆ q−u such

that x = [z′, z′′]. In this case deg(z′) > deg(x) and deg(z′′) > deg(x).
Since the subgroup H acts on G̃/Q with open orbit, conjugating H we may

assume that theH-orbit of the point eQ is open in G̃/Q. This implies that g = q⊕h,
where h = Lie(H). On the other hand g = q ⊕ q−u . So every element y ∈ h can
uniquely be written as y = y1 + y2, where y1 ∈ q and y2 ∈ q−u , and the linear map
h → q−u , y 7→ y2, is bijective. Take the elements y, y′, y′′ ∈ h such that y2 = x,
y′2 = z′, and y′′2 = z′′. Since the subgroup H is commutative, we have [y′, y′′] = 0.
Thus

[y′1 + y′2, y
′′
1 + y′′2 ] = [y′1, y

′′
1 ] + [y′2, y

′′
1 ] + [y′1, y

′′
2 ] + [y′2, y

′′
2 ] = 0.

However,

[y′2, y
′′
2 ] = x and [y′1, y

′′
1 ] + [y′2, y

′′
1 ] + [y′1, y

′′
2 ] ∈

⊕
k>deg x

gk.
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This contradiction shows that the group Q−u is commutative. As we have seen, the
latter condition means that for every pair (G(i), P (i)) either the unipotent radical
P

(i)
u is commutative, or the pair (G(i), P (i)) is exceptional. 2

It is well known that if the ground field K is the field of complex numbers,
then Hermitian symmetric spaces of compact type are precisely homogeneous
spaces G/P , where the parabolic subgroup P has a commutative unipotent radical
(see [97], for example). So from Theorem 3.6 we deduce the following observation.

Corollary 3.7. A complete complex homogeneous variety X admits an additive
action if and only if X is a Hermitian symmetric space of compact type.

3.3. Uniqueness results. The following result is a generalization of Theorem 2.25;
in the case of Grassmannians it was conjectured in [12], § 6.

Theorem 3.8. Let G be a connected simple linear algebraic group and P be a para-
bolic subgroup of G. Assume that the flag variety X = G/P is not isomorphic to the
projective space Pn . Then X admits at most one additive action up to equivalence.

Two different ways to prove this result were obtained independently by Fu and
Hwang [51] and Devyatov [41]. We discuss each of these approaches briefly.

Fu–Hwang’s proof is based on the study of varieties of minimal rational tangents
(VMRT). In [51] the authors proved the following theorem.

Theorem 3.9. Let X be a smooth Fano variety of dimension n with Picard num-
ber 1 that is not isomorphic to Pn . Assume that X has a family of minimal rational
curves whose variety of minimal rational tangents Cx ⊆ PTx(X) at a general point
x ∈ X is smooth. Then any two additive actions on X are equivalent.

Corollary 3.10. Let X ⊆ PN be a smooth projective subvariety of Picard number 1
such that, given a general point x ∈ X , there exists a line in PN that passes through
x and lies on X . If X is different from the projective space, then any two additive
actions on X are equivalent.

One can show that whenX has a projective embedding satisfying the assumption
of Corollary 3.10, some family of lines lying on X gives a family of minimal rational
curves, for which the variety of minimal rational tangents Cx at a general point
x ∈ X is smooth (see, for example, [68], Proposition 1.5). Thus Corollary 3.10
follows from Theorem 3.9. This corollary can be applied to smooth quadratic
hypersurfaces and Grassmanians because a smooth hyperquadric can be embedded
into a projective space so as to have the required property.

Devyatov’s approach is completely different. It is based on the representa-
tion theory of Lie algebras and the classification of certain multiplications on
finite-dimensional spaces and can be regarded as a generalization of the Hassett–
Tschinkel correspondence.

Let L be a connected reductive algebraic group, V be a finite-dimensional L-
module, and l be the Lie algebra of L. By an l-compatible multiplication on V we
mean an associative commutative bilinear map µ : V × V → V such that for each
v ∈ V the operator µv : V → V , µv(w) = µ(v, w) is nilpotent and for each v ∈ V
there exists x ∈ l such that the operator µv coincides with the action of x on V .
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A classification of l-compatible multiplications on an arbitrary module V of
a reductive group L was presented in [41], §§ 5 and 6. It may be of indepen-
dent interest. After a series of reductions to the case of a simple group G and
a simple module V , it was proved in [41], Theorem 21, that there exists a non-zero
l-compatible multiplication on V if and only if either L is a group of type A and V
is the tautological L-module or its dual, or L is of type C and V is the tautological
L-module.

Let X = G/P be a flag variety, where G is a connected simple linear algebraic
group and P is a parabolic subgroup ofG. We may assume without loss of generality
that the pair (G,P ) is not exceptional. Then the connected component of the group
Aut(X) coincides with G. By Theorem 3.6 we may assume that the group Pu is
commutative and, in particular, the parabolic subgroup P is maximal.

As we know from the previous subsection, additive actions on X correspond
to commutative Lie subalgebras h that are complementary to p = Lie(P ) in g =
Lie(G), so that g = p ⊕ h. One such subalgebra is p−u , and the uniqueness result
means that all other such subalgebras h are conjugate to p−u . In [41], Theorem 15,
Devyatov established a correspondence between the commutative subalgebras h in
g complementary to pu and the l-compatible multiplications p−u × p−u → p−u , where
l is a Levi subalgebra of the algebra p. Under this correspondence the subalgebra
h = p−u corresponds to zero multiplication. So the classification of compatible mul-
tiplications mentioned above shows that commutative subalgebras h not conjugate
to p−u and complementary to pu appear only in the case when the flag variety G/P
is isomorphic to the projective space Pn. This proves Theorem 3.8.

A more detailed analysis shows that, in terms of the results of Hassett and
Tschinkel, in the case of the tautological module V of the group of type A a com-
patible multiplication is precisely the multiplication m × m → m on the maximal
ideal of the local algebra A = K ⊕ m that corresponds to a given additive action
on Pn.

Finishing this subsection, let us mention one more related study. In [34] a uni-
queness result for equivariant completions of non-commutative unipotent groups
by flag varieties was proved. More precisely, let G be a simple linear algebraic
group over the field of complex numbers and P be a parabolic subgroup of G.
By the Bruhat decomposition, the unipotent radical P−u acts on G/P with open
orbit isomorphic to P−u . Cheong [34] proved that the structure of an equivariant
completion of P−u on G/P is unique up to isomorphism if G/P is not isomorphic
to the projective space and the pair (G,P ) is not exceptional in the sense of the
preceding subsection. The proof exploits the notion of a smooth variety of minimal
rational tangents and mostly follows the proof scheme of Fu and Hwang [51]. The
main difference lies in which tool to use in order to obtain an extension of a locally
defined map to the whole space, which is the most essential in proving uniqueness:
Fu and Hwang used the Cartan–Fubini extension theorem, which is applicable only
to smooth Fano varieties of Picard number 1, while Cheong used Yamaguchi’s result
on the prolongation of simple graded Lie algebras. For exceptional pairs (G,P ) the
question whether G/P admits a unique equivariant completion structure for P−u
remains open.
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3.4. Degeneration of flag varieties to equivariant completions. By The-
orem 3.6 not so many flag varieties admit an additive action. At the same time,
in [45] Feigin proposed a construction of a canonical flat degeneration of an arbi-
trary flag variety to a projective variety with an additive action. This result may
be considered as an additive analogue of intensively studied flat degenerations of
flag varieties to toric varieties (see [25], [58], and [79]).

Let G be a simple linear algebraic group with Lie algebra g. Recall that each flag
variety G/P can be realized as a G-orbit G[vλ] ⊆ P(V (λ)) in the projectivization
of a simple G-module V (λ) with highest weight vector vλ. We set [vλ] = Kvλ and
let Fλ := G[vλ]. Feigin introduced a new family of varieties Faλ , which are flat
degenerations of Fλ; the superscript a is for ‘abelian’.

The variety Faλ is defined as follows. Let {Fs, s ⩾ 0} be the PBW filtration
on V (λ):

Fs = Span{x1 . . . xlvλ : xi ∈ g, l ⩽ s}.

Set V (λ)a = F0⊕
⊕

s⩾0 Fs+1/Fs. Let g = n⊕ t⊕n− be the Cartan decomposition.
The space V (λ)a has the natural structure of a module over the degenerate algebra
ga, where ga is isomorphic to g as a vector space and is a semidirect sum of two
subalgebras, the first being the Borel subalgebra b = n⊕ t and the second being an
abelian ideal (n−)a that is isomorphic to n as a vector space. Here the structure
of the b-module on (n−)a is given via the identification of (n−)a with the factor
module g/b. The corresponding algebraic group Ga is a semidirect product B⋌Gn

a ,
where n is the dimension of n. We define the variety Faλ as the closure of the
Gn
a -orbit of the highest weight vector:

Faλ := Gn
a [vλ] ⊆ P(V (λ)a).

By definition this variety carries an additive action. Since the highest weight vector
vλ is B-semi-invariant, Faλ is invariant under the action of Ga as well. Despite the
case of usual flag varieties, here the action of Ga on Faλ need not be transitive.

Let p be the parabolic subalgebra annihilating the vector vλ. Assume for
a moment that the nilpotent radical p−u is commutative. Then all root operators in
n− \ p−u annihilate the vector vλ, while operators in p−u act as pairwise commuting
operators on V (λ) even before passing to V (λ)a. This shows that in this case there
is no difference between the original variety Fλ and the degenerate variety Faλ . By
Theorem 3.6 this is precisely the case when the variety Fλ itself admits an additive
action.

In the case of a group of type A the varieties Fλ are isomorphic to partial
flag varieties. In particular, the ones corresponding to fundamental weights λ are
Grassmannians Gr(d, n). There exist embeddings of partial flags into products of
projective spaces, and the image is given by Plücker’s relations. These relations
describe the coordinate rings on the affine cones over flag varieties.

It was shown in [45] that each degenerate flag variety can be embedded into
a product of Grassmannians and thus into a product of projective spaces. Fei-
gin showed that this embedding can be described in terms of an explicit set of
multi-homogeneous algebraic equations that are obtained from the Plücker rela-
tions by a certain degeneration. He proved that the degeneration Fλ → Faλ is
flat.
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For further results on the varieties Faλ , see, for instance, [45], [46], [27], and
the references there. The paper [46] is devoted to the study of varieties Faλ for
groups of type A. The authors prove that in this case the variety Faλ has ratio-
nal singularities and is a normal and locally complete intersection. They con-
struct a desingularization Rλ of Faλ explicitly. The variety Rλ can be viewed
as a tower of successive P1-fibrations, thus providing an analogue of the classi-
cal Bott–Samelson–Demazure–Hansen desingularization. It was proved that Rλ is
Frobenius split. This gives a Frobenius splitting for degenerate flag varieties and
allows one to prove Borel–Weil type theorem for Faλ .

The aim of [27] was to connect degenerate flag varieties with quiver Grassman-
nians. By definition, quiver Grassmannians are the varieties parametrizing subrep-
resentations of a quiver representation. It turns out that certain quiver Grassman-
nians for type A quivers are isomorphic to degenerate flag varieties Faλ . This leads
to considering the class of Grassmannians of subrepresentations of the direct sum
of a projective and an injective representation of a Dynkin quiver. It was proved
that these are (typically, singular) irreducible normal local complete intersections,
which admit a group action with finitely many orbits and a cellular decomposition.

4. Additive actions on toric varieties

In this section we study additive actions on toric varieties. To do this we need
to develop new techniques, namely, we consider graded algebras and homogeneous
locally nilpotent derivations of such algebras. In order to apply these techniques, we
would like to have global coordinates on every toric variety. Such coordinates are
provided by Cox rings. In the case of a toric variety X the Cox ring R(X) is a poly-
nomial ring in m variables, where m is the number of prime torus-invariant divisors
on X. Moreover, the ring R(X) is graded by the divisor class group Cl(X), and
locally nilpotent derivations, which correspond to Ga-actions on X normalized by
the acting torus, are represented by so-called Demazure roots of the corresponding
fan.

This allows us to characterize additive actions on X normalized by the acting
torus in terms of certain collections of Demazure roots. In particular, we obtain
a combinatorial description of the fans of toric varieties admitting a normalized
additive action. We show that there is at most one normalized additive action
on any toric variety up to equivalence. Further, we prove that if a complete toric
variety X admits an additive action, then it admits a normalized additive action.
Moreover, this is the case if and only if a maximal unipotent subgroup U of Aut(X)
acts on X with open orbit. A characterization of the polytopes corresponding to
projective toric varieties admitting an additive action is obtained.

In § 4.5 we describe additive actions on complete toric surfaces X. It turns out
that there are at most two additive actions on X in this case. The last subsection
provides a uniqueness criterion for additive actions on a complete toric variety X
of arbitrary dimension: if X admits a normalized additive action, then any other
additive action on X is equivalent to a normalized one if and only if a maximal
unipotent subgroup U in Aut(X) is commutative. The latter condition can be
easily checked in terms of the fan.
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4.1. Graded algebras and locally nilpotent derivations. In this subsection
we follow the presentation in [11]. Consider an irreducible affine variety X with
an effective action of an algebraic torus T . Let M be the character lattice of T
and N = Hom(M,Z) be the dual lattice of one-parameter subgroups of T . Let
B = K[X] be the algebra of regular functions on X. It is well known that there is
a bijection between the faithful T -actions on X and the effective M -gradings on B.
In fact, the algebra B is graded by the semigroup of lattice points in a convex
polyhedral cone ω ⊆MQ = M ⊗Z Q. We have

B =
⊕
m∈ωM

Bmχ
m,

where ωM = ω ∩ M and χm is the character of the torus T corresponding to
a point m ∈M .

A derivation ∂ of an algebra B is said to be locally nilpotent (an LND for short)
if for every f ∈ B there exists k ∈ Z>0 such that ∂k(f) = 0. For any LND ∂
on B the map φ∂ : Ga ×B → B, φ∂(s, f) = exp(s∂)(f), defines the structure of
a rational Ga-algebra on B. This induces a regular action Ga × X → X, where
X = SpecB. In fact, any regular Ga-action on X arises in this way (see [49], § 1.5).
A derivation ∂ on B is said to be homogeneous if it respects the M -grading, that
is, ∂ sends homogeneous elements to homogeneous ones. If f, h ∈ B \ ker ∂ are
homogeneous, then ∂(fh) = f∂(h) + ∂(f)h is homogeneous as well and deg ∂(f)−
deg f = deg ∂(h) − deg h. So any homogeneous derivation ∂ has a well-defined
degree given by deg ∂ = deg ∂(f) − deg f for any homogeneous f ∈ B \ ker ∂. It
is easy to see that an LND on B is homogeneous if and only if the corresponding
Ga-action is normalized by the torus T in the automorphism group Aut(X) (cf.
[49], § 3.7).

Let X be an affine toric variety, that is, a normal affine variety with effective
action of a torus T with open orbit. In this case

B =
⊕
m∈ωM

Kχm = K[ωM ]

is the semigroup algebra. Recall that, given a cone ω ⊆MQ, its dual cone σ ⊆ NQ
is defined by

σ = {p ∈ NQ : ⟨p, v⟩ ⩾ 0 ∀v ∈ ω},

where ⟨ · , · ⟩ is the pairing NQ ×MQ → Q between the dual spaces NQ and MQ.
Let σ(1) be the set of rays of the cone σ and pρ be the primitive lattice vector on
the ray ρ. For ρ ∈ σ(1) we set

Rρ := {e ∈M : ⟨pρ, e⟩ = −1 and ⟨pρ′ , e⟩ ⩾ 0 ∀ ρ′ ∈ σ(1), ρ′ ̸= ρ}.

One checks easily that the set Rρ is infinite for each ρ ∈ σ(1), provided that the
cone σ has dimension at least 2. Elements of the set R :=

⊔
ρ∈σ(1) Rρ are called

Demazure roots of the cone σ. Let e ∈ Rρ. Then ρ is the distinguished ray of the
root e. One can define a homogeneous LND on the algebra B by

∂e(χm) = ⟨pρ,m⟩χm+e.
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Figure 1

In fact, every homogeneous LND on B has the form α∂e for some α ∈ K and e ∈ R
(see [80], Theorem 2.7). In other words, the Ga-actions on X normalized by the
acting torus are in bijection with the Demazure roots of the cone σ.

Example 4.1. Consider X = Kn with the standard action of the torus (K×)n. It
is a toric variety with cone σ = Qn

⩾0, which has the rays ρi = ⟨pi⟩Q⩾0 , where

p1 = (1, 0, . . . , 0), . . . , pn = (0, . . . , 0, 1).

The dual cone ω is Qn
⩾0 as well. In this case we have

Rρi
= {(c1, . . . , ci−1,−1, ci+1, . . . , cn) : cj ∈ Z⩾0},

where cj = ⟨pj , e⟩ (see Fig. 1). Set x1 = χ(1,0,...,0), . . . , xn = χ(0,...,0,1). Then
K[X] = K[x1, . . . , xn]. Consider the monomial

xe := xc11 · · ·xci−1
i−1 x

ci+1
i+1 · · ·x

cn
n .

It is easy to see that the homogeneous LND corresponding to the root
e = (c1, . . . , cn) ∈ Rρi is

∂e = xe
∂

∂xi
.

This LND gives rise to the Ga-action

xi 7→ xi + sxe, xj 7→ xj for j ̸= i, s ∈ Ga.

4.2. Cox rings and Demazure roots. We keep the notation of the previous
subsection and continue to follow [11]. Let X be a toric variety of dimension n
with an acting torus T . This time we do not assume that X is affine, and so X
is represented by a fan Σ of convex polyhedral cones in NQ (see [55] or [37] for
details).

Let Σ(1) be the set of rays of the fan Σ and pρ be the primitive lattice vector on
the ray ρ. For ρ ∈ Σ(1) we consider the set Rρ of all vectors e ∈M such that

(a) ⟨pρ, e⟩ = −1 and ⟨pρ′ , e⟩ ⩾ 0 for all ρ′ ∈ Σ(1) and ρ′ ̸= ρ;
(b) if σ is a cone in Σ and ⟨v, e⟩ = 0 for all v ∈ σ, then the cone generated by σ

and ρ is in Σ as well.
Note that (a) implies (b) if Σ is a fan with convex support. This is the case

when X is affine or complete.
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Elements of R :=
⊔
ρ∈Σ(1) Rρ are called Demazure roots of the fan Σ (cf. [38],

Définition 4, and [91], § 3.4). Again, the elements e ∈ R are in bijection with the
Ga-actions on X normalized by the acting torus (see [38], Théorème 3, and [91],
Proposition 3.14). If X is affine, then the Ga-action given by a Demazure
root e coincides with the action corresponding to the locally nilpotent derivation
∂e of the algebra K[X], which was defined in the previous subsection. Let He

denote the image in Aut(X) of the group Ga under this action. Thus, He is
a one-parameter unipotent subgroup normalized by T in Aut(X).

We recall some basic facts from toric geometry. There is a bijection between the
cones σ ∈ Σ and the T -orbits Oσ on X such that σ1 ⊆ σ2 if and only if Oσ2 ⊆ Oσ1 .
Here dimOσ = n − dim⟨σ⟩. Moreover, each cone σ ∈ Σ defines an open affine
T -invariant subset Uσ on X such that Oσ is the unique closed T -orbit on Uσ, and
σ1 ⊆ σ2 if and only if Uσ1 ⊆ Uσ2 .

Let ρe be the distinguished ray corresponding to a root e, pe be the primitive
lattice vector on ρe, and Re be the one-parameter subgroup of T corresponding
to pe. Denote the set of He-fixed points on X by XHe .

We aim to describe the action of He on X.

Proposition 4.2 (see [11], Proposition 1). For every point x ∈ X \XHe the orbit
Hex meets exactly two T -orbits O1 and O2 on X , where dimO1 = dimO2 +1. The
intersection O2 ∩Hex consists of a single point, while

O1 ∩Hex = Rey for any y ∈ O1 ∩Hex.

Proof. It follows from the proof of Proposition 3.14 in [91] that the affine charts Uσ,
where σ ∈ Σ is a cone containing ρe, are He-invariant, and the complement of their
union is contained in XHe . This reduces the proof to the case when X is affine. In
this case the assertion was proved in [13], Proposition 2.1. 2

A pair of T -orbits (O1,O2) on X is said to be He-connected if Hex ⊆ O1∪O2 for
some x ∈ X\XHe . By Proposition 4.2, O2 ⊆ O1, for such a pair (up to permutation)
and dimO1 = dimO2 + 1. Since the torus normalizes the subgroup He, any point
in O1 ∪ O2 can actually serve as x.

Lemma 4.3 (see [11], Lemma 1). A pair of T -orbits (Oσ1 ,Oσ2) is He-connected if
and only if e

∣∣
σ2

⩽ 0 and σ1 is a facet of σ2 given by the equation ⟨v, e⟩ = 0.

The proof reduces again to the affine case, when the assertion in question is
Lemma 2.2 in [13].

Now we recall the basic ingredients of Cox’s construction; see [6], Chap. 1 for
more details. Let X be a normal variety with free finitely generated divisor class
group Cl(X) and only constant invertible regular functions. Denote by WDiv(X)
the group of Weil divisors on X and fix a subgroup K ⊆ WDiv(X) that maps onto
Cl(X) isomorphically. The Cox ring of the variety X is defined by

R(X) =
⊕
D∈K

H0(X,D),

whereH0(X,D) = {f ∈ K(X)× : div(f)+D ⩾ 0}∪{0} and multiplication on homo-
geneous components coincides with multiplication in the field of rational functions
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K(X) and extends to R(X) by linearity. It is easy to see that, up to isomorphism
the graded ring R(X) does not depend on the choice of the subgroup K.

It was proved in [36] that if X is toric, then R(X) is the polynomial algebra
K[x1, . . . , xm], where the variables xi correspond to T -invariant prime divisors Di

on X or, equivalently, to rays ρi of the fan ΣX . The Cl(X)-grading on R(X) is
given by deg(xi) = [Di].

Suppose that the Cox ring R(X) is finitely generated. Then X := SpecR(X) is
called the total coordinate space of the variety X. It is an affine factorial variety
with an action of the torus HX := Spec K[Cl(X)]. There is an open HX -invariant
subset X̂ ⊆ X such that the complement X \ X̂ is of codimension at least 2 in X,
there exists a good quotient pX : X̂ → X̂//HX , and the quotient space X̂//HX is
isomorphic to X (see [6], Construction 1.6.3.1). If X is smooth, then the quotient
map pX : X̂ → X̂//HX is called the universal torsor over X. So we have the
diagram

X̂
i //

//HX

��

X = SpecR(X)

X

If X is toric, then X is isomorphic to Km and X \ X̂ is a union of some coordinate
planes in Km of codimension at least 2 (see [36]).

By Theorem 4.2.3.2 in [6] any Ga-action on X can be lifted to a Ga-action on
X commuting with the action of the torus HX .

If X is toric and a Ga-action is normalized by the acting torus T , then the
lifted Ga-action on Km is normalized by the diagonal torus (K×)m. Conversely,
any Ga-action on Km normalized by the torus (K×)m and commuting with the
subtorus HX induces a Ga-action on X. This shows that the Ga-actions on X
normalized by T are in bijection with the locally nilpotent derivations of the Cox
ring K[x1, . . . , xm] that are homogeneous with respect to the standard grading by
the lattice Zm and have degree zero with respect to the Cl(X)-grading.

4.3. Normalized additive actions. Let X be a normal variety admitting an
additive action with open orbit U . By Proposition 3.1 any invertible regular func-
tion on X is a constant and the divisor class group Cl(X) is freely generated by
the classes [D1], . . . , [Dl] of prime divisors such that X \ U = D1 ∪ · · · ∪ Dl. In
particular, the Cox ring R(X) is well defined for such a variety X.

Now we assume that X is toric and an additive action Gn
a×X → X is normalized

by the acting torus T . Then the group Gn
a is the direct product of n subgroups

Ga, normalized by T each. They correspond to pairwise commuting homogeneous
locally nilpotent derivations on the Cox ring K[x1, . . . , xm] which have degree zero
with respect to the Cl(X)-grading. In turn, such derivations up to scalars are in
bijection with the Demazure roots of the fan ΣX .

Consider the set of homogeneous derivations ∂e of the polynomial algebra
K[x1, . . . , xm] which correspond to some Demazure roots e of the fan ΣX .

Lemma 4.4 ([11], Lemma 2). Two derivations ∂e and ∂e′ commute if and only if
either ρe = ρe′ or ⟨pe, e′⟩ = ⟨pe′ , e⟩ = 0.
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Now we arrive at the key definition.

Definition 4.5. A set e1, . . . , en of Demazure roots of a fan Σ of dimension n is
called a complete collection if ⟨pi, ej⟩ = −δij for all 1 ⩽ i, j ⩽ n, where δij is the
Kronecker delta.

In this case the vectors p1, . . . , pn form a basis of the lattice N , and −e1, . . . ,−en
is the dual basis of the dual lattice M .

The following result can be considered as a combinatorial description of normal-
ized additive actions on toric varieties.

Theorem 4.6 ([11], Theorem 1). Let X be a toric variety. Then the additive
actions on X normalized by the acting torus T are in bijection with the complete
collections of Demazure roots of the fan ΣX .

As we have seen, a normalized additive action on X determines n pairwise com-
muting homogeneous locally nilpotent derivations of the Cox ring K[x1, . . . , xm].
They have the form ∂e for some Demazure roots e. So Theorem 4.6 follows directly
from the next lemma.

Lemma 4.7 (see [11], Lemma 3). The homogeneous locally nilpotent derivations
∂1, . . . , ∂n of the Cox ring K[x1, . . . , xm] corresponding to the Demazure roots
e1, . . . , en define a normalized additive action on X if and only if e1, . . . , en form
a complete collection.

Proof. First assume that the derivations ∂1, . . . , ∂n give rise to an additive action
Gn
a ×X → X. If some roots ei and ej with i ̸= j correspond to the same ray

of the fan ΣX , then the Gn
a -action changes at most n− 1 coordinates of the ring

K[x1, . . . , xm], and no Gn
a -orbit on X can be n-dimensional. Then Lemma 4.4

implies that ⟨pi, ej⟩ = 0 for i ̸= j. By definition we have ⟨pi, ei⟩ = −1, and thus
e1, . . . , en form a complete collection.

Conversely, if e1, . . . , en is a complete collection, then the corresponding
homogeneous locally nilpotent derivations commute. They define a Gn

a -action on
K[x1, . . . , xm] and therefore on Km. This action descends to X. We have to show
that the Gn

a -action on X has an open orbit. For this purpose it suffices to check
that the group Gn

a ×HX acts on Km with open orbit.
By construction, the group Gn

a changes exactly n of the coordinates x1, . . . , xm,
while the weights of the remaining m − n coordinates with respect to the Cl(X)-
grading form a basis of the lattice of characters of the torus HX . This shows that
the stabilizer of the point (1, . . . , 1) ∈ Km in the group Gn

a ×HX is trivial. Since
dim(Gn

a×HX) = n+m−n = m, we conclude that the (Gn
a×HX)-orbit of (1, . . . , 1)

is open in Km. 2

Corollary 4.8. A toric variety X admits a normalized additive action if and only
if there is a complete collection of Demazure roots of the fan ΣX .

Remark 4.9. Another application of Demazure roots to the theory of equivariant
completions of commutative linear algebraic groups was presented in [8].

The following theorem shows that a normalized additive action on a toric variety
is essentially unique.
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Theorem 4.10 ([11], Theorem 2). Any two normalized additive actions on a toric
variety are equivalent.

Let X be a complete toric variety with acting torus T . It is well known that
the automorphism group Aut(X) is a linear algebraic group with T as a maximal
torus (see [38] and [36]). In particular, Aut(X) contains a maximal unipotent
subgroup U , and all such subgroups are conjugate in Aut(X).

Theorem 4.11 ([11], Theorem 3). Let X be a complete toric variety with acting
torus T . Then the following conditions are equivalent:

1) there exists an additive action on X normalized by the acting torus T ;
2) there exists an additive action on X ;
3) a maximal unipotent subgroup U of the automorphism group Aut(X) acts

on X with an open orbit.

We conclude that Corollary 4.8 characterizes complete toric varieties admitting
some additive action.

Corollary 4.12. A complete toric variety X admits an additive action if and only
if there is a complete collection of Demazure roots of the fan ΣX .

In terms of the fan ΣX this condition means that, up to renumbering, the first n
primitive vectors p1, . . . , pn on the rays of ΣX form a basis of the lattice N and
the remaining primitive vectors pn+1, . . . , pm have non-positive coordinates in this
basis.

4.4. Projective toric varieties and polytopes. It is well known that there is
a correspondence between the convex lattice polytopes and the projective toric vari-
eties. This subsection aims to characterize the polytopes corresponding to toric
varieties that admit an additive action.

We begin with preliminary results; see [37], Chap. 2, and [55], § 1.5, for more
details. Let M be a lattice of rank n and P be a full-dimensional convex polytope
in the space MQ. We say that P is a lattice polytope if all of its vertices are in M .

A subsemigroup S ⊆M is called saturated if S coincides with the intersection of
the group ZS and the cone Q⩾0S it generates. A lattice polytope P is very ample
if for every vertex v ∈ P the semigroup SP,v := Z⩾0(P ∩M − v) is saturated. It
is known that for every lattice polytope P and every k ⩾ n− 1 the polytope kP is
very ample (see [37], Corollary 2.2.19).

Let us regard M as the lattice of characters of a torus T . Let P ⊆MQ be a very
ample polytope and let P ∩M = {m1, . . . ,ms}. We consider the map

T → Ps−1, t 7→ [χm1(t) : · · · : χms(t)]

and define a variety XP to be the closure of the image of this map in Ps−1. It is
known that XP is a projective toric variety with acting torus T , and any projective
toric variety appears in this way.

Definition 4.13. We say that a very ample polytope P is inscribed in a rectangle
(see Fig. 2) if there is a vertex v0 ∈ P such that

1) the primitive vectors on the edges of P containing v0 form a basis e1, . . . , en
of the lattice M ;
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2) for every inequality ⟨p, x⟩ ⩽ a on P that corresponds to a facet of P not
passing through v0 we have ⟨p, ei⟩ ⩾ 0 for all i = 1, . . . , n.

Figure 2

Theorem 4.14 (see [11], Theorem 4). Let P be a very ample polytope and XP be
the corresponding projective toric variety. Then XP admits an additive action if
and only if P is inscribed in a rectangle.

Proof. By Corollary 4.12 a toric variety X admits an additive action if and only if
the fan ΣX admits a complete collection of Demazure roots. By Proposition 3.1.6
in [37] the fan ΣXP

of the toric varietyXP corresponding to the polytope P coincides
with the normal fan ΣP of the polytope P . It is straightforward to check that the
two conditions in Definition 4.13 are precisely the conditions for −e1, . . . ,−en to
form the a complete collection of Demazure roots of the fan ΣP .

Remark 4.15. The result of Theorem 4.14 can also be obtained using the language
of polytopal linear groups developed in [23].

Let us illustrate this approach with two examples.
The closed interval P = [0, d] in Q1 with d ∈ Z⩾1 is a polytope inscribed in

a rectangle, and the variety

XP = {[1 : a : · · · : ad] | a ∈ K} ⊆ Pd

is a rational normal curve of degree d.
Further, the polytope shown in Fig. 3 defines the surface

XP = {[1 : a : a2 : b : ab : a2b : b2 : ab2 : b3] | a, b ∈ K} ⊆ P8,

which is isomorphic to the Hirzebruch surface F1.

Figure 3
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Now we give some explicit formulae for additive actions on toric varieties in
terms of Cox rings.

Example 4.16. The fan of the projective space X = Pn is generated by a basis
p1, . . . , pn of the lattice Zn and the vector p0 = −p1 − · · · − pn. The complete
collection of Demazure roots ei, 1 ⩽ i ⩽ n, which consists of the vectors opposite to
the dual basis of p1, . . . , pn, corresponds to the pairwise commuting locally nilpotent
derivations ∂ei = x0 ∂/∂xi, 1 ⩽ i ⩽ n, on the Cox ring R(X) = K[x0, . . . , xn]. They
define the Gn

a -action

(x0, x1, . . . , xn) 7→ (x0, x1 + s1x0, . . . , xn + snx0)

on the total coordinate space X = An+1 (see Example 4.1). This action is normal-
ized by the diagonal torus (K×)n+1 and commutes with the action of the one-dimen-
sional torus HX = Gm since locally nilpotent derivations are homogeneous with
respect to the standard grading by Zn+1 and have degree zero with respect to the
grading by Cl(X) = Z, when deg xi = 1, 0 ⩽ i ⩽ n. Thus, this action induces
the normalized additive action on the projective space Pn:

[z0 : z1 : · · · : zn] 7→ [z0 : z1 + s1z0 : · · · : zn + snz0]. (4.1)

The hyperplane {z0 = 0} consists of Gn
a -fixed points and thus for n ⩾ 2 the number

of Gn
a -orbits on Pn is infinite.

Consider the case n = 2. A maximal unipotent subgroup of the automorphism
group Aut(P2) is isomorphic to the unitriangular matrix subgroup of GL3(K) and
consists of the automorphisms

[z0 : z1 : z2] 7→ [z0 : z1 + a12z0 : z2 + a23z1 + a13z0], a12, a23, a13 ∈ K.

Two-dimensional (commutative) subgroups of this group have the form

H[α:β] =


1 αa b

0 1 βa
0 0 1

, a, b ∈ K


for [α : β] ∈ P1. For [α : β] = [0 : 1] the corresponding action of the group G2

a has
no open orbit, for [α : β] = [1 : 0] we obtain the normalized additive action (4.1),
and the points [α : β] ∈ P1 \ {0,∞} define pairwise isomorphic non-normalized
additive actions with three orbits (see Example 1.50).

Example 4.17. In the same way as in Example 4.16 one can check that the nor-
malized additive action on the product P1 × · · · × P1 and the corresponding action
on the total coordinate space A2n are given by

([z1 : z2], . . . , [z2n−1 : z2n]) 7→ ([z1 : z2 + s1z1], . . . , [z2n−1 : z2n + snz2n−1])

and

(x1, x2, . . . , x2n−1, x2n) 7→ (x1, x2 + s1x1, . . . , x2n−1, x2n + snx2n−1).

This shows that the number of Gn
a -orbits on P1 × · · · × P1 is 2n.
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Example 4.18. Let X be the Hirzebruch surface Fd. Its fan is generated by the
vectors

p1 = (1, 0), p2 = (0, 1), p3 = (−1, d), p4 = (0,−1).

The Cox ring K[x1, x2, x3, x4] carries a Z2-grading given by

deg x1 = (1, 0), deg x2 = (0, 1), deg x3 = (1, 0), deg x4 = (d, 1).

Moreover, X is obtained as the geometric quotient of

X̂ = K4 \ ({x1 = x3 = 0} ∪ {x2 = x4 = 0})

by the action of the torus HX = (K×)2 that is given by the Z2-grading.
In this case the Demazure roots are (1, 0), (−1, 0), and (k, 1), where 0 ⩽ k ⩽ d,

and the corresponding homogeneous locally nilpotent derivations are

x1
∂

∂x3
, x3

∂

∂x1
, and xk1x2x

d−k
3

∂

∂x4
.

There are two complete collections of Demazure roots, namely, (1, 0), (d, 1) and
(−1, 0), (0, 1). They define two normalized additive actions on X, which are defined
on X̂ by

(x1, x2, x3, x4) 7→ (x1, x2, x3 + s1x1, x4 + s2x
d
1x2)

and
(x1, x2, x3, x4) 7→ (x1 + s1x3, x2, x3, x4 + s2x2x

d
3) (4.2)

and are interchanged by the automorphism (x1, x2, x3, x4) 7→ (x3, x2, x1, x4).
According to the results in [38] or [36], the automorphism group Aut(X) is

isomorphic to K× · PSL(2) ⋌ Gd+1
a . Consider the case d = 1. Then a maximal

unipotent subgroup of Aut(X) is isomorphic to unitriangular matrix subgroup of
GL3(K) and acts in the following way:

(x1, x2, x3, x4) 7→ (x1 + a12x3, x2, x3, x4 + a23x1x2 + a13x2x3),

where a12, a23, a13 ∈ K. Its two-dimensional (commutative) subgroups have the
form H[α:β] (see Example 4.16). For [α : β] = [0 : 1] we obtain an action of G2

a

on F1 with one-parameter family of one-dimensional orbits, for [α : β] = [1 : 0]
we obtain normalized additive action (4.2), and points [α : β] ∈ P1 \ {0,∞} define
pairwise isomorphic non-normalized additive actions on F1. Thus, there are exactly
two equivalence classes of additive actions on F1. This result was obtained in [62],
Proposition 5.5, by means of geometric arguments.

Let us mention one more recent result on additive actions on toric varieties.
In [99] Shafarevich classified toric projective hypersurfaces admitting an additive
action. Every toric hypersurface of dimension n can be represented by a lattice
polytope in the lattice M such that the number of lattice points inside this polytope
is n+ 2. So the question is when such a polytope is inscribed in a rectangle. In [99],
Proposition 1, all such polytopes were found. It turns out that, apart from the
projective space, there are two toric projective hypersurfaces admitting an additive
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action in every dimension n ⩾ 2; they are the quadrics of rank 3 and 4 (see [99],
Theorem 2).

Using the results of [36] Shafarevich computed the automorphism groups of these
quadrics. Then he applied the correspondence between additive actions on projec-
tive hypersurfaces and pairs (A,U), where A is a local algebra and U is a hyperplane
in the maximal ideal of A that generates A (see Theorem 2.6), and found in [99],
§ 5, the number of non-equivalent additive actions on quadrics of rank 3 and 4 in
dimensions 2 to 4 (see Remark 2.28).

4.5. Additive actions on complete toric surfaces. We observe that by blow-
ing up fixed points repeatedly one can obtain infinitely many different (smooth)
complete toric surfaces that admit an additive action. In this subsection we discuss
a result of Dzhunusov [43] which clarifies how many additive actions we can have
on a complete toric surface.

Let XΣ be a complete toric variety of dimension n admitting an additive action
and Σ be the corresponding fan. We begin with some results on the structure of
the set of Demazure roots of the cone Σ following [43], § 5.

Denote primitive vectors on the rays of the fan Σ by pi, where 1 ⩽ i ⩽ m. It
follows from Theorem 4.6 that we can order the vectors pi in such a way that the first
n vectors form a basis of the lattice N and the remaining vectors pj (n < j ⩽ m)
are equal to

∑n
i=1−αjipi for some non-negative integers αji.

Let us denote the dual basis of the basis p1, . . . , pn by p∗1, . . . , p∗n and let Ri = Rρi
.

Lemma 4.19 ([43], Lemma 2). For 1 ⩽ i ⩽ n the set Ri is a subset of the set
−p∗i +

∑n
l=1,l ̸=i Z⩾0p

∗
j , and the vector −p∗i belongs to Ri .

Now we divide the set of Demazure roots R into two classes:

S = R ∩ −R and U = R \S.

Roots in S and U are called semisimple and unipotent, respectively.
Consider the set

Reg(S) = {u ∈ N : ⟨u, e⟩ ≠ 0 ∀ e ∈ S}.

Any element u of Reg(S) divides the set of semisimple roots S into two classes as
follows:

S+
u = {e ∈ S : v = ⟨u, e⟩ > 0} and S−

u = {e ∈ S : v = ⟨u, e⟩ < 0}.

Any element of S+
u is said to be positive and any element of S−

u is said to be
negative.

Lemma 4.20 ([43], Proposition 2). Let XΣ be a complete toric variety admitting
an additive action. Then

1) any element in Rj , j > n, is equal to p∗ij for some 1 ⩽ ij ⩽ n;
2) all unipotent Demazure roots lie in the set

⋃n
i=1 Ri ;

3) there exists a vector u ∈ Reg(S) such that S+
u ⊆

⋃n
i=1 Ri .
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Now we consider a complete toric surface XΣ with fan Σ that admits an additive
action. We assume as before that p1 and p2 form a basis of the lattice N and the
remaining vectors p3, . . . , pm are non-positive integer combinations of p1 and p2. We
say that a fan Σ is wide if there exist indices 2 < i1, i2 ⩽ m such that αi11 > αi12
and αi21 < αi22. One can check that this condition means that R1 = {−p∗1}
and R2 = {−p∗2}.

Now we are ready to formulate the main result.

Theorem 4.21 (see [43], Theorem 3). Let XΣ be a complete toric surface admitting
an additive action. Then there is only one additive action on XΣ if and only if the
fan Σ is wide; otherwise there exist exactly two non-equivalent additive actions, one
of which is normalized and the other is not.

Lemmas 4.19 and 4.20 show that for a wide fan Σ a maximal unipotent subgroup
of the linear algebraic group Aut(XΣ) has dimension 2, and so it is the only can-
didate for a commutative unipotent group acting on XΣ with open orbit. To treat
the case of a non-wide fan, Dzhunusov classified pairs of commuting homogeneous
LNDs on the Cox ring of the variety XΣ and showed that precisely one equivalence
class of such pairs corresponds to non-normalized additive actions on XΣ.

4.6. Uniqueness criterion. This subsection contains a criterion of uniqueness
for an additive action on a complete toric variety of arbitrary dimension proved by
Dzhunusov [42]. This result is also based on Lemmas 4.19 and 4.20. We keep the
notation of the previous subsection.

Theorem 4.22 (see [42], Theorem 4). Let XΣ be a complete toric variety admitting
an additive action. Then any additive action on X is equivalent to the normalized
additive action if and only if for every 1 ⩽ i ⩽ n the set Ri is equal to {−p∗i }.

In the proof Dzhunusov showed that the second claim of the theorem means that
a maximal unipotent subgroup of the linear algebraic group Aut(XΣ) is a commu-
tative group of dimension n, and it is again the only candidate for a commutative
unipotent group acting on XΣ with open orbit. If this condition does not hold,
then an n-tuple of pairwise commuting homogeneous LNDs of the Cox ring of the
variety XΣ was constructed in [42], § 6, and it was proved that this n-tuple defines
an additive action on XΣ that is not equivalent to the normalized one. More pre-
cisely, if the normalized additive action corresponds to the tuple of homogeneous
LNDs

(∂−p∗1 , ∂−p∗2 , ∂−p∗3 , . . . , ∂−p∗n),

then the second tuple is given by

(∂−p∗1 , ∂−p∗2 + ∂−p∗1+dp∗2
, ∂−p∗3 , . . . , ∂−p∗n)

for some positive integer d.

Corollary 4.23. Let XΣ be a complete toric variety admitting an additive action.
If the rank of the divisor class group Cl(XΣ) is 1, then there are at least two
non-equivalent additive actions on XΣ .



636 I. V. Arzhantsev and Yu. I. Zaitseva

Corollary 4.23 covers the case of weighted projective spaces. By Proposition 2
in [11] the weighted projective space P(a0, a1, . . . , an), a0 ⩽ a1 ⩽ · · · ⩽ an, admits
an additive action if and only if a0 = 1. So there are at least two non-equivalent
additive actions on the weighted projective space P(1, a1, . . . , an).

An explicit description of additive actions on weighted projective planes was
given in [5], Proposition 7. It turns out that, as in the case of the projective plane P2,
every weighted projective plane P(1, a1, a2) admits precisely two non-equivalent
additive actions.

5. Further results and questions on equivariant completions

The aim of § 5.1 is to collect recent geometric and classificational results on
additive actions on Fano varieties. We begin with the surface case and list all sin-
gular and generalized del Pezzo surfaces admitting an additive action. In dimension
three we recall a classification, due to Hassett and Tschinkel, of smooth projective
3-folds with irreducible boundary divisor that admit an additive action. The next
step is a classification of smooth Fano 3-folds of Picard number at least 2 that
admit an additive action. There are 17 varieties satisfying all these conditions. In
dimensions starting from four the corresponding classifications are possible only
under a restriction on the index of a Fano variety. These results are due to Fu and
Montero.

In § 5.2 we present a short discussion of so-called Euler-symmetric varieties. Such
a variety is defined by the condition that for a generic point P there is a one-dimen-
sional torus Gm in the automorphism group such that P is an isolated fixed point for
Gm and Gm acts by scalar multiplication on the tangent space at P . It is known that
any Euler-symmetric variety admits an additive action, and there is a conjecture
that this is a way to describe smooth Fano varieties admitting an additive action.

In § 5.3 we formulate several open problems and conjectures on equivariant com-
pletions of affine spaces. They concern all subjects discussed in this paper.

5.1. Classification results on additive actions on Fano varieties. We begin
this subsection with the case of surfaces. In [39] a classification of del Pezzo sur-
faces that are equivariant compactifications of the group G2

a was presented. Recall
that del Pezzo surfaces are defined as smooth projective surfaces X whose anti-
canonical class −KX is ample. A singular del Pezzo surface is a normal singular
projective surface with only ADE-singularities whose anticanonical class is ample.
A generalized del Pezzo surface is either a smooth del Pezzo surface or a minimal
desingularization of a singular del Pezzo surface. The main result of [39] claims
that if S is a (possibly singular or generalized) del Pezzo surface of degree d defined
over a field K of characteristic zero, then S admits an additive action precisely in
the following cases:

(i) S has a non-singular rational K-point and is of the form of P2, P1 × P1, the
Hirzebruch surface F2, or the corresponding singular del Pezzo surface;

(ii) S is of the form of Bl1(P2) or Bl2(P2);
(iii) d = 7 and S is of type A1;
(iv) d = 6 and S is of type A1 (with three lines), 2A1, A2, or A2 +A1;
(v) d = 5 and S is of type A3 or A4;
(vi) d = 4 and S is of type D5.
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More generally, in [40] the authors determined all (possibly singular) del Pezzo
surfaces that are equivariant compactifications of homogeneous spaces of two-
dimensional linear algebraic groups. It is well known that, apart from the torus
G2
m and the vector group G2

a, the only connected two-dimensional linear algebraic
groups are semidirect products Gm ⋌ Ga. The classification result claims that
a del Pezzo surface S of degree d, possibly singular with rational double points, is
an equivariant compactification of some semi-direct product Gm ⋌ Ga if and only
if it has one of the following types:

(i) d ⩾ 7: all types;
(ii) d = 6: types A2 +A1, A2, 2A1, or A1 (with three or four lines);
(iii) d = 5: types A3, A2 +A1, or A2;
(iv) d = 4: types A3 + 2A1, D4, or A3 +A1.
Additionally, precisely the following types are equivariant compactifications of

a homogeneous space for some semi-direct product Gm ⋌ Ga:
(i) d = 5: type A4;
(ii) d = 4: types D5 or A4;
(iii) d = 3: types E6 or A5 +A1.
As we know already, the structure of a torus compactification on a toric variety is

unique up to isomorphism, while even the projective plane P2 admits two different
additive actions. It was proved in [40], Theorem 3.3, that if Gm⋌Ga is not the direct
product Gm×Ga then up to equivalence P2 admits precisely two different structures
of an equivariant compactification of Gm ⋌ Ga. Moreover, it was shown there that
P2 admits infinitely many different structures of an equivariant compactification of
a homogeneous space for each Gm ⋌ Ga.

A characterization of complete Gm-surfaces admitting an additive action was
obtained in [63], Proposition 13.17.

Now we go over from surfaces to dimension 3. In [62] a classification of smooth
projective 3-folds of Picard number 1 admitting an additive action was given.

Theorem 5.1 ([62], Theorem 6.1). Let X be a smooth projective 3-fold admitting
an additive action with irreducible boundary divisor D . Then X is one of the
following:

(i) P3 with D a hyperplane;
(ii) Q3 ⊆ P4 a smooth quadric with D a tangent hyperplane section.

Recall that for a Fano variety X of dimension n, its index iX is the greatest
integer such that−KX = iXH for some divisorH onX. In the proof of Theorem 6.1
in [62] the authors observed that −KX = rD, where r ⩾ 2. Therefore, X is
a rational Fano variety of index r ⩾ 2. They considered the cases r > 2 and r = 2
separately and used Furushima’s classification of non-equivariant compactifications
of affine 3-space.

A classification of all smooth Fano 3-folds of Picard number at least 2 that
admit additive action was presented in [65]. This classification includes 17 varieties.
The authors considered the case of smooth toric Fano 3-folds first. They used
the classification due to Batyrev and Watanabe–Watanabe and applied to it the
criterion of the existence of an additive action on a toric variety from Theorem 4.6.
In this way they obtained 13 smooth toric Fano 3-folds admitting an additive action.
In the non-toric case they went through the classification due to Mori and Mukai
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and checked the existence of an additive action in each case. This analysis resulted
in four smooth non-toric Fano 3-folds with an additive action.

In higher dimensions, a classification of smooth Fano varieties admitting an
additive action is available only for varieties with high index. It is well known
that the index iX of a smooth Fano variety of dimension n does not exceed n+ 1.
A classification of smooth Fano varieties of index iX ⩾ n−2 was obtained by Fujita,
Mella, Mukai, and Wisniewski. On the basis of this classification, a complete list of
smooth Fano varieties of dimension n and index iX ⩾ n− 2 that admit an additive
action was obtained in [54].

We begin with the case of Picard number 1.

Theorem 5.2 ([54], Theorem 1.1). Let X be an n-dimensional smooth projective
variety of Picard number 1 that admits an additive action. Assume that iX ⩾ n−2.
Then X is isomorphic to one of the following varieties:

(1) six homogeneous varieties of algebraic groups: Pn , Qn , Gr(2, 5), Gr(2, 6), S5 ,
and Lag(6);

(2) five non-homogeneous varieties:

(2-a) smooth linear sections of Gr(2, 5) of codimension 1 or 2;
(2-b) P4-general linear sections of S5 of codimension 1, 2, or 3.

Here S5 and Lag(6) are the 10-dimensional spinor variety and the 6-dimensional
Lagrangian Grassmannian, respectively.

A classification of smooth n-dimensional Fano varieties with iX ⩾ n−2 of Picard
number at least 2 that admit an additive action was obtained in [54], § 3. This result
is based on Wisniewski’s classifications of smooth Fano n-dimensional varieties of
index ⩾ (n+ 1)/2 with Picard number at least 2 and of Mukai 4-folds with Picard
number at least 2.

5.2. Euler-symmetric varieties. In this subsection we discuss a general con-
struction of varieties with an additive action due to Fu and Hwang [53]. We work
over the field of complex numbers.

Definition 5.3. Let Z ⊆ P(V ) be a projective variety. For a non-singular point
x ∈ Z a Gm-action on Z coming from a multiplicative subgroup of GL(V ) is said to
be of Euler type at x if x is an isolated fixed point of the restricted Gm-action on Z
and the induced Gm-action on the tangent space Tx(Z) is by scalar multiplication.
A non-singular point x ∈ Z is said to be Euler if there is a Gm-action on Z which
is of Euler type at x. We say that Z ⊆ P(V ) is Euler symmetric if there is an open
dense subset W in Z consisting of Euler points.

Remark 5.4. The condition on the action of Gm on the tangent space Tx(Z) implies
that the Gm-fixed point x is isolated. Indeed, since the action of Gm on P(V ) is
diagonalizable, the point x is contained in a Gm-invariant open affine chart X on Z.
Since x is a non-singular point in X, by Theorem 6.4 in [95] it is also non-singular in
the subvariety of Gm-fixed points XGm and Tx(XGm) = Tx(X)Gm . But the action
of Gm on Tx(X) is by scalar multiplication, so x is an isolated fixed point in X and
therefore in Z.
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It was proved in [53], Proposition 2.3, that for an Euler-symmetric projective
variety Z ⊆ P(V ) the group Autl(Z) ⊆ PGL(V ) of linear automorphisms preserv-
ing Z acts on Z with open orbit. In fact, Theorem 5.5 below provides a more
concrete version of this result.

In [53], Theorem 3.7, the authors showed that Euler-symmetric varieties are clas-
sified in terms of certain algebraic data called symbol systems. Such a description
makes this class of varieties accessible to investigation. Our interest in these vari-
eties is explained by the following result; it opens the way for the systematic study
of equivariant completions of affine space (see, for example, Conjecture 5.20 below).

Theorem 5.5 (see [53], Theorem 3.7, (i)). Every Euler-symmetric variety admits
an additive action.

Let us sketch the proof of Theorem 5.5. Let Z ⊆ P(V ) be an Euler-symmetric
variety of dimension n and x ∈ Z be an Euler point. Choose homogeneous coor-
dinates in P(V ) = Pm in such a way that x has coordinates [1 : 0 : · · · : 0]. Since
the Gm-action of Euler type at x is linear on Pm, we may assume that Gm acts
diagonally in these coordinates.

Let yi = zi/z0, 1 ⩽ i ⩽ m, be coordinates on the affine chart U0 = {z0 ̸= 0}
in Pm. We may assume that the tangent space Tx(Z) is given by the equations
yn+1 = · · · = ym = 0. It follows that the torus Gm acts on y1, . . . , yn by scalar
multiplication.

By the analytic implicit function theorem there exists a neighbourhood of x in
which y1, . . . , yn are coordinates on Z and Z is given by a system of equations

yn+i = hi(y1, . . . , yn), 1 ⩽ i ⩽ k = m− n, (5.1)

with some holomorphic functions hi. Each function hi has a Taylor series in
y1, . . . , yn at x. Denote by h0

1, . . . , h
0
k the sums of the non-zero terms of lowest

degrees d1, . . . , dk in the Taylor series of h1, . . . , hk, respectively. Since the func-
tions yn+1, . . . , ym are homogeneous with respect to the torus Gm, we conclude
that hi = h0

i for all 1 ⩽ i ⩽ k. In particular, the functions hi are homogeneous
polynomials.

Remark 5.6. It was shown in [100], Proposition 5, that the variety Z is toric if and
only if the functions hi are monomials corresponding to lattice points in some very
ample polytope inscribed in a rectangle (see Definition 4.13).

Since Z is an irreducible variety, the intersection Z ∩ U0 is an irreducible affine
variety in U0. On the other hand, the system of equations (5.1) defines an irre-
ducible affine variety Z ′ in U0 that is isomorphic to the affine space An with
coordinates y1, . . . , yn. Since the irreducible varieties Z ′ and Z ∩ U0 coincide in
some neighborhood, they are equal, so Z ∩ U0 is given by the system of equations
yn+i = hi(y1, . . . , yn), 1 ⩽ i ⩽ k. In particular, the variety Z ∩ U0 is isomorphic
to An.

We consider the functions hi as elements of Symdi Tx(Z)∗. Then the space

Fx = K⊕ Tx(Z)∗ ⊕ ⟨h0
1, . . . , h

0
k⟩

is called the fundamental form of Z at the point x. It is a subspace of the direct
sum

⊕
l⩾0 Syml Tx(Z)∗.
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Below we will need the following classical result (see, for instance, [53], Theo-
rem 3.3).

Theorem 5.7 (É. Cartan). Let Z be a projective variety. Then there exists an
open subset W ′ ⊆ Z such that for any point x ∈ W ′ the fundamental form Fx is
a symbol system, that is, for any h ∈ Fx and any v ∈ Tx(Z) the derivation of h by
v belongs to Fx .

Thus, for an Euler-symmetric variety Z we have two open subsets W and W ′

in Z (see Definition 5.3). Such subsets have a non-empty intersection. So we may
assume that x is an Euler point and the fundamental form Fx is a symbol system.

Since Z ∩U0 is isomorphic to An, we have an additive action by parallel transla-
tions on Z ∩ U0. This action can be extended to an action on Pm, provided it can
be extended to an action by affine transformations on U0.

Let us show that any Ga-subgroup H of this action of Gn
a on Z ∩ U0 can be

extended to a Ga-subgroup of affine transformations of U0. Let ∂ be the locally
nilpotent derivation on K[Z∩U0] corresponding to H. Since Fx is a symbol system,
the result of the derivation ∂ applied to hi belongs to Fx as well. On the other
hand, Fx = K ⊕ Tx(Z)∗ ⊕ ⟨h1, . . . , hk⟩ = ⟨1, y1, . . . , ym⟩ since x is an Euler point.
Then for any 1 ⩽ i ⩽ k we have

∂(yn+i) = ∂(hi(y1, . . . , yn)) = ℓi(1, y1, . . . , ym),

where ℓi is a linear form. So the action of s ∈ Ga given by exp s∂ is an action by
affine transformations:

yn+i 7→ yn+i + sℓi,1(1, y1, . . . , ym) +
s2

2
ℓi,2(1, y1, . . . , ym) + · · · ,

where all the ℓi,j are linear forms. Finally, the group H acts on y1, . . . , yn by shifts,
hence also by affine transformations.

We conclude that the additive action on Z ∩ U0 extends to an action on Pm
and so it induces an additive action on Z since Z is the closure of Z ∩ U0. This
completes the proof of Theorem 5.5.

Remark 5.8. There are many arguments showing that Gm- and Ga-actions are of
completely different nature. At the same time one can prove that the existence
of Gm-actions of certain type implies the existence of Ga-actions. For example, if
an affine variety X admits two actions of the torus Gm that do not commute, then
X admits a non-trivial Ga-action (see [47], § 3, and [7], the proof of Theorem 2.1).
Further, it was shown in [4], Theorem 1, that the existence of a Gm-action of
parabolic type on a normal affine variety implies the existence of a non-trivial
Ga-action. Theorem 5.5 can also be regarded as a result of this form.

It turns out that the condition to be Euler symmetric is a criterion of the exis-
tence of an additive action for wide classes of projective varieties. Let us start with
the toric case.

Theorem 5.9 ([100], Theorem 3). Let X be a projective toric variety. Then the
following conditions are equivalent:
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(i) the variety X is Euler symmetric with respect to some embedding into a pro-
jective space;

(ii) the variety X is Euler symmetric with respect to any linearly non-degenerate,
linearly normal embedding into a projective space;

(iii) the variety X admits an additive action.

We sketch the proof of this theorem. In order to obtain the implication (i) ⇒ (ii)
one uses the linearizability of a (very ample) line bundle on a normal variety with
respect to a torus action (see [75], Proposition 2.4). This allows one to extend a Gm-
action of Euler type from X to the ambient projective space. This implication does
not use that X is toric. The implication (ii) ⇒ (i) is trivial.

The implication (i) ⇒ (iii) follows from Theorem 5.5. An alternative proof of
this implication that uses the specifics of the toric case, namely, the description
of orbits of the automorphism group on a complete toric variety due to Bazhov [17]
and Corollary 4.8, was given in [100], Proposition 4.

The proof of the implication (iii) ⇒ (i) is split into three steps. At the first step
it was checked in [100], Proposition 2, that every non-singular T -fixed point x0 on
a projective toric variety X is Euler with respect to some linearly non-degenerate,
linearly normal projective embedding. The second step is the claim that a point
x ∈ X is Euler if and only if x can be moved to a non-singular T -fixed point x0

on X by an automorphism of X (see [100], Proposition 3). Finally, if X admits an
additive action, then X admits an additive action normalized by the acting torus T
(see Theorem 4.11). The open orbit U of this additive action is T -invariant and
isomorphic to an affine space. This implies that U contains a (non-singular) T -fixed
point x0. We know that x0 is Euler with respect to some linearly non-degenerate,
linearly normal projective embedding. Using Proposition 2.4 in [75] again, one can
extend the additive action on X to a Gn

a -action on the ambient projective space.
This implies that all points in U are Euler on X, and so X is Euler-symmetric.

Remark 5.10. The proof of the implication (i)⇒ (ii) shows that for a normal projec-
tive variety Z the property to be Euler-symmetric can be defined in intrinsic terms,
without involving an embedding into a projective space. Namely, for a non-singular
point x ∈ Z a Gm-action on Z is said to be of Euler type at x if x is an isolated
fixed point of this action and the induced Gm-action on the tangent space Tx(Z)
is by scalar multiplication. A non-singular point x ∈ Z is said to be Euler if there is
a Gm-action on Z that is of Euler type at x. We say that a normal projective vari-
ety Z is Euler symmetric if there is an open dense subset of Z consisting of Euler
points.

In this case, for any linearly non-degenerate linearly normal embedding Z ⊆ P(V )
we can extend Gm-actions of Euler type at all Euler points on Z to actions on P(V ),
and so any such embedding is Euler symmetric in the sense of Definition 5.3.

It is an interesting problem to prove Theorem 5.5 without involving an embed-
ding of Z into a projective space. At the moment we do not know such a proof.

Remark 5.11. Shafarevich gave some examples illustrating the properties of the set
of Euler points on a projective toric variety X. In particular, such points may not
form one orbit of the group Aut(X) (see [100], Example 1), and not every point on
a smooth Euler-symmetric projective variety is Euler (see [100], Example 2).
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The next result concerns flag varieties. It was mentioned in [53], Example 3.13;
we give a direct proof below.

Theorem 5.12. A flag variety G/P is Euler symmetric if and only if it admits an
additive action.

Proof. We use the notation and results of § 3.2. We assume that G is a connected
simple linear algebraic group, P is a maximal parabolic subgroup of G correspond-
ing to a simple root αi ∈ ∆, and G is the identity component of the automorphism
group Aut(G/P ). In view of Theorem 3.6 it suffices to prove that G/P is Euler
symmetric if and only if the unipotent radical P−u is commutative. The latter is
equivalent to the commutativity of the tangent algebra p−u .

We know that p−u =
⊕

α∈Φ−i
gα, where Φ−i is the set of negative roots whose

decompositions into linear combinations of simple roots contain the root αi. Since
the variety G/P is homogeneous, it is Euler symmetric if and only if there is
a Gm-action of Euler type at the point x = eP . The subgroup Gm is contained
in P , and we may assume that, up to conjugation, Gm is a subgroup of the maximal
torus T .

Since the action of T on G by conjugation descends to G/P as the action by left
translations, its differential acts on the tangent space Tx(G/P ) = p−u by endomor-
phisms of the Lie algebra structure.

If all operators of scalar multiplication preserve the Lie bracket, then the Lie
bracket is zero. Conversely, assume that the Lie algebra p−u is commutative. Then
any root in Φ−i contains αi with coefficient −1; otherwise it is a sum of two roots
from Φ−i , and then p−u is not commutative. In this case the Gm-subgroup in T given
by the equations αj(t) = 1 for all αj ∈ ∆, j ̸= i, acts on p−u by scalar multiplication,
and so G/P is Euler symmetric.

On the other hand, if a projective hypersurface X admits an additive action,
then X need not be Euler symmetric. Indeed, it was proved in [52], Example 3.14,
that a non-degenerate hypersurface is Euler symmetric if and only if it is a smooth
quadric. By Proposition 2.4 these are the only smooth hypersurfaces admitting
an additive action. However, we have non-degenerate singular hypersurfaces admit-
ting additive actions (see Theorem 2.29, for example).

At the same time, in [99] one can find examples of additive actions on degenerate
toric quadrics. By Theorem 5.9 such quadrics are Euler symmetric.

The question whether Euler-symmetric varieties are complete intersections in
projective spaces is considered in a recent preprint [85].

We finish this subsection with further examples of Euler-symmetric varieties.
A smooth Euler-symmetric projective surface is the result of successive blow-ups
of the projective plane P2 or a Hirzebruch surface Fn along fixed points of the
G2
a-action (see [53], Example 3.12). In higher dimensions, it was shown in [53],

Example 2.2, that scalar multiplications of An can be extended to Gm-actions of
Euler type on the blow-up of a smooth subvariety in Pn \ An. This proves that
such blow-ups are Euler symmetric (cf. Proposition 1.51).

Finally, in [52] a complete classification of Euler-symmetric varieties of rank 2 was
obtained; the rank was defined there in terms of fundamental forms. Such varieties
are also called quadratically symmetric. Fu and Hwang observed that if one consid-
ers Euler-symmetric varieties as quasi-homogeneous generalizations of Hermitian



Equivariant completions of affine spaces 643

symmetric spaces, then quadratically symmetric varieties are quasi-homogeneous
generalizations of Hermitian symmetric spaces of rank 2.

5.3. Open problems. In this subsection we formulate some open problems and
conjectures on additive actions. We hope that they will stimulate further progress
in this area.

It is well known that a complete normal algebraic variety X is toric if and only
if the Cox ring R(X) is a polynomial ring.

Problem 5.13. Characterize complete normal algebraic varieties admitting an
additive action in terms of their Cox rings.

Applying results of § 4 it is easy to construct two complete toric varieties XΣ1

and XΣ2 such that the fans Σ1 and Σ2 have the same number of rays, and XΣ1

admits an additive action, but XΣ2 does not. This shows that the existence of
an additive action cannot be characterized in terms of R(X) as an abstract ring.
But the ring R(X) is graded by the group Cl(X), and we believe that there is
a characterization in terms of this grading.

If we are going to study additive actions via lifting the action to the total coor-
dinate space, the solution of the following problem may be very helpful.

Problem 5.14. Fix positive integers r and n, and let d = r+n. Describe all affine
factorial varieties X of dimension d equipped with an effective action of the group
Gr
m ×Gn

a with open orbit.

The case n = 0 corresponds to affine factorial toric varieties that are known to
be direct products of a torus and an affine space. The case n = 1 also corresponds
to affine factorial toric varieties: see [8]. In turn, for r = 0 X is an affine space
with a transitive action of the group Gn

a . All other cases remain open.
As we know from Corollary 1.49, the projective space Pn with n ⩾ 6 admits

infinitely many non-equivalent additive actions. At the same time the results on the
uniqueness of additive actions on smooth projective quadrics and, more generally,
on flag varieties suggest that the situation with projective spaces can be exceptional
in a certain sense. This motivates the following problem.

Problem 5.15. Describe all complete toric varieties that admit infinitely many
additive actions.

It is natural to ask for a description of all additive action on concrete complete
toric varieties.

Problem 5.16. Describe all additive actions on the weighted projective space
P(1, a1, . . . , an).

The case of weighted projective planes suggests an idea that the number of
additive actions on P(1, a1, . . . , an) depends only on n, rather than on the values
of a1, . . . , an. One can expect that there is a description of additive actions on
P(1, a1, . . . , an) in terms of some ‘weighted Hassett–Tschinkel correspondence’.
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In Proposition 3.4 we observed a connection between additive actions on a given
complete varietyX and maximal commutative unipotent subgroups in the automor-
phism group Aut(X). It is interesting to make this correspondence more precise.

Problem 5.17. Is it true that any maximal commutative unipotent subgroup of
dimension n in the group GLn+1(K) acts on the projective space Pn with open
orbit?

Let us show that in the case of the action of the group SOn+2(K) on the quadric
Qn ⊆ Pn+1 the same question has a negative answer. By Theorem 2.25 there is just
one conjugacy class of maximal commutative unipotent subgroups of dimension n in
SOn+2(K) that acts on the quadric Qn with open orbit. At the same time, in [103],
§ 6, an example of a maximal commutative unipotent subgroup of dimension n from
another conjugacy class in SOn+2(K) was presented. Such a subgroup corresponds
to a so-called free-rowed maximal commutative nilpotent subalgebra of the Lie
algebra son+2(K) for n ⩾ 6 (see [67] for details).

Problem 5.18. Let G be a connected linear algebraic group and H be a commuta-
tive unipotent subgroup of G that is maximal in the class of commutative subgroups
of G. Does there exist a G-variety X such that the induced action of H on X has
an open orbit?

The next conjecture is about additive actions on projective hypersurfaces. It can
be a good complement to the result of Theorem 2.32.

Conjecture 5.19. Let X ⊆ Pn+1 be a degenerate hypersurface admitting an
induced additive action. Then there are at least two induced additive actions on X
up to equivalence.

Finally, we give the following conjectural characterization of a class of varieties
with an additive action. In [53], Conjecture 5.1, the following was formulated.

Conjecture 5.20. Let X be a smooth Fano variety of Picard number 1 that is
an equivariant compactification of a vector group. Then X can be realized as an
Euler-symmetric projective variety under a suitable projective embedding.

Partial positive results on this conjecture can be found in [53], § 5.

The authors are grateful to Anthony Iarrobino and Joachim Jelisiejew for their
useful comments and references to works on local Artinian algebras. Discussions
with Anton Shafarevich helped us a lot to understand the results of Fu and Hwang
on Euler-symmetric varieties. Special thanks are due to the referees for many
valuable suggestions and corrections, which helped us to improve the text.
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France, Paris 2002, pp. ix, 323–344, Exp. No. 891.

[94] B. Poonen, “Isomorphism types of commutative algebras of finite rank over an
algebraically closed field”, Computational arithmetic geometry, Contemp. Math.,
vol. 463, Amer. Math. Soc., Providence, RI 2008, pp. 111–120.
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