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Abstract: In this paper we propose two Hamiltonian models to describe two-dimensional deep
water waves propagating on the surface of an ideal incompressible three-dimensional fluid. The
idea is based on taking advantage of the Zakharov equation for one-dimensional waves which can
be written in the form of so-called compact equations. We generalize these equations to the case of
two-dimensional waves. As a test of our models, we perform numerical simulations of the dynamics
of standing waves in a channel with smooth vertical walls. The results obtained in the proposed
models are comparable, indicating that the models are similar to the original Zakharov equation.

Keywords: deep water waves; Zakharov equation; surface gravity waves; Hamiltonian formalism;
standing waves

1. Introduction

Physical phenomena related to deep water waves, for instance, the overturning of
waves or the formation of so-called rogue waves, raise many questions for researchers.
It is impossible to list all the efforts devoted to studying this field. In the general case,
the dynamics of deep water waves propagating on the free surface can be described by
the Laplace equation with nonlinear kinematic and dynamic boundary conditions at the
surface. Solving these equations is a non-trivial task. Therefore, researchers use various
simplified models.

At present, in the context of studying the dynamics of one-dimensional deep water
waves, the only approximate model that is integrable in terms of the inverse scattering
problem [1] is the well-known nonlinear Schrödinger equation (NLSE) [2]. Unfortunately,
despite numerous advantages the model contains significant limitations that do not allow
one to adequately describe the mentioned physical processes. Among the more accurate
models one can highlight the Zakharov Equation [3]. Like the NLSE, it is based on pertur-
bation theory where the small parameter is the wave steepness. It should be noticed that in
the one-dimensional case the Zakharov equation can be rewritten in compact forms [4,5].
Another widely used method for solving the original equations, which is based on the
expansion of velocity potential, is a high-order spectral method (HOSM) [6]. Finally, there
is an exact model for describing the dynamics of one-dimensional deep water waves, a
system of nonlinear equations written in conformal variables [7,8].

The problem becomes more complicated when considering two-dimensional waves
propagating on the surface of a three-dimensional fluid. Exact equations in conformal
variables can no longer be used in such geometry. Nevertheless, these equations with weak
three-dimensional effects were considered in [9], and their corresponding numerical simu-
lations were given in [10–12]. One straightforward variant is to use some two-dimensional
version of the NLSE [13,14], but it is still very limited in its applicability [15]. Moreover,
it is no longer an integrable model. A more accurate modification of the NLSE soften-
ing its limitations is in [16]. Intermediate model between the NLSE and the Zakharov
equation can be found in [17]. Several studies on the physical phenomena and statistical
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properties of two-dimensional deep water waves using HOSM can be found in [18,19]. The
Zakharov equation can also be used in the case of two-dimensional waves. However, there
is considerable difficulty here that makes working with it quite challenging. The original
Zakharov equation has a complex form that cannot be written in the way of some “compact”
equations, as it was done in the one-dimensional case. Nevertheless, this equation is used
to derive kinetic equations, in the manner of the Hasselmann equation [20], that allows
studying weak turbulence in wind-driven sea [21,22].

This paper proposes two approximate Hamiltonian models to describe two-dimensional
deep water waves propagating on the surface of a three-dimensional ideal incompressible
fluid in a gravity field. The idea is based on using the advantages of the one-dimensional
Zakharov equation. As mentioned earlier in this case it can be written in simple form
of so-called compact equations. Then, these equations can be generalized to the case of
two-dimensional waves. To verify the models for adequacy in describing deep water waves,
we consider the dynamics of standing waves in a channel with smooth vertical walls.

The article is presented in the following way: the theoretical part, including the deriva-
tion of the proposed models from the Zakharov equation and their detailed description,
will be shown in Section 2. Then, in Section 3, we present a description of the methods used
in numerical simulations and the results obtained within the framework of the derived
models. Finally, Section 4 will be devoted to a discussion of the results.

2. Hamiltonian Formalism for Deep Water Waves

Since the starting point for the proposed models is the Zakharov equation, we consider
it necessary to briefly recall its derivation.

The 3D potential flow of an ideal incompressible deep fluid in the presence of a gravity
field can be described by the following equations:

4φ = 0,
∂φ

∂t
+

1
2
|∇φ|2 + gη = 0 |z=η ,

∂η

∂t
+∇η∇φ =

∂φ

∂z
|z=η (1)

Here, the~r = (x, y), zaxis is directed away from the undisturbed surface coinciding
with xy plane, t is time, g is the free-fall acceleration, η(~r, t) is the shape of the surface,
φ(~r, z, t) is the hydrodynamic potential inside the fluid, and ψ(~r, t) = φ(~r, z = η, t) is the
potential at the surface.

The system is Hamiltonian and η, ψ is Hamiltonian variables [3]:

∂η

∂t
=

δH
δψ

,

∂ψ

∂t
= − δH

δη
,

H =
1
2

∫
d~r
∫ η

−∞
(∇φ)2dz +

g
2

∫
η2d~r (2)

The expansion of the Hamiltonian in power series of η and ψ up to the fourth-order is
as follows:

H =
1
2

∫
(gη2 + ψk̂ψ)d~r− 1

2

∫
{(k̂ψ)2 − (∇ψ)2}ηd~r +

1
2

∫
{4ψη2 k̂ψ + ψk̂(ηk̂(ηk̂ψ))}d~r. (3)

Here, operator k̂ means multiplication by |~k| in k space.
Applying canonical transformation (also see [3] for details) from η and ψ to the

variables of b and b∗, one can remove all non-resonant terms and drastically simplify
the Hamiltonian:

H(b, b∗) =
∫

ω~kb~kb∗~k d~k +
1
2

∫
T
~k2,~k3
~k,~k1

b∗~k b∗~k1
b~k2

b~k3
δ~k+~k1−~k2−~k3

d~kd~k1d~k2d~k3 (4)
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Here, ω~k =
√

g|~k|. The equation of motion in this case is a traditional Zakharov equation:

∂b~k
∂t

+ i
δH
δb~k
∗ = 0

i
∂b~k
∂t

= ω~kb~k +
∫

T
~k2,~k3
~k,~k1

b∗~k1
b~k2

b~k3
δ~k+~k1−~k2−~k3

d~k1d~k2d~k3 (5)

Here T
~k2,~k3
~k,~k1

represents the coefficient of four-wave interactions. Despite the explicit

expression [23], it does not allow writing the Zakharov equation in x space. Direct use of
Equation (5) to describe the evolution of two-dimensional waves is quite challenging be-
cause it requires the calculation of four-dimensional integrals over~k. Applying a canonical
transformation that would simplify the original equation is also a non-trivial problem.

However, such transformations can be performed in the one-dimensional case since
the one-dimensional version of the Zakharov equation has some exciting property. Our
work will take advantage of this property to derive approximate models for describing
two-dimensional deep water waves, which can be written in x space and are therefore
suitable for numerical simulations.

The original canonical transformations removing all the non-resonant terms mentioned
above are also valid in the one-dimensional case. One can obtain a one-dimensional version
of the Zakharov equation:

i
∂bk
∂t

= ωkbk +
∫

Tk2,k3
k,k1

b∗k1
bk2 bk3 δk+k1−k2−k3 dk1dk2dk3 (6)

In this case, all wave vectors simply become wave numbers, and variables b, b∗ and
operator ωk also become one-dimensional.

Recently, an explicit and simple form was obtained for the 1D coefficient of four-wave
interactions in the case of resonance k + k1 = k2 + k3 [24].

Tk2,k3
k,k1

=


|kk1k2k3|

1
4

8π

[
L−kk1

+ L−k2k3

]
Dk2,k3

k,k1
, if all k are positive (or negative)

|kk1k2k3|
1
4

8π

[
−Lkk2 − Lkk3 − Lk1k2 − Lk1k3

]
Dk2,k3

k,k1
, if kk1 < 0 and k2k3 < 0

0, if kk1k2k3 < 0

(7)

Here,

Lkk1 =
|kk1| − kk1√
|kk1|

Dk2,k3
k,k1

=

{
min(|k|, |k1|, |k2|, |k3|), kk1k2k3 > 0
0

There is an explicit formula for Dk2,k3
k,k1

:

Dk2,k3
k,k1

=
1
2
(|k|+ |k1|+ |k2|+ |k3|)−

1
4
(|k + k1|+ |k2 + k3|)−

− 1
4
(|k− k2|+ |k− k3|+ |k1 − k2|+ |k1 − k3|) (8)

Coefficient Tk2,k3
k,k1

has a special property:

Tk2,k3
k,k1

= 0 if kk1k2k3 < 0, (9)
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which is very important for further simplification of the Hamiltonian by applying canonical
transformations. The transformation simplifying the four-order term in the Hamiltonian
has the following form (we will use the same notations for new canonical variable bk):

bk → bk − i
∫

Bk2k3
kk1

b∗k1
bk2 bk3 δk+k1−k2−k3 dk1dk2dk3 (10)

Here, Bk2k3
kk1

is an arbitrary coefficient of the canonical transformation with the follow-
ing symmetry relations:

Bk2k3
kk1

= Bk2k3
k1k = Bk3k2

kk1
= (Bkk1

k2k3
)∗.

Now, we plug this transformation into the Hamiltonian of the 1D Zakharov equation
and obtain the new Hamiltonian:

H =
∫

ωkbkb∗k dk +
1
2

∫ [
Tk2k3

kk1
− i(ωk + ωk1 −ωk2 −ωk3)B

k2k3
kk1

]
×

× b∗k b∗k1
bk2 bk3 δk+k1−k2−k3 dkdk1dk2dk3 + . . . (11)

To replace Zakharov’s Tk2k3
kk1

by the simpler T̃k2k3
kk1

, the coefficient Bk2k3
kk1

has to be equal to

Bk2k3
kk1

= i
T̃k2k3

kk1
− Tk2k3

kk1

ωk + ωk1 −ωk2 −ωk3

. (12)

Any canonical transformation applied to the Hamiltonian system keeps a value of the
wave interaction coefficient unchanged (T̃k2k3

kk1
≡ Tk2k3

kk1
) on the resonant manifold:

k + k1 = k2 + k3,
ωk + ωk1 = ωk2 + ωk3 . (13)

Therefore, the coefficient Bk2k3
kk1

has no singularities at k + k1 = k2 + k3. In the 1D
case, all solutions of Equation (13) can be divided into two parts: so-called “trivial” and
“non-trivial”. The “non-trivial” solution can be solved as follows:

k = a(1 + ζ)2,
k1 = a(1 + ζ)2ζ2,
k2 = −aζ2,
k3 = a(1 + ζ + ζ2)2, (14)

and 0 < ζ < 1. Notice the product kk1k2k3 < 0 and Tk2,k3
k,k1

≡ 0. The “trivial” solution
is obvious:

k = k2, k1 = k3 (plus permutations).

Hence, on the resonant manifold

Tk,k1
k,k1

=

{
1

2π kk1 min(|k|, |k1|), if kk1k2k3 > 0
0 if kk1k2k3 < 0

(15)

Thus, we can apply some canonical transformation to replace Tk2,k3
k,k1

by the new four-

wave interaction coefficient T̃k2,k3
k,k1

which coincides on the resonant manifold:

T̃k2,k3
k,k1

=

{
1

4π (kk1 + k2k3)min(|k|, |k1|, |k2|, |k3|), if kk1k2k3 > 0
0, if kk1k2k3 < 0

(16)
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Using expression (8) we finally obtain:

T̃k2,k3
k,k1

=
1

4π
(kk1 + k2k3)Dk2,k3

k,k1
(17)

The Hamiltonian and the dynamical equation for b in k space are now the following:

H(b, b∗) =
∫

ωkbkb∗k dk +
1
2

∫
T̃k2,k3

k,k1
b∗k b∗k1

bk2 bk3 δk+k1−k2−k3 dkdk1dk2dk3

i
∂bk
∂t

= ωkbk +
∫

T̃k2,k3
k,k1

b∗k1
bk2 bk3 δk+k1−k2−k3 dk1dk2dk3.

Using operators k̂ and ω̂k which are multiplication by |k| and by
√

g|k| in Fourier
space, the equation of motion in the x space takes the form:

i
∂b
∂t

= ω̂kb− 1
4

[
2bxb∗ k̂(bx) + bxbx k̂(b∗) + k̂(bxbxb∗)− ∂

∂x
(bbk̂(b∗x))−

∂

∂x
k̂(bbb∗x)

− 2
∂

∂x
(b∗xbk̂(b))

]
+

1
4

[
b∗ k̂(bxbx)−

∂

∂x
(b∗x k̂(bb))

]
+

1
2

[
bx k̂(bxb∗)− ∂

∂x
(bk̂(b∗xb))

]
(18)

Equation of motion (18) corresponding to the Hamiltonian with a four-wave interaction
coefficient (17) is the first one-dimensional model of the two considered in this article.
Section 2.1 will show how a two-dimensional equation for waves on the surface of a
three-dimensional fluid can be obtained from this model.

Obviously, this is not the only possible canonical transformation. One can accomplish
this in many ways, thereby obtaining different forms of the compact equation. There-
fore, we present another model called “the system of super-compact equations” for deep
water waves.

The diagonal part of the four-wave interaction coefficient on the resonant manifold
can be represented by (compare with (15)):

Tk,k1
k,k1

=


1

2π |k||k1|min(|k|, |k1|), if all k are positive (or negative)
− 1

2π |k||k1|min(|k|, |k1|), if kk1 < 0 and k2k3 < 0
0 if kk1k2k3 < 0

(19)

Using expression (19) we can apply a canonical transformation (b → c) to replace
Tk2,k3

k,k1
→ ˜̃Tk2,k3

k,k1
which allows to simplify the Hamiltonian and divide waves into two

groups: waves running to the left and to the right (c(x, t) = c+(x, t) + c−(x, t)). The details
of this transformation can be found in [24] so here we only present the final result. The
Hamiltonian in new variables c+(x, t) and c−(x, t) has the following form:

H =
∫

c+∗V̂c+dx +
1
2

∫ [ i
4
(c+2 ∂

∂x
c+∗

2 − c+∗
2 ∂

∂x
c+2

)− |c+|2k̂|c+|2
]

dx

+
∫

c−∗V̂c−dx +
1
2

∫ [ i
4
(c−∗

2 ∂

∂x
c−2 − c−2 ∂

∂x
c−∗

2
)− |c−|2k̂|c−|2

]
dx

+
∫ [
|c+|2k̂|c−|2 + c+∗c−∗ k̂(c+c−) + i(c+∗c−)

∂

∂x
(c+c−∗)

]
dx (20)

Here, V̂ = ω̂/k̂, k̂ and ω̂ correspond to multiplication by |k| and
√

g|k| in k space.
The functions c+(x, t) and c−(x, t) only contain positive and negative k, respectively, and
satisfy the following equations:

∂c+

∂t
+ ∂+x

δH
δc+∗

= 0,

∂c−

∂t
− ∂−x

δH
δc−∗

= 0,
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Here, ∂+x , ∂−x correspond to multiplication by ikθk and ikθ−k where θk denotes the
Heaviside step function. Then, the motion equations in x space take the form:

∂c+

∂t
+ iω̂c+ = ∂+x

[
i(|c+|2 − |c−|2)c+x + c+ k̂(|c+|2 − |c−|2)− ic+c−c−∗x − c−∗ k̂

(
c+c−

)]
∂c−

∂t
+ iω̂c− = ∂−x

[
i(|c−|2 − |c+|2)c−x − c− k̂(|c−|2 − |c+|2)− ic−c+c+∗x + c+∗ k̂

(
c+c−

)]
(21)

We call the equations in (21) for the functions c+(x, t) and c−(x, t) “the system of
supercompact equations” because one of the equations vanishes when considering unidi-
rectional waves, and the remaining one is nothing but a “supercompact equation” obtained
earlier in [5].

System of Equation (21) with Hamiltonian (20) is the second of the models considered
in our article. Its generalization to the case of two-dimensional waves will be considered in
Section 2.2.

We would like to again note that Equation (18) and system of Equation (21) are
equivalent up to the expansion of original Hamiltonian (4). One model can be obtained
from another one and vice versa by applying corresponding canonical transformations.
Nevertheless, system of Equation (21) is more suitable for numerical simulations because
these equations are of lower order in comparison to Equation (18).

2.1. Generalization to Two-Dimensional Waves in b Variable Model

Recall again that four-wave interaction coefficient (17) has a compact form, unlike the
original Zakharov coefficient. It allows to write equation of motion (18) in x space. The
equation can be easily used for studying the dynamics of one-dimensional deep water
waves with conventional pseudo-spectral numerical algorithms.

We now generalize the coefficient to the case of two-dimensional waves by replacing

wave numbers by vectors k → ~k, coefficient Dk2,k3
k,k1

→ D
~k2,~k3
~k,~k1

and the products of wave

numbers by scalar products, and thus taking into account angular dependence:

T̃
~k2,~k3
~k,~k1

=
1

4π

(
~k ·~k1 +~k2 ·~k3

)
D
~k2,~k3
~k,~k1

(22)

We highlight that coefficient (22) exactly coincides with the original Zakharov coeffi-
cient on the resonance manifold for one-dimensional waves.

We would like to emphasize the crucial point of this procedure. We propose another
way to study the dynamics of 2D deep water waves with the help of approximate models,
the derivation of which is based on the Zakharov equation. This allows overcoming the
problems related to direct calculations of Equation (5). This is not a canonical transforma-

tion, therefore, this generalized T̃
~k2,~k3
~k,~k1

is not equivalent to the original Zakharov coefficient

T
~k2,~k3
~k,~k1

on the resonance manifold. Thus, this procedure does not have rigorous mathematical

proof. Nonetheless, as discussed below, these coefficients turned out to be very similar on
the resonant manifold.

A comparison of the original two-dimensional Zakharov coefficient T
~k2,~k3
~k,~k1

with the

generalized coefficient T̃
~k2,~k3
~k,~k1

on the resonance manifold was carried out by Dr. V.V. Geogjaev.

Panels (a) and (b) in Figure 1 show the behavior of coefficients on the Phillips curve,

respectively. In all curves, the coefficients are normalized: T
~k,~k
~k,~k

= 2 (kB = 1
2 (
~k +~k1) =

1
2 (
~k2 +~k3) = 1). A quadruplet is defined by choosing two points P and P2 on the Phillips

curve. The curves in panels are built depending on the x coordinate of point P2 while P is
fixed for each curve.

Since the models are equivalent in the one-dimensional case, we assume that discrep-
ancies in the dynamics between the proposed two-dimensional models and the Zakharov
equation will appear when the dependence on the parameter ky increases. Nevertheless,
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the comparison showed that these discrepancies are small, and the coefficients are very
similar, which justifies the generalization. The feature is that it is still possible to write

the equation of motion in x space using T̃
~k2,~k3
~k,~k1

, which is not possible if using the original

Zakharov coefficient.

(a) (b)

Figure 1. Behavior of T
~k2,~k3
~k,~k1

in panel (a) and T̃
~k2,~k3
~k,~k1

in panel (b) depending on P2 at fixed P. Each

curve has a circle corresponding to the x coordinate of point P. The circles form a curve for matching

vectors T
~k,~k1
~k,~k1

. The left part of the panels corresponds to P and P2 which are in the same quadrant

while the right part corresponds to the case wherein P and P2 are in different quadrants.

Now function b(x, y, t) depends on two space variables and time, operator k̂ corre-

sponds to multiplication by |~k| =
√

k2
x + k2

y, ω̂—to multiplication by
√

g|~k| in k space, and
partial derivatives are replaced by ∇ operators.

i
∂b
∂t

= ω̂~kb− 1
4

[
2(∇b) · k̂(∇b)b∗ + (∇b) · (∇b)k̂(b∗) + k̂((∇b) · (∇b)b∗)

− ∇ · (bbk̂(∇b∗))−∇ · (k̂(bb(∇b∗)))− 2∇ · ((∇b∗)bk̂(b))
]

+
1
4

[
b∗ k̂((∇b) · (∇b))−∇ · ((∇b∗)k̂(bb))

]
+

1
2

[
(∇b) · k̂((∇b)b∗)−∇ · (bk̂((∇b∗)b))

]
(23)

Furthermore, in Section 3.1, we present the results obtained using this equation.

2.2. Generalization to Two-Dimensional Waves in Variables c+ and c−.

Let us generalize Hamiltonian (20) to the case of two-dimensional waves. For this
purpose, we need to redefine all one-dimensional operators in the Hamiltonian. Recall
that in the one-dimensional case, operator k̂ acts as a multiplication by |k| in Fourier-space
while ∂

∂x acts as a multiplication by ik. Now we replace scalar k with a vector~k = (kx, ky).

Then, the operators are redefined as follows: k̂ → |~k| =
√

k2
x + k2

y, ω̂ →
√

g|~k|, and
∂

∂x → i|~k|sign(kx) in k space. Operators ∂+x and ∂−x now turn to ik̂θkx or ik̂+ and −ik̂θ−kx or
−ik̂−, respectively. Furthermore, considering that c+ = c+(x, y), c− = c−(x, y), now the
Hamiltonian is:

H =
∫

c+∗V̂c+dxdy +
1
2

∫ [1
4
(c+2k̂c+∗

2
+ c+∗

2
k̂c+2

)− |c+|2k̂|c+|2
]

dxdy
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+
∫

c−∗V̂c−dxdy +
1
2

∫ [1
4
(c−∗

2
k̂c−2

+ c−2k̂c−∗
2
)− |c−|2k̂|c−|2

]
dxdy

+
∫ [
|c+|2k̂|c−|2 + c+∗c−∗ k̂(c+c−)− i(c+∗c−)k̂(c+c−∗)

]
dxdy (24)

The corresponding equations of motion are:

i
∂c+

∂t
= k̂+

δH
δc+∗

, i
∂c−

∂t
= −k̂−

δH
δc−∗

After taking the variation of the Hamiltonian, one can obtain a system of supercompact
equations generalized for two-dimensional waves:

∂c+

∂t
= −iω̂c+ − ik̂+

[
1
2

c+∗ k̂(c+2
)− c+ k̂(|c+|2 − |c−|2)− c− k̂(c+c−∗) + c−∗ k̂

(
c+c−

)]
∂c−

∂t
= −iω̂c− + ik̂−

[
1
2

c−∗ k̂(c−2
)− c− k̂(|c−|2 − |c+|2)− c+ k̂(c+∗c−) + c+∗ k̂

(
c+c−

)]
(25)

In addition to Hamiltonian (24), this system of equations has the following integrals of
motion: the number of waves propagating to the “left” N− and to the “right” N+ (with
respect to kx), longitudinal Px and transverse Py momentum.

N+ =
∫ |c+~k |2
|~k|

d~k, N− =
∫ |c−~k |2
|~k|

d~k (26)

Px =
∫ kx

|~k|
(|c+~k |

2 + |c−~k |
2)d~k, Py =

∫ ky

|~k|
(|c+~k |

2 + |c−~k |
2)d~k (27)

The results of numerical simulations obtained by using Equation (25) will be shown in
Section 3.2.

3. Numerical Simulations

The validity of the models is also confirmed by using the method of frozen coefficients.
One can easily show that equations do not have instability at small scales, which is im-
portant in numerical simulations because of rounding errors. Both models (23) and (25)
contain non-local terms with operator k̂. Recall that this operator can be easily calculated in
Fourier-space as multiplication by |~k|. Therefore, it seems reasonable to use pseudo-spectral
Fourier methods to calculate the right-hand side of the equations. We use the standard
fourth-order Runga–Kutta method for time integration. The correctness of the calcula-
tions is carried out by checking the conservation of the integrals of motion. The FFTW3
library [25] was used for the fast Fourier transform procedure. The multiplication of grid
functions was carried out in x space, and the direct and inverse Fourier transforms were
used to calculate derivatives and non-local terms. OpenMP tools were used to parallelize
the numerical algorithm, and the 2D Fourier transforms paralleling was performed using
the fftw3-threads.

To test the proposed models for adequacy in describing the dynamics of two-dimensional
deep water waves, we consider the physical problem of standing waves in a channel with
smooth vertical walls in our numerical simulations. For this purpose, we consider the
periodic domain in the water channel with sizes Lx × Ly = 300 m×1000 m. A perturbed
one-dimensional standing wave with a characteristic wavelength λ0 = 20 m was consid-
ered as the initial condition. Average steepness µ = |~∇η| ≈ 0.26. The perturbation was
performed in the region around the basic harmonic~k0 = (kx = π

10 ; ky = 0). To prevent
wave overturning, damping concentrated in the region of short wave harmonics was used.
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Considering perturbed standing waves in a water channel with smooth vertical walls,
it is necessary to make the surface derivative equal to zero at the walls. This means that the
expansion of ηk has to only contain cosines.

∂η

∂x
|x=0,L = 0; ηk = ∑

k
akcos(kx) (28)

In terms of b and c+, c−, the surface can be recovered by the following canonical
transformations:

ηk =
|~k| 14
√

2g
1
4

[
b~k + b∗~k

]
; ηk =

|~k|− 1
4

√
2g

1
4

[
c+~k + c−~k + c+~k

∗
+ c−~k

∗] (29)

This results in the following conditions for variables:

b(−kx, ky) = b(kx, ky); c−(−kx, ky) = c+(kx, ky) (30)

Thus, condition (30) for b variables is maintained at each time step while calculating
in Equation (23). In the case of variables c+, c−, one can only use the first equation in (25)
with condition (30) for c+, c− variables:

∂c+

∂t
= −iω̂c+ − ik̂+

[
1
2

c+∗ k̂(c+2
)− c+ k̂(|c+|2 − |c−|2)− c− k̂(c+c−∗) + c−∗ k̂

(
c+c−

)]
The following sections will show the results of numerical simulations obtained within

the framework of the proposed models.

3.1. Numerical Results Obtained in b Variable Model

Figure 2 shows the two-dimensional spectra of |ηkx ,ky |2 at different times. The spec-
trum is symmetric with respect to the vertical line at kx = 0 since considering standing
waves. That is why we do not show the part of the spectrum with negative kx. As
it mentioned previously, initially (panel a) it is a one-dimensional standing wave with
kx0 = π

10 m−1, ky0 = 0 and small perturbation around it. In the process of time evolution,
the spectrum expands (panel b) and eventually becomes almost isotropic (ring formation)
after a long time (panel c).

Figure 2. The evolution of spectrum |η(kx, ky, t)|2 in time in logarithmic scale. The color shows
the squared amplitude of the harmonic. Panel (a) corresponds to the almost initial surface at time
t ≈ 2 min. Panel (b) corresponds to the surface at time t ≈ 1 h, and panel (c) corresponds to the
surface at time t ≈ 96 h.

Figure 3 shows one-dimensional spectra |ηkx |2 at ky = 0 (panel a) and the dependence
of total energy on time (panel b). It can be seen that the spectrum shifts to the region of
long-wave harmonics with time; that is, the waves in the channel become longer along the x
axis. Taken together with the two-dimensional spectrum, one can conclude that the waves
become slightly longer in the x axis direction and significantly longer in the y axis direction.
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The total energy of the system gradually decreases due to the damping concentrated in the
region of short-wave harmonics. It can be seen that the energy was almost halved in 96 h.

(a) (b)

Figure 3. Panel (a) shows the evolution of one-dimensional spectrum |η(kx, ky = 0, t)|2 overtime
in logarithmic scale. A small red line indicates the initial characteristic wavenumber kx0. Purple
curve corresponds to the almost initial spectrum at time t ≈ 2 min, green curve corresponds to the
spectrum at time t ≈ 1 h, and the black one corresponds to the spectrum at time t ≈ 96 h. Panel (b)
shows the total energy dependence in time.

The time evolution of the surface is presented in Figure 4. The pictures are symmetrical
around the central vertical line at x = 150 m. In the beginning, the waves look quasi-one-
dimensional. Then, the waves begin to bend over time. Finally, after a long time, the
isotropization of the spectrum results in waves pointed in all directions.

Figure 4. The evolution of surface η(x, y, t) in time. The color shows the amplitude of the waves in
meters. Panel (a) corresponds to the almost initial surface at time t ≈ 2 min. Panel (b) corresponds to
the surface at time t ≈ 1 h, and Panel (c) corresponds to the surface at time t ≈ 96 h.

Several films are available for more information:
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A film with the dynamics of the one-dimensional spectrum can be viewed here:
http://kachulin.itp.ac.ru/mdpi-2022-films/spectrum-1d.avi (accessed on 25 April 2022).

A film with the dynamics of the two-dimensional spectrum can be viewed here: http:
//kachulin.itp.ac.ru/mdpi-2022-films/spectrum-2d-zoom.avi (accessed on 25 April 2022).

Short films with surface dynamics are presented here.
At initial time: http://kachulin.itp.ac.ru/mdpi-2022-films/surface-0s.avi (accessed

on 25 April 2022).
At final time: http://kachulin.itp.ac.ru/mdpi-2022-films/surface-96h.avi (accessed

on 25 April 2022).

3.2. Numerical Results Obtained in the Model of c+ and c− Variables

The model in terms of +c and c− slightly differs from the one in terms of b. Neverthe-
less, the detailed discussion of the results in Section 3.1 maintains its validity here as well.
In Figure 5, one can also see the process of spectrum isotropization with time. Despite the
differences, in general, the dynamics remain the same.

Figure 5. The evolution of spectrum |η(kx, ky, t)|2 in time in logarithmic scale. The color shows the
squared amplitude of the harmonic. Panel (a) corresponds to the almost initial surface at time t ≈ 2 min.
Panel (b) corresponds to the surface at time t ≈ 1 h, and Panel (c) corresponds to the surface at time
t ≈ 26 h.

The same can be said about the one-dimensional spectrum shown in Figure 6 (panel a).
Since the equations of motion in the c+ and c− variables are different, the damping function
is also different. This results in a change in energy dependence. It decreased more in the
shorter computation time (panel b), but it did not again affect the overall dynamics.

(a) (b)

Figure 6. Panel (a) shows the evolution of one-dimensional spectrum |η(kx, ky = 0, t)|2 in time in
logarithmic scale. A small red line indicates the initial characteristic wavenumber k0. Purple curve
corresponds to the almost initial spectrum at time t ≈ 2 min, green curve corresponds to the spectrum
at time t ≈ 1 h, and the black one corresponds to the spectrum at time t ≈ 26 h. Panel (b) shows the
dependence of total energy in time.

http://kachulin.itp.ac.ru/mdpi-2022-films/spectrum-1d.avi
http://kachulin.itp.ac.ru/mdpi-2022-films/spectrum-2d-zoom.avi
http://kachulin.itp.ac.ru/mdpi-2022-films/spectrum-2d-zoom.avi
http://kachulin.itp.ac.ru/mdpi-2022-films/surface-0s.avi
http://kachulin.itp.ac.ru/mdpi-2022-films/surface-96h.avi
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Figure 7 presents the time evolution of the surface. Comparing panels (a) and (b) in
Figures 4 and 7, one can see that they are almost indistinguishable. Since there were no
changes in the dynamics, the final computation time in this model was shorter.

Figure 7. The evolution of surface η(x, y, t) in time. The color shows the amplitude of the waves in
meters. Panel (a) corresponds to the almost initial surface at time t ≈ 2 min. Panel (b) corresponds to
the surface at time t ≈ 1 h, and Panel (c) corresponds to the surface at time t ≈ 26 h.

A similar problem was considered in [26] in the framework of the equations in physical
variables η and ψ corresponding to the Hamiltonian (3). It was shown that the initial
spectrum of the perturbed standing wave becomes isotropic over time, and a specific ”ring”
is formed. We observe very similar dynamics in proposed equations which can be clearly
seen in Figures 2c and 5c.

4. Conclusions

This work was devoted to the study of the hydrodynamics of two-dimensional waves
propagating on the surface of a three-dimensional ideal incompressible fluid. Two new
Hamiltonian models were proposed to describe the dynamics of such waves. The derivation
of the models was based on the use of compact forms of the Zakharov equation for one-
dimensional waves. Furthermore, we considered the dynamics of standing waves in
a channel with smooth vertical walls as a physical problem. The results of numerical
simulations showed an isotropization of the spectrum over time in both proposed models,
which is entirely consistent with the studies carried out earlier. Furthermore, similarities
in the overall dynamics in both models allowed us to conclude that the system of super-
compact equations, which is the simplest form of the Zakharov equation, can be successfully
applied to numerical simulations of two-dimensional deep water waves as well.

Author Contributions: Investigation, writing—review and editing, S.D., D.K. and A.D.; visualization,
S.D. and D.K.; writing—original draft preparation, S.D., D.K. and A.D. All authors have read and
agreed to the published version of the manuscript.



Fluids 2022, 7, 204 13 of 14

Funding: Sections 2 and 3, excluding Sections 2.2 and 3.2 of this research, were funded by the Russian
Science Foundation Grant No. 19-72-30028, whilst Sections 2.2 and 3.2 were funded by the Russian
Foundation for Basic Research Grant No. 20-31-90093.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to V.V. Geogjaev for providing results that improved this article.
Numerical simulations were performed at the Novosibirsk Supercomputer Center of Novosibirsk
State University and at the computing cluster of Landau Institute for Theoretical Physics RAS.

Conflicts of Interest: The authors declare no conflict of interest concerning the paper.

Abbreviations
The following abbreviations are used in this manuscript:

NLSE Nonlinear Schrödinger equation
HOSM High-order spectral method

References
1. Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems.

Stud. Appl. Math. 1974, 53, 249–315. [CrossRef]
2. Zakharov, V.E.; Manakov, S. On the complete integrability of a nonlinear Schrödinger equation. Theor. Math. Phys. 1974,

19, 551–559. [CrossRef]
3. Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 1968,

9, 190–194. [CrossRef]
4. Dyachenko, A.I.; Zakharov, V.E. Compact equation for gravity waves on deep water. JETP Lett. 2011, 93, 701–705. [CrossRef]
5. Dyachenko, A.; Kachulin, D.; Zakharov, V. Super compact equation for water waves. J. Fluid Mech. 2017, 828, 661–679. [CrossRef]
6. West, B.J.; Brueckner, K.A.; Janda, R.S.; Milder, D.M.; Milton, R.L. A new numerical method for surface hydrodynamics. J. Geophys.

Res. Ocean. 1987, 92, 11803–11824. [CrossRef]
7. Dyachenko, A.I.; Kuznetsov, E.A.; Spector, M.; Zakharov, V.E. Analytical description of the free surface dynamics of an ideal fluid

(canonical formalism and conformal mapping). Phys. Lett. A 1996, 221, 73–79. [CrossRef]
8. Dyachenko, A.I. On the dynamics of an ideal fluid with a free surface. Dokl. Math. 2001, 63, 115–117.
9. Ruban, V.P. Quasiplanar steep water waves. Phys. Rev. E 2005, 71, 055303. [CrossRef]
10. Ruban, V.P.; Dreher, J. Numerical modeling of quasiplanar giant water waves. Phys. Rev. E 2005, 72, 066303. [CrossRef]
11. Ruban, V.P. Breathing rogue wave observed in numerical experiment. Phys. Rev. E 2006, 74, 036305. [CrossRef] [PubMed]
12. Ruban, V.P. Conformal variables in the numerical simulations of long-crested rogue waves. Eur. Phys. J. Spec. Top. 2010, 185, 17–33.

[CrossRef]
13. Davey, A.; Stewartson, K. On three-dimensional packets of surface waves. Proc. R. Soc. Lond. Math. Phys. Sci. 1974, 338, 101–110.
14. Hui, W.; Hamilton, J. Exact solutions of a three-dimensional nonlinear Schrödinger equation applied to gravity waves. J. Fluid

Mech. 1979, 93, 117–133. [CrossRef]
15. Yuen, H.C.; Lake, B.M. Nonlinear dynamics of deep-water gravity waves. Adv. Appl. Mech. 1982, 22, 67–229.
16. Dysthe, K.B. Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc.

London. Math. Phys. Sci. 1979, 369, 105–114.
17. Trulsen, K.; Kliakhandler, I.; Dysthe, K.B.; Velarde, M.G. On weakly nonlinear modulation of waves on deep water. Phys. Fluids

2000, 12, 2432–2437. [CrossRef]
18. Kokorina, A.; Slunyaev, A. Lifetimes of rogue wave events in direct numerical simulations of deep-water irregular sea waves.

Fluids 2019, 4, 70. [CrossRef]
19. Slunyaev, A.; Kokorina, A. Account of occasional wave breaking in numerical simulations of irregular water waves in the focus

of the rogue wave problem. Water Waves 2020, 2, 243–262. [CrossRef]
20. Hasselmann, K. On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech. 1962,

12, 481–500. [CrossRef]
21. Zakharov, V. Analytic theory of a wind-driven sea. Procedia IUTAM 2018, 26, 43–58. [CrossRef]
22. Zakharov, V.E.; Badulin, S.I.; Geogjaev, V.V.; Pushkarev, A.N. Weak-turbulent theory of wind-driven sea. Earth Space Sci. 2019,

6, 540–556. [CrossRef]
23. Geogjaev, V.; Zakharov, V.E. Numerical and analytical calculations of the parameters of power-law spectra for deep water gravity

waves. JETP Lett. 2017, 106, 184–187. [CrossRef]
24. Dyachenko, A.I. Canonical system of equations for 1D water waves. Stud. Appl. Math. 2020, 144, 493–503. [CrossRef]

http://doi.org/10.1002/sapm1974534249
http://dx.doi.org/10.1007/BF01035568
http://dx.doi.org/10.1007/BF00913182
http://dx.doi.org/10.1134/S0021364011120058
http://dx.doi.org/10.1017/jfm.2017.529
http://dx.doi.org/10.1029/JC092iC11p11803
http://dx.doi.org/10.1016/0375-9601(96)00417-3
http://dx.doi.org/10.1103/PhysRevE.71.055303
http://dx.doi.org/10.1103/PhysRevE.72.066303
http://dx.doi.org/10.1103/PhysRevE.74.036305
http://www.ncbi.nlm.nih.gov/pubmed/17025741
http://dx.doi.org/10.1140/epjst/e2010-01235-x
http://dx.doi.org/10.1017/S0022112079001816
http://dx.doi.org/10.1063/1.1287856
http://dx.doi.org/10.3390/fluids4020070
http://dx.doi.org/10.1007/s42286-019-00014-9
http://dx.doi.org/10.1017/S0022112062000373
http://dx.doi.org/10.1016/j.piutam.2018.03.005
http://dx.doi.org/10.1029/2018EA000471
http://dx.doi.org/10.1134/S0021364017150012
http://dx.doi.org/10.1111/sapm.12305


Fluids 2022, 7, 204 14 of 14

25. Frigo, M.; Johnson, S.G. The design and implementation of FFTW3. Proc. IEEE 2005, 93, 216–231. [CrossRef]
26. Korotkevich, A.O.; Dyachenko, A.I.; Zakharov, V.E. Numerical simulation of surface waves instability on a homogeneous grid.

Phys. D Nonlinear Phenom. 2016, 321, 51–66. [CrossRef]

http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1016/j.physd.2016.02.017

	Introduction
	Hamiltonian Formalism for Deep Water Waves
	Generalization to Two-Dimensional Waves in b Variable Model 
	Generalization to Two-Dimensional Waves in Variables c+ and c-.

	Numerical Simulations
	Numerical Results Obtained in b Variable Model
	Numerical Results Obtained in the Model of c+ and c- Variables

	Conclusions
	References

