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Abstract: We numerically investigate pairwise collisions of solitary wave structures on the surface of
deep water—breathers. These breathers are spatially localised coherent groups of surface gravity
waves which propagate so that their envelopes are stable and demonstrate weak oscillations. We
perform numerical simulations of breather mutual collisions by using fully nonlinear equations for
the potential flow of ideal incompressible fluid with a free surface written in conformal variables.
The breather collisions are inelastic. However, the breathers can still propagate as stable localised
wave groups after the interaction. To generate initial conditions in the form of separate breathers
we use the reduced model—the Zakharov equation. We present an explicit expression for the
four-wave interaction coefficient and third order accuracy formulas to recover physical variables
in the Zakharov model. The suggested procedure allows the generation of breathers of controlled
phase which propagate stably in the fully nonlinear model, demonstrating only minor radiation of
incoherent waves. We perform a detailed study of breather collision dynamics depending on their
relative phase. In 2018 Kachulin and Gelash predicted new effects of breather interactions using
the Dyachenko–Zakharov equation. Here we show that all these effects can be observed in the fully
nonlinear model. Namely, we report that the relative phase controls the process of energy exchange
between breathers, level of energy loses, and space positions of breathers after the collision.

Keywords: breathers; solitons; freak waves; nonlinear waves; surface gravity waves; Dyachenko
equations; Zakharov equation

1. Introduction

Solitary wave groups have been known as solutions of different weakly nonlinear models of water
surface dynamics for a long time. Among them the most important are the exact soliton solutions
of the Korteweg–de Vries (KdV) equation and the focusing one-dimensional nonlinear Schrödinger
equation (NLSE), which describe propagation of localised wave groups on the surface of shallow and
deep water correspondingly. To a certain wave steepness, these solutions can be reproduced in fully
nonlinear models and experiments. For example, solitons of the NLSE demonstrate stable propagation
in numerical simulations of the fully nonlinear equations describing ideal deep water [1,2] and in
experimental water wave tanks [3]. Here we study propagation and interactions of solitary wave
groups in framework of the well-known fully nonlinear system of equations describing 1D waves
of the surface of ideal deep water: the Laplace equation for hydrodynamic velocity potential of 2D
water and kinematic and dynamic boundary conditions at water free surface—see Equation (1) in
the next section. For the sake of simplicity, we refer this system of equations just as fully nonlinear
equations/model.

The existence of strongly nonlinear (i.e., having high steepness) solitary type solutions of the fully
nonlinear equations—breathers—was demonstrated numerically by Dyachenko and Zakharov [4].
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Later, propagation and interactions of these breathers were studied numerically and in water tank
experiments by Slunyaev and coauthors [5–7]. In these works the strongly nonlinear breathers were
generated by using the following methodology. At the first step exact soliton solution of the NLSE
having high steepness is used as initial condition for numerical simulations in the framework of the
fully nonlinear model. The soliton propagates and radiates incoherent waves which are absorbed
at the boundary of simulation region by a specially design damping. The radiation decreases in
time so that, after certain propagation soliton transforms to a stable wave group having weakly
oscillating envelope—breather.

In the present work we improve method of numerical finding of the strongly nonlinear breathers
in the fully nonlinear model. More precisely, we use the well known reduced Hamiltonian model for
deep water surface waves—the Zakharov equation [8], see also [9,10], written in canonical variables.
The range of applicability of the Zakharov equation is far beyond the NLSE model, though solitary
type solutions no longer can be found analytically. We find breather solutions of the Zakharov equation
by using the numerical Petviashvili method [11]. Then we use the transformation from the canonical
variables to the physical one (free surface elevation and velocity potential on it) with third order of
accuracy by wave steepness. All these steps allows us to generate breathers which stably propagate in
the fully nonlinear model demonstrating only minor radiation.

Solitary type solutions of the high order and fully nonlinear models have fundamental difference
when compared to exact soliton solutions of integrable equations, such as the NLSE. In the latter case,
solitons interact elastically and after collision completely restore their initial shape. In the other case,
solitary wave groups interact inelastically and radiate incoherent waves during collision. After the
interaction they can still propagate in the form of stable localised wave groups.

The main aim of this work is to verify in the fully nonlinear model the effects of breather
interactions predicted recently by Kachulin and Gelash [12] by using a modification of the Zakharov
model—the so called super compact Dyachenko–Zakharov equation (see [13–15] and also [16–18]). The
work [12] focuses on how the breather interaction dynamics depends on their relative phase. In addition
to the previously known data about interactions of strongly nonlinear breathers [7], the work [12]
predicts that the relative phase controls the process of energy exchange between breathers, level of
energy loses and space positions of breathers after the collision. More precisely, the energy exchange
between breathers results in increase or decrease of their amplitudes depending on the relative phase.
The level of energy loses increases with certain synchronisation of the breather phase. Most interesting,
the space position of a breather after the collision can be either further or nearer to the interaction
area, than where it would have been if the breather had been traveling alone. Note, that both terms
“solitons” and “breathers” are used in the literature to describe solitary wave group solutions of the
high order and fully nonlinear models. We use the term “breather” following the works [4,19].

In this work we observe and study in details all these effects using the fully nonlinear model
which indicates, that our theoretical picture of the interactions of strongly nonlinear coherent structures
is universal and can be observed in laboratory experiments.

2. Theoretical Formalism

2.1. Fully Nonlinear Equations for Ideal Deep Fluid

The fully nonlinear 2D equations describing gravity waves on the surface of ideal deep fluid are
well know and can be written as:

φxx + φyy = 0 (φy → 0, y→ −∞),
ηt + ηxφx = φy |y=η ,

φt +
1
2
(φ2

x + φ2
y) + gη = 0 |y=η . (1)
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Here x and y are the horizontal and vertical coordinates, t is time, g is the free-fall acceleration,
η(x, t) is the shape of the surface, φ(x, y, t) is the hydrodynamic potential inside the fluid. The first
equation in (1) is the Laplace equation for the hydrodynamic potential, while the second and third
equations are kinematic and dynamic conditions at the fluid surface.

Following the work [20] we perform conformal mapping of the free surface liquid domain
z = x + iy confined by a free boundary y = η(x, t) onto a half-plane of the new complex variable
w = u + iv having a fixed boundary v 6 0. This transformation can be written in the following form:

y = Ĥ(x(u, t)− u) , x(u, t) = u− Ĥy(u, t) . (2)

Then we use the following variables suggested by Dyachenko [21]:

R =
1

zw
, V = iΦz = i

Φw

zw
. (3)

We define the functions U and B using the Hilbert operator and the projection operator P̂ = 1
2(1 + iĤ) as:

U = P̂(VR∗ + V∗R) , B = P̂(VV∗) .

Here and below the asterisks stands for complex conjugation. In the new variables (3) the Equation (1)
have the following form:

Rt = i(URw − RUw),
Vt = i(UVw − RBw) + g(R− 1), (4)

with the boundary conditions:

R→ 1, V → 0, at v→ −∞. (5)

2.2. Zakharov Equation

Gravity waves on the surface of ideal deep fluid can be also studied using reduced nonlinear
models favourable for both numerical simulations and analytical analysis. As well known,
one-dimensional potential flow of an ideal fluid of infinite depth in the presence of gravity is a
Hamiltonian system. As was shown by Zakharov [8], the surface elevation η(x, t) and the velocity
potential at the surface ψ(x, t) = φ(x, y, t)|y=η of the fluid are canonically conjugated variables and
satisfy the following Hamilton’s equations:

∂ψ

∂t
= − δH

δη
,

∂η

∂t
=

δH
δψ

. (6)

Here H is the Hamiltonian, i.e., total energy of the fluid:

H =
1
2

∫
dx
∫ η

−∞
|∇φ|2dy +

g
2

∫
η2dx. (7)

The reduced Hamiltonian equations of the fluid motion can be derived from (6) in the assumption
of small wave steepness. In this case the Hamiltonian can be represented as the infinite series where
the first order terms are:

H =
1
2

∫
(gη2 + ψk̂ψ)dx− 1

2

∫
{(k̂ψ)2 − (ψx)

2}ηdx +
1
2

∫
{ψxxη2k̂ψ + ψk̂(ηk̂(ηk̂ψ))}dx. (8)

Here the operator k̂ means multiplication by |k| in k-space.
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The equations of motion (6) with the truncated Hamiltonian (8) can be used for efficient numerical
simulations of water surface dynamics [22], meanwhile for purposes of analytical analysis they are not
optimal. In this work we use the so called Zakharov equation, which can be obtained from (6) after
appropriate canonical transformation to the variables bk—see the work [14] and the monograph [23]
for all details.

First we introduce the so called normal variables ak, see [8]:

ηk =

√
ωk
2g

(ak + a∗−k) , ψk = −i
√

g
2ωk

(ak − a∗−k) .

Here, ωk =
√

g|k| is the dispersion law for the gravity waves, and the Fourier transformations
ψ(x)→ ψk, η(x)→ ηk are defined as follows:

fk =
1√
2π

∫
f (x)e−ikxdx , f (x) =

1√
2π

∫
fke+ikxdk.

In the new variables ak, the Hamiltonian includes quadratic, cubic, and quartic terms:

H(a, a∗) = H2(a, a∗) + H3(a, a∗) + H4(a, a∗). (9)

The exact expressions for the Hamiltonian in terms of the variables ak can be found in the
references [24,25]. The Hamiltonian (9) contains nonresonant three-wave and four-wave interactions.
Then, following [23], we perform additional canonical transformation ak → bk , which aims at
eliminating all non-resonant cubic and quartic terms in the new Hamiltonian:

ak = bk +
∫ [

2Ṽk1
kk2

bk1 b∗k2
δk1−k−k2 − Ṽk

k1k2
bk1 bk2 δk−k1−k2 − Ũkk1k2 b∗k1

b∗k2
δk+k1+k2

]
dk1dk2+

+
∫ [

Ak
k1k2k3

bk1 bk2 bk3 + Akk1
k2k3

b∗k1
bk2 bk3 + Akk1k2

k3
b∗k1

b∗k2
bk3 + Akk1k2k3 b∗k1

b∗k2
b∗k3

]
dk1dk2dk3. (10)

The exact expressions for the coefficients of the transformation (10) can be found in [25]. After
that we can write Zakharov equation in the variables bk in the following form:

∂bk
∂t

+ i
δH
δb∗k

= 0 , (11)

where the Hamiltonian is:

H =
∫

ωkbkb∗kdk +
1
2

∫
Tk2k3

kk1
b∗k b∗k1

bk2 bk3 δk+k1−k2−k3 dkdk1dk2dk3 . (12)

The Equation (11) is a standard form of the Hamiltonian equation of motion written in normal variables.
The resulting Hamiltonian (12) consist of only diagonal and resonance four-wave interaction terms.

We find that in the case of k-resonance: k + k1 = k2 + k3 (i.e., when the argument of delta function
in (12) is zero), the four-wave interaction coefficient Tk2k3

kk1
has the following form:

Tkk1
k2k3

=


|kk1k2k3|1/4

4π

[
kk1√
|kk1|

+ k2k3√
|k2k3|

]
Dkk1

k2k3
if all k, k1, k2, k3 ≶ 0,

|kk1k2k3|1/4

8π

[
kk3−|kk3|√
|kk3|

+ k1k2−|k1k2|√
|k1k2|

+ k1k3−|k1k3|√
|k1k3|

+ kk2−|kk2|√
|kk2|

]
Dkk1

k2k3
if kk1 < 0 and k2k3 < 0,

0 if kk1k2k3 < 0,

(13)
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where the expression k, k1, k2, k3 ≶ 0 means that in this case each of the wave numbers is positive or
each of the wave numbers is negative. The coefficient Dkk1

k2k3
is:

Dkk1
k2k3

=

{
min(|k|, |k1|, |k2|, |k3|) kk1k2k3 > 0,

0 kk1k2k3 < 0.
(14)

The term min(|k|, |k1|, |k2|, |k3|) means the minimum of the four values: |k|, |k1|, |k2|, |k3|. In the case
of k-resonance this term takes the form:

min(|k|, |k1|, |k2|, |k3|) =
1
2
(|k|+ |k1|+ |k2|+ |k3|)−

1
4
(|k + k1|+ |k2 + k3|)−

− 1
4
(|k− k2|+ |k− k3|+ |k1 − k2|+ |k1 − k3|)

As one can see from Equation (13), when the product kk1k2k3 < 0, the coefficient of four-wave
interactions vanishes: Tk2k3

kk1
= 0. It means that a system initially consisting of unidirectional waves (in

variables bk) retains this property during its evolution. In this case it is possible to further simplify
the Hamiltonian and the equation of motion, that can be done by applying an additional canonical
transformation which replaces the initial four-wave interaction coefficient Tk2k3

kk1
by the more simple

one T̃k2k3
kk1

keeping its diagonal part the same. It allows to derive Zakharov equation in the so called
compact [9] and super compact [13,14] forms. However, as we just mentioned, it demands one additional
complex transformation of the variables, that is not convenient for the purpose of this work. Namely,
below we use the Zakharov model to generate breather solutions of strong nonlinearity in variables bk
and then transform them to the physical variables η and φ with third order accuracy. The additional
canonical transformation would make this procedure cumbersome, that is why here we use the
Zakharov equation which corresponds to the original coefficient of four-wave interactions (13).

Now if we consider only the waves moving in one direction, i.e., k, k1, k2, k3 > 0, then the
four-wave interaction coefficient takes the form:

Tkk1
k2k3

=
(kk1k2k3)

1
4

16π

[√
kk1 +

√
k2k3

]
×

× [(k + k1 + k2 + k3)− (|k− k2|+ |k− k3|+ |k1 − k2|+ |k1 − k3|)] . (15)

After the following simple change of variable:

ck = k
1
4 θkbk , (16)

made by using the Heaviside step function θk, we obtain the Zakharov equation, which in x-space has
the following form:

iċ = k̂
1
2 P+ δH

δc∗
=

= ω̂c− 1
2

∂

∂x

[
c

∂c
∂x

(
k̂

1
2 c∗
)]
− ik̂

1
2

2

[
c∗
(

k̂
1
2 c
)(

k̂
1
2

∂c
∂x

)]
+

+
i
2

∂

∂x

[
k̂
[
c
(

k̂
1
2 c∗
)]

c
]
− k̂

1
2

2

[(
k̂

1
2 c
)

k̂
[(

k̂
1
2 c
)

c∗
]]

, (17)

with the Hamiltonian
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H =
∫ √

g|c|2dx+

+ i
8

∫ [ (
k̂

1
2 ∂c∗

∂x

) (
k̂

1
2 c∗
)

c2 + ∂c∗
∂x c∗

(
k̂

1
2 c
)2
−
(

k̂
1
2 ∂c

∂x

) (
k̂

1
2 c
)
(c∗)2 − ∂c

∂x c
(

k̂
1
2 c∗
)2
]

dx−

− 1
4

∫ [
k̂
[(

k̂
1
2 c∗
)

c
] (

k̂
1
2 c∗
)

c + k̂
[(

k̂
1
2 c
)

c∗
] (

k̂
1
2 c
)

c∗
]

dx.

(18)

The transformation of a solution of the Zakharov equation to physical variables η(x, t) and
φ(x, z, t) is not trivial and can be written as power series of wave steepness:

ηk = η(1) + η(2) + η(3), ψk = ψ(1) + ψ(2) + ψ(3). (19)

The first and second order terms in these series are well known, see e.g., [14]. In the x-space the
first order of the transformation can be written as:

η(1)(x) =
1
√

2g
1
4
(c(x) + c(x)∗), ψ(1)(x) = −i

g
1
4

√
2k̂

1
2
(c(x)− c(x)∗). (20)

Here the operator k̂α is multiplication by |k|α in Fourier space. The second order of the transformation
in the x-space is:

η(2)(x) =
k̂

4
√

g
[c(x)− c∗(x)]2 ,

ψ(2)(x) =
i
2

[
c∗(x)k̂

1
2 c∗(x)− c(x)k̂

1
2 c(x)

]
+

1
2

Ĥ
[
c(x)k̂

1
2 c∗(x) + c∗(x)k̂

1
2 c(x)

]
. (21)

Note that the eigenvalue of the Hilbert transform operator Ĥ is i · sign(k).
Here we focus on detailed investigation of the breather dynamics in the fully nonlinear equations

and we need to restore shape of the breather in the physical variables as much precise as possible.
For this purpose we derive the third order accuracy term of the transformation to physical variables:

η
(3)
k =

√
ωk
2g

{∫ ωk
24πg k

5
4 ck1 ck2 ck3 δk−k1−k2−k3 dk1dk2dk3 −

−
∫[ ωk

8πg k
5
4 + k

1
4

8πg min(k, k1, k2, k3)
√

kk1−
√

k2k3√
kk1+
√

k2k3

(
ωk−ωk1−ωk2−ωk3

)]
×

× c∗k1
ck2 ck3 δk+k1−k2−k3 dk1dk2dk3 +

∫ ωk1
+ωk2

+ωk3
8πg k

5
4 c∗k1

c∗k2
ck3 δk+k1+k2−k3 dk1dk2dk3

}
,

ψ
(3)
k = −i

√
g

2ωk

{∫ ωk1
+ωk2

+ωk3
24πg k

5
4 ck1 ck2 ck3 δk−k1−k2−k3 dk1dk2dk3 −

−
∫[ωk1

+ωk2
+ωk3

8πg k
5
4− k

1
4

8πg min(k, k1, k2, k3)
√

kk1−
√

k2k3√
kk1+
√

k2k3

(
ωk−ωk1−ωk2−ωk3

)]
×

× c∗k1
ck2 ck3 δk+k1−k2−k3 dk1dk2dk3 +

∫ ωk
8πg k

5
4 c∗k1

c∗k2
ck3 δk+k1+k2−k3 dk1dk2dk3

}
.

(22)

Unfortunately, presence of the term
√

kk1−
√

k2k3√
kk1+

√
k2k3

does not allow to write the expression (22) in the
x-space similar to (20) and (21). Moreover, here we present the third order term (22) only for the case of
unidirectional waves: k, k1, k2, k3 > 0. Since the functions η(x) and ψ(x) are real valued, their Fourier
transforms obey the following relations:

η−k = η∗k , ψ−k = ψ∗k . (23)

The expression (22) can be easily generalised to the case k < 0 using the Equation (23).
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3. Numerical Methods

3.1. Breather Solution of the Zakharov Equation

The Equation (17) has a breather solution:

c(x, t) = cbr(x−Vt)ei(k̃x−ω̃t), (24)

where k̃ is a carrier wavenumber, V = 1
2

√
g/k̃ is a group velocity in the laboratory frame of reference

and ω̃ is a nonlinear frequency close to
√

gk̃. In Fourier space this solution has the following form:

ck(t) =
1√
2π

∫
cbr(x−Vt)ei(k̃−k)xe−iω̃tdx = (25)

=
1√
2π

∫
cbr(ξ)ei(k̃−k)ξ e−i(ω̃−k̃V+kV)tdξ = ϕke−i(Ω+Vk)t,

where
ϕk =

1√
2π

∫
cbr(ξ)ei(k̃−k)ξ dξ. (26)

In the Formula (25) instead of ω̃ we use the new frequency parameter Ω:

Ω = ω̃− k̃V = ω̃−

√
gk̃

2
. (27)

Breather solutions can be found numerically by the Petviashvili method [11]. Namely, the solution ϕk
can be found numerically by the iterations:

ϕ
(n+1)
k =

NL(n)
k

Mk

 ∑k′(ϕ
(n)
k′ NL(n)

k′ )

∑k′(ϕ
(n)
k′ Mk′ϕ

(n)
k′ )

− 3
2

. (28)

Here ϕ
(n)
k is the breather solution ϕk on the n-th iteration and

Mk = Ω + Vk−ωk. (29)

The symbol NL(n) denotes the nonlinear part of the Equation (17) on the n-th iteration in the x-space:

NL(n) = −1
2

∂

∂x

[
ϕ(n) ∂ϕ(n)

∂x

(
k̂

1
2 ϕ∗(n)

)]
− ik̂

1
2

2

[
ϕ∗(n)

(
k̂

1
2 ϕ(n)

)(
k̂

1
2

∂ϕ(n)

∂x

)]
+

+
i
2

∂

∂x

[
k̂
[

ϕ(n)
(

k̂
1
2 ϕ∗(n)

)]
ϕ(n)

]
− k̂

1
2

2

[(
k̂

1
2 ϕ(n)

)
k̂
[(

k̂
1
2 ϕ(n)

)
ϕ∗(n)

]]
, (30)

and NL(n)
k is the discrete Fourier transform of NL(n). The breather solution is determined by two

independent parameters: the group velocity V and the frequency Ω. The value of the first parameter

V = 1
2

√
g/k̃ defines the carrier wave number k̃ (and the carrier wave length λ = 2π/k̃) of the solitary

group. The second parameter Ω has the value close to 1
2

√
gk̃ (or g/4V, see Formula (27)) and implicitly

defines shape and amplitude of the breather.
The method of Petviashvili is one of the most well known and efficient numerical approaches

developed to find solitary wave solutions of nonlinear wave equations. Proposed initially for the
scalar equations with power-law nonlinearity by Petviashvili in 1976 [11], this approach was later
generalised to vector equations with arbitrary form of nonlinear term [26]. Simple time dependence of
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the solitary solution allows to find an envelope of the wave group by fixed-point iterations approach.
The key improvement of the Petviashvili method in comparison to standard fixed-point iterations
scheme is introducing a stabilizing factor providing convergence of the iteration process. The right
hand term of the iteration Equation (28) consists of the standard fixed-point iteration term NL(n)

k /Mk
and the stabilizing factor (the term in big square brackets). The latter is derived using the general
expression suggested by Petviashvili, applied for the particular case of the Equation (17). We refer to
the monograph [27] for more general information about the Petviashvili approach, and to our previous
works [12,14] for more details about its application to the Zakharov equation.

The breather amplitude c0 is not an independent parameter of the solution. To find the breather
with the given velocity V and amplitude c0 we vary the parameter Ω (27). The breather solutions
found by Petviashvili method (28) are determined up to an arbitrary phase factor eiφ.

3.2. Numerical Integration of the Fully Nonlinear Equations

We use the pseudo-spectral Fourier method and the fourth-order Runge–Kutta method for
numerical simulation of the exact nonlinear equations in conformal variables (4). We generate initial
conditions (functions R and V) for simulations in the Equation (4) by the known functions η(x) and
ψ(x) using the algorithm described below.

The conformal mapping described in the Section 2.1 satisfies the following equation:

y(u) = η(u− Ĥy(u)), (31)

which can be solved by the iterative procedure:

yn+1(u) = η(u− Ĥyn(u)). (32)

Here the index n stands for the step of the iteration. After the conformal mapping is found by the
use of (32), we compute the function R simply using its definition (3). In order to find the function V
also by its definition (3) we need to know the potential Φ(w) in conformal variables. The potential
Ψ(u) in conformal variables can be found using the Fourier transform and the known spectrum of the
potential on the free surface ψk as:

Ψ(u) =
N/2

∑
k=−N/2+1

ψkei 2π
L kx(u), (33)

where N is the number of grid points.

4. Results of Numerical Simulations

4.1. Generation of Stable Breather in the Fully Nonlinear Model

In this section we show how we generate breathers in the fully nonlinear model (1) and
demonstrate the advantages of using the third-order transformation (22) in comparison with the
first and second order transformations (20) and (21).

First we find numerically an exact breather solution of the Zakharov Equation (17) as described in
the Section 3.1. Here and below we use the characteristic wavelength λ0 = 100 meters and the length
of computational domain L = 100λ0 = 10 km, so the characteristic wavenumber k0 = 2π

100 and the
characteristic wave period T0 = 2π√

gk0
≈ 8 s.

In this section we first choose the amplitude c0 = 4 and the velocity V = V0 = ∂ω
∂k |k0 =

ωk0
2k0
≈

6.248. The corresponding steepness of the generated breather µ ≈ 0.25. We determine steepness µ as
the maximum of derivative of the surface elevation:

µ = max|ηx|. (34)
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Then we restore the physical wave fields η(x) and ψ(x) using Formulas (20)–(22). We use the
wave fields η(x) and ψ(x) restored with first (i.e., η = η(1) and ψ = ψ(1)), second (η = η(1) + η(2) and
ψ = ψ(1) + ψ(2)), and third order accuracy (η = η(1) + η(2) + η(3) and ψ = ψ(1) + ψ(2) + ψ(3)) as initial
conditions for numerical simulation in the framework of the fully nonlinear equations as described in
the Section 3.2. In the Figures 1–3 we show the evolution of the obtained breather in the fully nonlinear
model for all three variants of initial conditions. Note that in the whole paper we consider breathers in
the frame moving with the velocity V0 = ∂ω

∂k |k0 =
ωk0
2k0

.
When an initial condition is restored only with the first order accuracy, the corresponding breather

radiates incoherent waves of significant amplitude during initial stage of its propagation—see Figure 1.
The radiation of incoherent waves changes shape of the breather and makes parameters of the final
stable solitary wave group hardly controllable. In particular, it is difficult to generate stable breather
with certain phase, what is important for our work. That is why here we suggest to use the high order
accuracy transformations (21) and (22) when generating an initial condition.
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Figure 1. Propagation of single breather with the wave steepness µ ≈ 0.25 in the fully nonlinear model.
The initial condition in physical variables was restored with the first order accuracy from variables of
the Zakharov equation. (Top) row: the surface elevation η(x) at different subsequent moments of time.
Panel (a) shows the initial surface profile (at t = 0); panel (b) corresponds to t = 1067 s ≈ 133.3T0;
thepanel (c) corresponds to t = 2134 s ≈ 266.6T0; and thepanel (d) corresponds to t = 3201 s ≈ 400T0

(Bottom) row: zoom of the top row pictures.

In Figures 2 and 3 we show evolution of the breather restored with the second and the third order
accuracy correspondingly. The characteristic amplitude of the radiating waves now significantly less
that in the case of the first order transformation and shape of the breather almost does not change in
time (except evolution of the breather phase, of course). In the next sections we will study the cases of
less steeper breathers, so amplitude of the radiated incoherent waves even smaller that we observe in
Figure 3. Thereby here we do not need to use damping of the radiation, as was done in the previous
works [4–7], where single soliton solutions of the NLSE were used as initial conditions.
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Figure 2. Propagation of single breather with the wave steepness µ ≈ 0.25 in the fully nonlinear model.
The initial condition in physical variables was restored with the second order accuracy from variables
of the Zakharov equation. (Top) row: the surface elevation η(x) at different subsequent moments of
time. Panel (a) shows the initial surface profile (at t = 0); panel (b) corresponds to t = 1067 s ≈ 133.3T0;
panel (c) corresponds to t = 2134 s ≈ 266.6T0; and panel (d) corresponds to t = 3201 s ≈ 400T0

(Bottom) row: zoom of the top row pictures.
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Figure 3. Propagation of single breather with the wave steepness µ ≈ 0.25 in the fully nonlinear model.
The initial condition in physical variables was restored with the third order accuracy from variables of
the Zakharov equation. (Top) row: the surface elevation η(x) at different subsequent moments of time.
Panel (a) shows the initial surface profile (at t = 0); panel (b) corresponds to t = 1067 s ≈ 133.3T0;
panel (c) corresponds to t = 2134 s ≈ 266.6T0; and panel (d) corresponds to t = 3201 s ≈ 400T0

(Bottom) row: zoom of the top row pictures.

The phase of the fully nonlinear breather evolves, during its propagation, similar to the phase of
breather in Zakharov model (24)—see the changes in the surface elevation with time in Figures 1–3.
It can be also seen as oscillations in time of the maximum value of surface elevation ηmax of the
breathers wave field shown in Figure 4a,c.

In contrast to the Zakharov model where the envelope of breather (i.e., |cbr(x)|) does not change in
time at all, the amplitude of the breather envelope in the fully nonlinear model weakly oscillate [4]. Here
we do not reconstruct the envelope of the surface elevation of the breather. However, the oscillations
of the envelope can be seen from large time behaviour of ηmax(t)—see Figure 4b,d. The amplitude
and characteristic frequency of these oscillations increase when we increase wave steepness of the
breather—see again Figure 4b,d.

We do not observe significant changes of character of the surface elevation oscillations at the long
time evolution, that is in agreement with the results of the work [4].
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Figure 4. Behaviour of the maximum value of the surface elevation ηmax, when single breathers with
the wave steepnesses µ ≈ 0.15 (a,b) and µ ≈ 0.25 (c,d) propagate in the fully nonlinear model. The
upper row pictures are 100x zoom of the lower row pictures. The fast oscillations of the function ηmax(t)
caused by evolution of the breather phase can be seen in the upper row pictures, which have small time
scale. In the large time scale lower row pictures, these oscillations cannot be distinguished, but instead
of that, one can see the effect of oscillations of maximum value of the surface elevation function.

4.2. Breather Collisions

In the following two sections we present results of our study of breather collision dynamics in
the framework of the Equation (1). As was noted in the Introduction, the main aim of these numerical
experiments is to verify that the phase-dependent effects of breather interactions predicted recently by
Kachulin and Gelash [12] can be observed in the fully nonlinear model. For this purpose, similar to the
work [12], we examine overtaking collisions of breathers depending on their relative phase and wave
steepness. In addition we also study three different cases of the relative velocity between breathers.

Remember that we consider the gravity wave dynamics in the frame moving with the velocity
V0 = ∂ω

∂k |k0 =
ωk0
2k0

. We study interactions of two breathers having (in the laboratory reference frame)
close unidirectional velocities and equal amplitudes. More precisely, following the Section 3.1 we
find the exact single breather solutions of Zakharov Equation (17) with velocities V1 = V0 + U0,
V2 = V0 −U0, and amplitudes c0. Then we restore the physical wave fields η(x) and ψ(x) for each
of the breathers as described in the Section 3.2. We place the breathers in the computational domain
of the size x/λ0 ∈ [0, 100], where λ0 = 2π/k0, so that at the initial time the breathers are located at
x = 25λ0 and x = 75λ0. We label the breather that was initially located at the left (i.e., at 25λ0 ) and the
right breather by the indexes 1 and 2 respectively. After that we run simulations in the fully nonlinear
model as described in the Section 3.2. The total simulation time is 50λ0/U0.

We perform three series of experiments (Exp. 1, 2, and 3) with two–breather interactions, each of
them corresponds to different values of breather amplitudes (and steepness correspondingly). In each
experiment we study three different cases of the relative breather velocity. In addition, we perform
the Exp. 4 with the breathers having so high steepness that at certain parameters we observe wave
breaking. In the Exp. 4 we confine ourselves only to one case of relative velocities of the breathers.

All parameters of the breathers studied in our experiments are summarised in Table 1 for further
references in the text. We provide information about the amplitude c0 and the relative difference of
velocities ∆V = (V1 −V2)/V0, which we take to generate breathers in the Zakharov model. We also
show the values of the maximum amplitude of breathers in terms of surface elevation and maximum
wave steepness. We compute the maximum value of η(x) at the initial moment of time t = 0 for the
phase of the breather ϕ = 0 (i.e., when the function ηmax(ϕ) achieves its maximum). The presented
value of wave steepness is the maximum value which is detected during the propagation of single
breather—see the Section 4.1 where this propagation is described in details.
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Table 1. Parameters of left (subscript 1) and right (subscript 2) placed breathers for which we study the
collision dynamics.

∆V = 8% ∆V = 20% ∆V = 30%
V1 = 1.04V0 ≈ 6.50 m/s V1 = 1.1V0 ≈ 6.87 m/s V2 = 1.15V0 ≈ 7.18 m/s
V2 = 0.96V0 ≈ 6.00 m/s V2 = 0.9V0 ≈ 5.62 m/s V2 = 0.85V0 ≈ 5.31 m/s

c0 = 0.9 c0 = 0.9 c0 = 0.9
Exp. 1 ηmax

1 ≈ 0.734 m ηmax
2 ≈ 0.737 m ηmax

1 ≈ 0.733 m ηmax
2 ≈ 0.739 m ηmax

1 ≈ 0.731 m ηmax
2 ≈ 0.742 m

µ1 ≈ 0.042 µ2 ≈ 0.050 µ1 ≈ 0.038 µ2 ≈ 0.057 µ1 ≈ 0.034 µ2 ≈ 0.064

c0 = 1.75 c0 = 1.75 c0 = 1.75
Exp. 2 ηmax

1 ≈ 1.456 m ηmax
2 ≈ 1.466 m ηmax

1 ≈ 1.450 m ηmax
2 ≈ 1.476 m ηmax

1 ≈ 1.445 m ηmax
2 ≈ 1.487 m

µ1 ≈ 0.084 µ2 ≈ 0.100 µ1 ≈ 0.075 µ2 ≈ 0.116 µ1 ≈ 0.068 µ2 ≈ 0.133

c0 = 2.5 c0 = 2.5 c0 = 2.5
Exp. 3 ηmax

1 ≈ 2.118 m ηmax
2 ≈ 2.141 m ηmax

1 ≈ 2.104 m ηmax
2 ≈ 2.164 m ηmax

1 ≈ 2.094 m ηmax
2 ≈ 2.189 m

µ1 ≈ 0.125 µ2 ≈ 0.152 µ1 ≈ 0.110 µ2 ≈ 0.180 µ1 ≈ 0.100 µ2 ≈ 0.213

c0 = 2.6
Exp. 4 ηmax

1 ≈ 2.208 m ηmax
2 ≈ 2.234 m

µ1 ≈ 0.131 µ2 ≈ 0.160

The relative phase of two colliding breathers is not invariant in time. Indeed, using the
Formulas (24) and (27), we find the dependence of the breather phase at its center on time in the
framework of Zakharov model:

φ(t) = φ0 −Ωt. (35)

Then, the relative phase of the breathers having different parameters Ω1, Ω2 and velocities V = V0±U0

is given by the following time-dependent expression:

∆φ(t) = φ02 − φ01 − (Ω2 −Ω1)t. (36)

Similar to the work [12] we define the phase difference of the breathers at the moment of time
tc = 25λ0/U0 as:

∆φ = (φ02 − φ01)−
25λ0(Ω2 −Ω1)

U0
. (37)

We use this definition of the relative phase in the further part of the work.

4.3. Breather Collisions: Amplitude Amplification and Energy Loss

First we study the phase-dependent behaviour of the maximum amplitude of the wave field
formed during the whole collision process of the breathers. We use the following function of maximum
amplitude amplification A(∆φ) normalized on the maximum amplitudes of the breathers:

A(∆φ) =

max
(x,t)

(ηmax(x, t))

ηmax
1 + ηmax

2

∣∣∣∣∣
∆φ

. (38)

In Figure 5 we show the amplitude amplification function computed for the experiments 1, 2,
3, and 4 (see Table 1) in the fully nonlinear model. We study how the function A(∆φ) changes with
wave steepness of the breathers as well as with their relative velocity. In the NLS model the amplitude
amplification function does not exceed unity. The maximum value A(∆φ) = 1 is achieved when the
phase difference between the colliding NLS solitons is equal to zero: ∆φ = 0 (see e.g., [28]). As was
found in [7] and later in [12], the maximum of the function A(∆φ) can exceed unity in the fully
nonlinear and the Zakharov models respectively.

In our experiments, similar to the work [12], we observe that when steepness of the breathers
is small (experiment 1), the maximum of the amplitude amplification function is observed at ∆φ ≈ 0
(i.e., again similar to the NLS case [12])—see the green solid lines with dots in the Figure 5. At larger



Fluids 2019, 4, 83 13 of 21

values of wave steepness the position of maximum of A(∆φ) is shifted from ∆φ = 0 more significantly.
As was proposed in [12], the shift of the maximum of A(∆φ) can be compensated by choosing a more
precise definition of the breather phase difference (37), that is unsolved problem so far.

As we will see later, all other strongly nonlinear effects are also enhanced at the same values of
the relative phase at which we observe the maximum of the amplitude amplification function, which
has a simple explanation. The maximum amplitude amplification is accompanied by the formation of
the wave profile of high steepness, that is why the high order nonlinear effects become much more
pronounced. For the sake of simplicity, we call this situation as phase synchronisation between the
colliding breathers. In contrast, the situation when the amplitude amplification function achieves its
minimum, we call as phase desynchronisation. As can be seen from Figure 5, the phase desynchronisation
corresponds to ∆φ ≈ ±π in the cases of small wave steepness (again similar to the NLS model) and is
shifted from these values when when the steepness has significant value.
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Figure 5. The maximum amplification A of the wave field amplitude of colliding breathers depending
on the relative phase ∆φ for the all four numerical experiments performed in this work. The green solid
curves 1 with dots corresponds to experiment 1, the blue dash-dotted curves 2 with dots—experiment
2, the red dashed curves 3 with dots—experiment 3, the black solid curve 4—experiment 4. The black
triangles mark the wave breaking. Panels (a–c) correspond to the three different values of the relative
velocities of the breathers in ascending order. The values of all parameters are listed in the Table 1.

For experiment 3 with ∆V = 8% the maximum value of amplitude amplification A(∆φ) exceeds
A = 1 by ≈25%. The evolution of the surface elevation profile, corresponding to this case of phase
synchronization, is shown in Figure 6, while Figure 7 demonstrates the same experiment but in the
case of minimum amplification A(∆φ) (i.e., phase desynchronization).
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Figure 6. Collision of breathers studied in experiment 3 with the relative velocity ∆V = 8% and the
phase difference ∆φ ≈ 0.7. Snapshots show the surface elevation function η(x) at the initial moment of
simulation (snapshot (a)); at the moment of maximum amplitude amplification (snapshot (b)) and at
the final moment of simulation (snapshot (c)). Zoom of the final amplitude profile is shown in the inset
of the snapshot (c).
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Figure 7. Collision of breathers studied in experiment 3 with the relative velocity ∆V = 8% and the
phase difference ∆φ ≈ −2.5. Snapshots show the surface elevation function η(x) at the initial moment
of simulation (snapshot (a)); at the moment of maximum amplitude amplification (snapshot (b)) and at
the final moment of simulation (snapshot (c)). Zoom of the final amplitude profile is shown in the inset
of the snapshot (c).

The further increase of the breather amplitudes leads to appearance of wave breaking during
their collisions—see the amplitude amplification function corresponding to experiment 4 in Figure 5.
The wave breaking first appears for the breathers with synchronised phases at the moment of
interaction, when wave steepness reaches very high value. In Figure 8 we show the wave profile of the
colliding breathers right before the wave breaking. Note, that in this work we do not use any special
procedure (like adding a dissipation to numerical scheme) to avoid or mitigate wave breaking. This
effect appears naturally as a result of high increase of wave steepness at certain moment of breather
collision and we expect that similar situation can be observed in laboratory experiments. Once our
numerical scheme detects wave breaking, it stops the simulation.
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Figure 8. Surface elevation function η(x) at the moment of breather collisions right before wave
breaking. Parameters of the breathers correspond to experiment 4 with ∆φ ≈ 0.7.

The interactions of the breathers are inelastic, as can be seen in Figures 6 and 7 where the
radiation of the incoherent waves after the collision is demonstrated. Similar to the work [12], here
we quantitatively study the dependence of breather energy losses ∆Eloss on the relative phase ∆φ.
We find the energy of the breathers initially located at the left and right (E1 and E2 respectively) after
the collision computed in the specially chosen window where the breather is localised. We denote
the values of energy change of each of the breathers after collision as δE1 and δE2. For all details of
this procedure we refer to the work [12]. We define the total energy losses caused by the radiation of
incoherent waves relatively to the total energy of the system:

∆Eloss = −
δE1 + δE2

E
, (39)

where E is computed as the total value of the Hamiltonian

H =
g
2

∫
y2xudu−

∫
ΨĤΨudu, (40)

in the whole numerical interval.
Figure 9 shows the energy losses as a function of the relative phase for experiment 3 with ∆V = 8%.

The value of the energy losses can exceed 2% when phases of the breathers are synchronised and is
negligible in the desynchronised case.
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Figure 9. The total energy losses ∆Eloss (in percent—see Formula (39)) of breathers after their collision
depending on the relative phase ∆φ. The picture corresponds to experiment 3 with the relative velocity
∆V = 8%.

4.4. Breather Collisions: Energy Interchange and Spatial Positions after Collision

Now we describe individual changes of the breathers after collision. We measure the energy
changes of the left and right breather relative to their individual energies:

∆E1 =
δE1

E1
, ∆E2 =

δE2

E2
. (41)

Similar to the work [12] we observe that breathers exchange energy with each other. Each of
the breathers can gain or lose the energy after collision in dependence on the relative phase ∆φ—see
Figure 10. The energy exchange results in changing of the amplitudes of the breathers after the
collision—see Figure 11.

Finally we study location of the breathers at the end of our simulations. We compare the space
position of the breather after the collision with than where it would have been if the breather had
been traveling alone. We denote the difference in this position of the first and second breather as δx1

and δx2. In the NLS model the soliton always acquires positive space shifts as a results of collision
and appears farther that in the case of free propagation. Here we find that the interaction results in
either positive and negative shift of the breather position at the end of the simulations as illustrated by
Figure 11. The phase dependency of this effect is demonstrated in the Figures 12 and 13 for different
steepness and relative velocity of the breathers. The possible explanations of this effect are discussed
in the Section 5.
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Figure 10. The individual energy change (in percent—see Formula (41)) of breathers after their collision
depending on the relative phase ∆φ in experiment 3. The dashed red curve 1 shows dependence of
the energy change for the left breather ∆E1(∆φ) while the blue dash-dotted curve 2 corresponds to
dependence of the energy change for the right breather ∆E2(∆φ). Panels (a–c) correspond to the three
different values of the relative velocities of the breathers in ascending order.
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Figure 11. Comparison of the breathers after mutual collision and the same breathers propagated
without interaction in experiment 3 with relative velocity ∆V = 8%. The considered moment of time is
t = 50λ0/U0. The pictures (a,b) correspond to the relative phase ∆φ ≈ 0 and the pictures (c,d) to the
relative phase ∆φ ≈ 1.5 of the colliding breathers. The black solid curves 2 show surface elevation η(x)
after collision of breathers. The red dashed curves 1 show the left breather propagated in the absence
of right breather. The blue dash-dotted curves 1 show the right breather propagated in the absence of
the left breather.
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steepnesses and the relative velocity ∆V = 8%. Panels (a–c) correspond to experiment 1, experiment 2,
and experiment 3, respectively.
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Figure 13. Space shifts of the breathers depending on the relative phase ∆φ for different wave
steepnesses and the relative velocity ∆V = 20%. Panels (a–c) correspond to experiment 1, experiment 2,
and experiment 3, respectively.

5. Discussion

In this work we verify in the fully nonlinear model the effects of overtaking collisions of
breathers predicted recently by Kachulin and Gelash [12] in the framework of the super compact
Dyachenko–Zakharov equation.

We suggest alternative approach to find stably propagating breathers in the fully nonlinear
equations. In the previous works such breathers were generated using soliton solutions of the NLSE as
initial conditions [4–7]. The transformation from the variables of the NLSE to the physical variables was
performed with second order accuracy and in the approximation of narrow band breather spectrum
(the latter is implied in the NLS model). Here we use exact numerical breather solutions of the
Zakharov equation computed without any assumptions about spectral width of the breathers and
transformed to physical variables with third order accuracy. The suggested approach can be especially
useful for the works with breathers of extremely high steepness. The presence of minor radiation is
explained by the fact that we use solutions of the reduced model as initial conditions. The low level
of this radiation allows us to say that these solutions are very close to the stationary propagating
solitary wave groups obtained previously in [4,5] and neglect the radiation when their interactions are
studied. The results of the works [4,5] demonstrate that the radiation decays at long times and the
remaining structures live hundreds and even thousands of characteristic time periods. Nevertheless,
the fundamental question remains open—whether such solitary wave groups are quasi-stationary
structures having extremely long life times or are exact solutions (or a good approximation of them) of
the fully nonlinear model.
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The results of our numerical simulations of the breather collision dynamics in the framework of
the fully nonlinear equations written in conformal variables demonstrate that the relative phase of the
breathers controls the process of energy exchange between breathers, level of energy losses, and space
positions of breathers after the collision (compare with results of the work [12]). We also report that
the maximum of the wave field can significantly exceed the sum of the breather amplitudes that was
observed in the Dyachenko–Zakharov model in [12] and previously in the fully nonlinear model and
experiments in water wave tank in [7].

The phase dependence of space positions of breathers after the collision, observed here in the
framework of the fully nonlinear model and previously in Dyachenko–Zakharov equation [12], needed
further studies. On one hand this effect can be caused by changing of the space shifts acquiring by
solitary wave groups directly during their collision. On the other hand the process of energy exchange
between solitary wave groups can results not only in changing of solitary wave group amplitudes,
as illustrated by Figure 11, but also in changing of solitary wave group velocities, that in turn can
influence their space positions. In the latter case the space shifts, studied here and in the work [12] for
a certain moment in time, will also depend on the distance of breather propagation. We believe that it
is most probable we observe the combination of the mentioned above two effects.

The pairwise collisions of solitary wave groups play an important role in the formation of wave
field statistics when considered in integrable models (see the works [29,30] devoted to the KdV
equation). As we demonstrate here and previously in [12] the nonlinear effects caused by high order
energy exchange between solitary wave groups is significantly stronger than the energy losses. It
means that we are able to observe several nontrivial (i.e., beyond the NLS approximation) interactions
before destruction of solitary groups. That is why we believe that the results presented here and
previously in [12] can be used for the developing a similar statistical approach for the Zakharov model
and even for the the fully nonlinear one to the works in [29,30].

We believe that the effect of energy exchange between breathers and shifts of breather positions
may be clearly observed in experiments with surface waves. We demonstrate that these effects are
especially well pronounced when the relative velocity of the breathers is not high, i.e., collision occurs
slowly. The latter provides a restriction on the minimum length of the breathers propagation distance
needed to observe this effect in experiments, which should be taken into account in the further studies.
We provide results of numerical simulations of water surface dynamics for a wide range of initial
parameters of breathers up to such “critical” values, when wave breaking occurs. The obtained values
of the breather parameters, at which we predict the wave breaking during collision, are to be verified
in laboratory experiments.
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