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Abstract
We consider graphs, which and all induced subgraphs of which possess the following
property: the maximum number of disjoint paths on k vertices equals the minimum
cardinality of vertex sets, covering all paths on k vertices. We call such graphs König
for the k-path and all its spanning supergraphs. For each odd k, we reveal an infinite
family of minimal forbidden subgraphs for them. Additionally, for every odd k, we
present a procedure for constructing some of such graphs, based on the operations of
adding terminal subgraphs and replacement of edges with subgraphs.

Keywords k-path packing · k-path cover · Minimal forbidden subgraph ·
Constructive description

1 Introduction

Let G be a simple graph and X be a set of simple graphs. Any subgraph (respectively,
induced subgraph) of G, isomorphic to an element of X , is called an X -subgraph
(respectively, an induced X -subgraph). An arbitrary set of pairwise vertex-disjoint
inducedX -subgraphs ofG is called anX -packing ofG. An arbitrary subset of vertices
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of G, having a nonempty intersection with vertex set of each induced X -subgraph of
G, is called an X -cover of G.

The maximum number of elements in X -packings of a graph G is denoted by
μX (G), the minimum number of vertices in its X -covers is denoted by βX (G). A
graph G is called König for X if μX (H) = βX (H), for every induced subgraph H of
the graph G. The class of all König graphs for X is denoted by K(X ). For X = {P2},
where Pn is the simple path on n vertices, X -packings are known as matchings and
X -covers are known as vertex covers. The known König theorem claims that, for any
bipartite graph G, we have μP2(G) = βP2(G). The converse statement is also true in
a certain sense: if this equality holds for a graph G and any its induced subgraph, then
G is bipartite. These remarks was the reason to choose the name for graphs in K(X ),
firstly introduced in [1].

The classK(X ) is hereditary for everyX , i.e.K(X ) is closed under vertex removal.
It is known that any hereditary class can be defined by the set of itsminimal forbidden
induced subgraphs, i.e. minimal under deletion of vertices graphs not belonging to the
class.

TheX -packing andX -cover problems, i.e. the problems for computingμX (G) and
βX (G) for a given graphG, are dual as being formulated as integer linear programming
problems. Hence, König graphs for X are exactly instances of these problems, having
hereditarily zero duality gap. There is a conjecture claiming that for any X the X -
packing and X -cover problems can be solved in polynomial time on König graphs
for X . It is still open, but some advances here give a support for confirmation of this
conjecture (see, for example, [2]).

Note that, in literature, anX -cover also often means a set of vertices in G, covering
all X -subgraphs of G, not necessarily induced, see, for example, [10,13]. However,
any induced X -subgraph is a spanning subgraph of some X -subgraph.

Denote by 〈X 〉 the set of all spanning supergraphs of all graphs in X , i.e. the set of
graphs, containing all graphs inX and all graphs, obtained from them by adding edges.
Hereafter, we also use the notation 〈H〉 (instead of 〈{H}〉) for the set of all spanning
supergraphs of a graph H . Any 〈X 〉-cover is a vertex set, whose removal produces
a subgraph, containing no X -subgraphs. Any 〈X 〉-packing is a set of X -subgraphs,
pairwise not containing common vertices.

Several papers on the X -packing and X -cover problems are devoted to their algo-
rithmic aspects (see, for example, [4,9,22]). It is known that the X -packing problem
is NP-hard for any X , containing a graph, having a connected component with three
or more vertices [11]. It is also known that the P2-cover problem is NP-hard [8].

Several papers are devoted to algorithmic aspects of the X -packing and X -cover
problems both for the induced and general cases, where X consists of Pk . It is known,
in particular, that the 〈Pk〉-cover problem is NP-hard, for any k ≥ 2 [3,21], and the
〈Pk〉-packing problem is polynomial-time solvable, for k = 2 [7], NP-hard, for k ≥ 3
[11,15], and APX-hard, for k ≥ 4 [6].

It is known, however, that the Pk- and 〈Pk〉-packing problems as well as the Pk-
and 〈Pk〉-cover problems can be solved in linear time in the class of forests, for any k
[3,15]. Moreover, more complex graph classes are known, on which these problems
can be solved for various k in polynomial time [5,12,20], including some classes of
König graphs and their subclasses (see [2,16,19]).
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The present paper continues a series of investigations carried out earlier for the
graph classesK(〈P3〉) [2] andK(〈P5〉) [18]. These classeswere appeared to be strongly
hereditary or monotone, i.e. they are closed under deletion of vertices and edges. Any
strongly hereditary class can be defined by the set of itsminimal forbidden subgraphs,
i.e. graphs, minimal under deletion of vertices and edges, not belonging to the class.

In the case of generalX , the classK(〈X 〉) is hereditary, but not strongly hereditary.
Indeed, let us consider the class K(〈claw〉), where claw is the complete bipartite
graph with one vertex in the first part and three vertices in the second one. The graph
B is the graph of a 3-dimensional cube, and the graph B ′ is obtained from B by
deleting all edges of some cycle with 4 vertices of B. Clearly, B ′ /∈ K(〈claw〉),
as μ〈claw〉(B ′) = 1, β〈claw〉(B ′) = 2, and B ∈ K(〈claw〉). Therefore, for any X ,
all minimal forbidden fragments for K(〈X 〉) are split into two categories: minimal
forbidden induced subgraphs and minimal forbidden subgraphs.

In [2,18], for K(〈P3〉) and K(〈P5〉), complete descriptions of minimal forbidden
subgraphs have been obtained aswell as constructive descriptions have been presented,
i.e. procedures to construct any graph from the classes. A similar result was obtained
in [14] for K(〈P4〉). In [1,2], for K(P3), a complete description of minimal forbidden
induced subgraphs have been obtained. In [17], for K(P4), a partial description of
minimal forbidden induced subgraphs have been obtained.

In the present paper, we give a generalization of the descriptions, mentioned above,
for the parametric family {K(〈Pk〉) : k is odd}. In Sect. 3, we reveal some infinite
family of minimal forbidden subgraphs for each class from the family. In Sect. 4, for
any odd k, we define the class of RTk-graphs, obtained from pseudographs by applying
replacement of edges with subgraphs and adding the so-called terminal subgraphs, and
prove that each such a class is contained in K(〈Pk〉).

2 Notation

2.1 Basic notation

Throughout the paper, k is the main parameter for class K(〈Pk〉). It is always odd and
means the number of vertices in the basic path. Throughout the paper, s equals k−1

2 ,
i.e. k = 2s + 1.

We use the notation Kn , On , Pn , Cn for the complete graphs, empty graphs, simple
paths and simple cycles on n vertices, respectively.

An edge, incident to vertices x and y, is denoted by xy. An arbitrary path
(x, v1, v2, . . . , vt , y) is denoted by x--y. To accent that such a path contains a vertex
z or an edge z1z2, we use the notation x--z--y and x--z1z2--y, respectively.

We denote by V (G) the set of vertices of a graph G. The set of vertices, adjacent
to a vertex v, is called the neighbourhood of v and denoted by NG(v).

We call a 〈Pk〉-subgraph of G its k-tuple.
We use the notation Free(Y) for the class of all graphs, all induced subgraphs of

which are not in Y .
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2.2 Some operations with graphs and subgraphs

Let G be a graph, A ⊆ V (G). We denote by G[A] the subgraph, induced by A. We
denote by G\A the subgraph, induced by V (G)\A. If A consists from one vertex v,
then we denote G\{v} as G\v.

The subgraph of G, obtained by deleting an edge e, is denoted by G\e. Let H
be an induced subgraph of G and v ∈ V (G), where v ∈ V (G)\V (H). The graph
G[V (H) ∪ {v}] is denoted by H + v. Let H1 and H2 be induced subgraphs of G with
V (H1) ∩ V (H2) = ∅. The graph G[V (H1) ∪ V (H2)] is denoted by H1 + H2.

2.3 Distances, lengths, and critical paths

The distance between vertices u, v is denoted by d(u, v). The length of paths x--y and
x--y--z is denoted by d(x--y) and d(x--y--z), respectively.

We call a critical path between u and v a simple path u--v of the maximum length.
We call the critical distance between vertices u, v the length of a critical path u--v and
denote it as dc(u, v), i.e. dc(u, v) = maxu--v d(u--v). Note that the critical distance is
not a metric (for example, dc(v, v) �= 0, for any cyclic vertex v).

2.4 Specific notation

We denote by Fn the set of all connected graphs in Free(〈Pn〉). Its elements will be
called Fn-graphs. Note that, in each Fn-graph, the critical distance between any pair
of its vertices is no more than n − 2. Also, note that F1 = ∅, F2 = {K1}.

We denote by T ∗
n the set of all rooted trees with the following properties:

1. For each leaf l, we have d(r , l) = n − 1, where r is the root.
2. For each pair of non-intersected paths a--b and c--d, containing no r , where a, c

are leaves, the inequality d(a, b) + d(c, d) ≤ 2n − 3 is true.

We denote by Zn the set {0, 1, . . . , n − 1}.
Considering a cycle Cn , we assume that its vertices are labeled along the cycle as

0, 1, . . . , n − 1. If n = km,m ∈ N, then each residue class of vertices modulo k is
called a k-class. The k-class, which contains a vertex v, is denoted by Qk(v).

We call the class distance dk(u, v) between vertices u, v the minimum distance
between vertices of their k-classes. In other words,

dk(u, v) = min
x∈Qk (u),y∈Qk (v)

d(x, y).

3 Forbidden subgraphs

It was proved in [16] that, for each k ≥ 4, every forest is a König graph for Pk (this
follows from Theorem 1 from [16]). Combining this fact with the fact that any forest
has no other 〈Pk〉-subgraphs, except Pk , we have
Lemma 1 For every k, each forest is a König graph for 〈Pk〉.
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For any i ∈ {0, 1, . . . , k − 1} and n ≥ 2, we have

μ〈Pk 〉(Ckn+i ) = β〈Pk 〉(Ckn−i ) = n and μ〈Pk 〉(Ck+i ) = β〈Pk 〉(Ck) = 1.

By this fact and by Lemma 1, we have

Theorem 1 The cycle Cn belongs to K(〈Pk〉) if n ≤ k or k divides n. It is a minimal
forbidden subgraph for K(〈Pk〉), if n > k and k does not divide n.

3.1 Medusas

Let us consider the family of connected graphs, obtained from a simple cycle by adding
a set of simple paths in such a way, that exactly one end vertex of each added path is
a vertex of the cycle. We call such graphs medusas.

Denote by Mn(m1,m2, . . . ,mn) the medusa, obtained from the cycleCn by adding
the paths of length m1,m2, . . . ,mn to the vertices 1, 2, . . . , n, respectively. If there is
no a path to add to a vertex i , we assume that such a path has one vertex and its length
equals 0, i.e. mi = 0 in this case. We call the added paths of non-zero length as the
tentacles of the medusa.

Theorem 2 The graph Mkn(m1,m2, . . . ,mkn) belongs to K(〈Pk〉) iff

∃i ∈ Zk : ∀ j ∈ Znk\Qk(i) : m j < dk(i, j). (1)

Proof Put M = Mkn(m1,m2, . . . ,mkn) and denote the cycle of M by CM . From
the remark before the statement of Theorem 1, CM contains a 〈Pk〉-packing of the
cardinality n. Similarly, each k-class of CM is its 〈Pk〉-cover of the same cardinality.
We will formulate a criterion whether a k-class Qk(i) of CM is a 〈Pk〉-cover of the
whole graph M .

The graph M\Qk(i) is a forest. The set Qk(i) is a 〈Pk〉-cover of the whole graph
M iff each connected component of M\Qk(i) belongs to Fk . Let T be one of those
connected components. It is induced by the vertices kt + 1, kt + 2 . . . , kt + k − 1,
where t ∈ N, and by the corresponding tentacles. Let us consider the case t = 0. All
the cases t > 0 are similar.

We have T ∈ Fk iff mi+p + mi+q + d(i + p, i + q) ≤ k − 2, for any p, q ∈
{1, 2, . . . , k − 1}. Without loss of generality, assume p < q. Then,

d(i + p, i + q) = q − p, i.e. mi+p + mi+q ≤ k + p − q − 2.

Substituting p = 1, q = k − 1, we get mi+1 +mi+k−1 ≤ 0, i.e. mi+1 = mi+k−1 = 0.
Then, substituting p = 1, q = k− r , we getmi+k−r ≤ r −1, substituting p = r , q =
k − 1, we get mi+r ≤ r − 1 (in both cases, r is an arbitrary integer from 1 to s). Note
that, for the vertices i + r and i − r , the distances to the nearest vertices from Qk(i)
equal r , i.e. dk(i, i + r) = dk(i, i − r) = r . Thus, m j < dk(i, j), for every vertex
j ∈ {i + 1, i + 2, . . . , i + k − 1}.
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Thus, Qk(i) is a 〈Pk〉-cover of the graph M iff ∀ j ∈ Znk\Qk(i) : m j < dk(i, j).
In this case, obviously, μ〈Pk 〉(M) = β〈Pk 〉(M) = n. Since each subgraph of M is
either a medusa with the same properties or a forest, we, by Lemma 1, conclude that
M ∈ K(〈Pk〉). Thus, the sufficiency is proved.

Let us prove the necessity. Let now M be a graph, which does not satisfy the
condition (1). It means that the following condition holds:

∀i ∈ Zk : ∃ j ∈ Znk\Qk(i) : m j ≥ dk(i, j). (2)

Moreover, if at least one m j is decreased by 1, then the obtained graph satisfies the
condition (1). So, in addition, for M the following condition holds:

∀t ∈ Znk,mt ≥ 1 : ∃l(t) ∈ Zk : ∀ j ∈ Znk\Qk(l(t))\{t} :
m j < dk(l(t), j) and mt ≤ dk(l(t), t). (3)

It is followed from (2) that any k-class is a not 〈Pk〉-cover of the graph M . So,
β〈Pk 〉(M) ≥ n + 1.

Let mt ≥ 1. Then, it is followed from (2) and (3) that mt = dk(l(t), t). Suppose
that mt is the minimum non-zero number for all t ∈ Qk(t). But, mt ′ < dk(l(t), t

′
) =

dk(l(t), t) = mt , for each t
′ ∈ Qk(t)\{t}. So, mt ′ = 0.

Thus, it can be mt ≥ 1, for no more than one number t from each k-class. So, we
can associate the index of any tentacle with the number of its k-class. Without loss of
generality, we can assume thatmt ≥ 1 only for t ∈ Zk . Then, l(t) equals either t +mt

or t − mt .
Denote by S the sum of all mt in M . For any i ∈ Zk , denote by Ni the quantity

of numbers t �= i , such that mt ≥ dk(i, t). Note that, for each t , there are exactly
2mt numbers i , such that mt ≥ dk(i, t) (they are all belong to {t − mt , . . . t − 1, t +
1, . . . , t + mt }). So, ∑k

i=1 Ni = 2S.
In addition, note that none of the numbers in {t −mt , . . . t − 1, t + 1, . . . , t +mt }

cannot be l(t
′
), for any t

′ ∈ Zk .
Consider the sequence t0, t1, . . . , tp, such that mt j ≥ 1, for each j ∈ {0, . . . , p},

ml(tp) = 0, and t j = l(t j−1) = t j−1 − mt j−1 , for each j ∈ {1, . . . , p}. We prove
by induction that there are exactly mt1 numbers i between l(tp) and t1 − 1, such that
Ni = 1 and Ni = 2, for the others i .

Obviously, Ni = 1 holds, for each i ∈ {l(tp), . . . , tp − 1}, i.e. for mtp numbers of
this set. Thus, if p = 1, then the condition is true.

Suppose that Ni = 1 holds for mt j numbers i from the set {l(tp), . . . , t j − 1}.
Then, Ni = 1 holds, for i = t j and each i ∈ {t j + mt j + 1, . . . , t j−1}, and Ni = 2
holds, for each i ∈ {t j + 1, . . . , t j + mt j }. So, the quantity of numbers i from the set
{l(tp), . . . , t j − 1}, where Ni = 1, equals

mt j + 1 + t j−1 − (t j + mt j + 1) = t j−1 − t j = mt j−1 .

The same statement is true for the sequence t0, t1, . . . , tp, such thatmt j ≥ 1, for each
j ∈ {0, . . . , p}, ml(tp) = 0, and t j = l(t j−1) = t j−1 +mt j−1 , for each j ∈ {1, . . . , p}
.

123



On partial descriptions of König graphs for odd paths... 487

Let N
′
i = Ni − 2, for each i ∈ Zk . Let S

′ = ∑k
i=1 N

′
i . It is easy to see that

S
′ = 2(S − k).
Consider a number i ∈ Zk and the numbers t1, t2, such that mt j ≥ dk(i, t j ), j ∈

{1, 2} and 0 ≥ t1 − mt1 < t − mt , for all t �= t1,mt ≥ dk(i, t), and t + mt <

t2 + mt2 ≥ k − 1, for all t �= t2,mt ≥ dk(i, t). Note, that t1 + mt1 ≤ i ≤ t2 − mt2 .
So, for each t1 − mt1 ≥ j ≥ t2 + mt2 but, maybe, t1 and t2, either mt1 ≥ dk( j, t1) or
mt2 ≥ dk( j, t2). So, if mt ≥ dk(i, t), for t /∈ {t1, t2}, then l(t) equals either t1 or t2.

Suppose that Ni = 4 (note that it cannot be more). Then, there are 4 numbers
t1, t2, t3, t4, such that

t1 < t3 < t4 < t2 and l(t1) < t1, l(t2) > t2, l(t3) = t1, l(t4) = t2.

The number of vertices between l(t1) and l(t2) equals

mt1 + mt3 + (t4 − t3 + 1) + mt4 + mt2 ,

which is not less than mt1 + mt2 + mt3 + mt4 + 2. Moreover, for each i from t1 to t2,
the inequality mt ≥ dk(i, t) can be true only for t ∈ {t1, t2, t3, t4}. Since l(t3) = t1
and l(t4) = t2, we can consider two sequences t1, t

′
1, . . . , t

′
p with the property (3.1)

and t2, t
′′
1 , . . . , t

′′
q with the property (3.1). The number of vertices between l(t

′
p) and

l(t1) − 1 equals mt ′p + mt
′
p−1

+ · · · + mt1 . The number of vertices between l(t2) and

l(t
′′
q ) − 1 equals mt ′′q + mt

′′
q−1

+ · · · + mt2 Thus,

l(t
′′
q )

∑

l(t ′p)

N
′
i =

l(t1)−1∑

l(t ′p)

N
′
i +

t1−1∑

l(t1)

N
′
i +

t2∑

t1

N
′
i +

l(t2)∑

t2

N
′
i +

l(t
′′
q )

∑

l(t2)+1

N
′
i

≤ mt1 + mt1 + mt2 + 2mt3 + 2mt4 + mt2 − 2(mt1 + mt2 + mt3 + mt4 + 2) = −4

Suppose that Ni = 3 and, for each j between t1 and t2, we have N j ≤ 3. Then,
without loss of generality, there are 3 numbers t1, t2, t3, such that

t1 < t3 < t2, l(t1) < t1, l(t2) > t2, l(t3) = t1.

If ml(t2) ≥ 1, then, similarly to the previous reasonings, we have

l(t
′′
q )

∑

l(t ′p)

N
′
i ≤ −4.

Otherwise, for each i from t1 to l(t2), the inequality mt ≥ dk(i, t) can be true only
for t ∈ {t1, t2, t3}. The quantity of vertices between l(t1) and l(t2) equals mt1 +mt3 +
(t2 − t3 + 1) + mt2 , which is not less than mt1 + mt2 + mt3 + 2. Since l(t3) = t1,
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we can consider a sequence t1, t
′
1, . . . , t

′
p with the property (3.1) and the quantity of

vertices mt ′p + mt
′
p−1

+ · · · + mt1 . Thus,

l(t2)∑

l(t ′p)

N
′
i =

l(t1)−1∑

l(t ′p)

N
′
i +

t1−1∑

l(t1)

N
′
i +

l(t2)∑

t1

N
′
i

≤ mt1 + mt1 + 2mt2 + 2mt3 − 2(mt1 + mt2 + mt3 + 2) = −4.

For the other numbers i , Ni equals either 1 or 2, i.e. N
′
i ≤ 0. So, by the arguments

above, if there exists i , for which Ni ≥ 3, then S
′ ≤ −4.

Suppose that for each i , Ni equals either 1 or 2. For each t , wheremt ≥ 1, Nl(t) = 1
holds and, therefore, N

′
l(t) = −1. Since there are at least two tentacles in M , the total

sum of all N
′
i is less or equal than −2.

Thus, in any case, S
′ = 2(S − k) ≤ −2 and, therefore, S ≤ k − 1. It means that M

has no more than k(n + 1) − 1 vertices, and, therefore, μ〈Pk 〉(M) ≤ n < β〈Pk 〉(M).
��

Corollary 1 The graph Mkn(m1,m2, . . . ,mkn) is a minimal forbidden subgraph for
K(〈Pk〉) iff the following conditions simultaneously hold:

1. ∀i ∈ Zk : ∃ j ∈ Znk\Qk(i) : m j ≥ dk(i, j).
2. ∀t,mt ≥ 1 : ∃i ∈ Zk : ∀ j ∈ Znk\Qk(i)\{t} : m j < dk(i, j) and mt = dk(i, t).

4 RTk-graphs

In this Section, we describe the procedure of RTk-extention of pseudographs and the
class RTk . We prove here that any RTk-extention of every pseudograph is a König
graph for 〈Pk〉.
Definition 1 We call a connected subgraph H of a graph G terminal if there exists a
vertex c ∈ V (G)\V (H), such that c is adjacent to one or more vertices of H and H
is a connected component of graph G\c. We call c as a contact vertex of H .

By adding a terminal subgraph H to a vertex v ∈ V (G), we mean that we add H
to G and connect some vertices of H with v by new edges.

Definition 2 Let us define the recursive procedure of “cascade” adding some terminal
Fi -subgraphs. We denote this procedure as AddT F(v, i), where v is a vertex of a
graph G and i is a positive integer.

If i = 1, then we cannot add any subgraph and have to stop the procedure.
If i ≥ 2, then we choose some positive integers j1, j2, . . . , jm , each no more than

i , and add to v some arbitrary terminal subgraphs H1, H2, . . . , Hm , where Ht ∈ Fjt ,
for each t ∈ {1, . . . ,m}. After this we can (not necessary) choose a vertex vt in Ht

and apply the procedure AddT F(vt , i − jt + 1), for each t ∈ {1, . . . ,m}.
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Lemma 2 Let H be a terminal subgraph, added by the procedure AddT F(v, i) to a
vertex v of a graph G. Then, dc(v, x) ≤ i − 1, for each vertex x of H.

Proof The proof is by induction on the number of applications for the procedure
AddT F .

Assume that AddT F(v, i) have been applied one time, i.e. there is no another
procedure AddT F inside. Then, H ∈ Fi and d(x, y) ≤ i −2, for each pair of vertices
x, y of H . Thus, dc(v, x) ≤ i − 1, for each vertex x of H .

Now, suppose that the assertion is true for the procedure AddT F , having no more
than k recursive calls. Let us consider the procedure AddT F , having k + 1 calls.

The first call of AddT F is adding to v some terminal subgraphs H1, H2, . . . , Hm

and choosing vertices v1, . . . , vm in them. Consider t ∈ {1, . . . ,m}. By the definition,
jt ≤ i and Ht is a Fjt -graph. Thus, dc(v, x) ≤ jt −1 ≤ i −1, for each vertex x of Ht .
The second call is applying the procedure AddT F(vt , i − jt + 1). Let H

′
be a

terminal subgraph, added by this procedure. By the inductive assumption dc(vt , x) ≤
i − jt , for each vertex x of H

′
. Hence, we have

dc(v, x) = dc(v, vt ) + dc(vt , x) ≤ jt − 1 + i − jt = i − 1.

��
Definition 3 Let G be a graph and xy be an edge of G. Define the procedure, which
will be called the (A, Fk)-extension of the edge xy.

1. Delete xy from G.
2. Add to G all vertices and edges of two arbitrary T ∗

s -graphs Hx and Hy . Let rx , ry
be the roots and Vx , Vy be the sets of leaves of Hx and Hy , respectively.

3. Add the edge rxry .
All the following steps are described for Hx . The steps for Hy are similar.

4. Add the edge ux x , for each ux ∈ Vx .
5. For each vertex v of Hx , put

h(v) := min{d(v, x), min
v--x--w,

rx /∈v--x--w

{k − d(v--x--w) − 1}}.

6. Perform all the steps of the following procedure:
{
while(true)

(a) Chose an arbitrary vertex v ∈ {v : h(v) ≥ 2}.
(b) Apply the procedure AddT F(v, h(v)).
(c) For each vertex w, where rx /∈ v--x--w, change

h(w) := min{h(w), k − d(v--x--w) − h(v)}.

}
Hereafter, we denote by Ha

x and Ha
y the subgraphs, obtained from Hx and Hy after

applying all the AddT F procedures. Put Ha = Ha
x + Ha

y .
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Lemma 3 The graph Ha is a Fk-graph.

Proof Since Hx and Hy are T ∗
s -graphs, each maximum path in Hx + Hy connects two

vertices ux ∈ Vx , uy ∈ Vy and

dc(ux , uy) = d(ux , uy) = d(ux , rx ) + 1 + d(ry, uy)

= s − 1 + 1 + s − 1 = 2s − 1 = k − 2.

It means that any maximum path in Hx + Hy consists of k − 1 vertices.
Let v be a vertex of Hx and u be a vertex from Vx , which is nearest to v. It is

easy to see that h(v) ≤ d(v, u) + 1 at every iteration of the step 6. Let H
′′
be a

terminal subgraph, added by the procedure AddT F(v, h(v)). By Lemma 2, we have
dc(v,w) ≤ h(v) − 1, for each vertex w of H

′′
. Thus, dc(v,w) ≤ d(v, u). But,

every maximum path, beginning at w, contains v. So, it length cannot be more than
k − 2. ��
Corollary 2 Both graphs Ha

x and Ha
y are Fk-graphs.

Lemma 4 Both graphs Ha
x + x\rx and Ha

y + y\ry are Fk-graphs.

Proof We will prove it only for Ha
x + x .

If |Vx | = 1, then Hx ∼= Ps . In this case, we have h(v) = d(v, x), for each
v ∈ V (Hx ). Let v1, v2 ∈ V (Hx ), such that d(v1, x) < d(v2, x), H

′′
1 and H

′′
2 be termi-

nal subgraphs, added by the procedures AddT F(v1, h(v1)) and AddT F(v2, h(v2)),
respectively,w1 andw2 be vertices of H

′′
1 and H

′′
2 , respectively. In the graph H

′
x+x\rx ,

we have

dc(w1, w2) = dc(w1, v1) + dc(v1, v2) + dc(v2, w2).

By Lemma 2, we have

dc(w1, w2) ≤ h(v1) − 1 + d(v1, v2) + h(v2) − 1

≤ d(v1, x) + d(v1, v2) + d(v2, x) − 2.

Since d(v1, x) < d(v2, x), we have d(v2, x) = d(v1, x) + d(v1, v2). Therefore,

dc(w1, w2) ≤ 2d(v2, x) − 2 ≤ 2s − 2 = k − 3.

Similarly, dc(w1, x) ≤ 2s − 1 = k − 2 and dc(w2, x) ≤ 2s − 1 = k − 2, i.e.
Ha
x + x\rx ∈ Fk .
Now, assume that |Vx | ≥ 2. As Hx ∈ T ∗

s , any maximum path of Hx +x\rx consists
of the edges ax, cx , and two non-intersected paths a--b and c--d, where a, c ∈ Vx .
Then, by the properties of T ∗

s , we have

dc(a, b) + dc(c, d) = d(a, b) + d(c, d) ≤ 2s − 3.

So, the maximum length of paths of Hx + x\rx is 2s − 1 = k − 2.
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By the description of the step 5, we have h(v) ≤ k−d(v--x--w)−1, where v--x--w
has the maximum length among such paths containing no rx .

Let Hi
x be the graph obtained from Hx + x\rx after i iterations of the step 6. Now,

we prove the two following statements for the graph Hi
x by induction on i .

1. The inequality h(v) ≤ k − d(v--x--w)− 1 is true, for any vertices v,w ∈ V (Hi
x ).

2. The maximum length of paths in Hi
x is k − 2.

The induction base of the proof is H0
x = Hx+x\rx . It was described above. Assume

that both statements hold for the graph Hi−1
x .

Let v,w ∈ V (Hi−1
x ), such that path v--x--w exists, and u be an arbitrary vertex of

a terminal subgraph, added by the procedure AddT F(v, h(v)) on the i-th iteration of
the step 6.

By the inductive assumption, we have h(v) ≤ k − d(v--x--w) − 1. By Lemma 2,
we have dc(v, u) ≤ h(v) − 1, i.e. dc(u, v) ≤ k − d(v--x--w) − 2. Then, dc(u, v) +
d(v--x--w) ≤ k − 2. But, every path u--x contains v, so the maximum length of paths
u--x--w is k − 2. Since it holds for arbitrary u and w, we proved the statement 2.

Now, we evaluate the value of h(w) in Hi
x . We denote it by hi (w). Let h(w) be the

corresponding value in Hi−1
x . By the description of the step 6, we have

hi (w) = min{h(w), k − d(v--x--w) − h(v)}.

By the inductive assumption, we have h(w) ≤ k − d(v--x--w) − 1. So,

hi (w) ≤ h(w) ≤ k − d(v--x--w) − 1, d(u--x--w) = dc(u, v) + d(v--x--w),

for each path u--x--w. But dc(v, u) ≤ h(v) − 1. So,

d(u--x--w) ≤ d(v--x--w) + h(v) − 1 and d(v--x--w) ≥ d(u--x--w) − h(v) + 1.

Finally,

hi (w) ≤ k − d(v--x--w) − h(v) ≤ k − d(u--x--w) + h(v) − 1 − h(v)

= k − d(u--x--w) − 1.

Since it holds for arbitrary u, v, and w, we proved the statement 1. ��
Definition 4 Let G be a graph and xy be an edge of G and i ≥ 3 be a natural. Let us
define the procedure of the (B, Fi )-extension of the edge xy.

1. Delete xy from G.
2. Add to G an arbitrary T ∗

i -graph Hx , in such a way that x is the root of Hx . Denote
by Vx the set of leaves of Hx .

3. Add the edge ux y, for each ux ∈ Vx .
4. For each vertex v of Hx , put

h(v) := min{d(v, x), min
v--y--w,
x /∈v--y--w

{k − d(v--y--w) − 1}}.
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5. Perform all the steps of the following procedure:
{
while(true)

(a) Chose an arbitrary vertex v ∈ {v : h(v) ≥ 2}
(b) Apply the procedure AddT F(v, h(v)).
(c) For each vertex w, where x /∈ v--y--w, change

h(w) := min{h(w), i − d(v--y--w) − h(v)}.

}
Hereafter, we denote by Hn

x the subgraph, obtained from Hx after applying all the
procedures AddT F .

Lemma 5 The graph Hn
x is a F2i+1-graph.

Proof Since Hx ∈ T ∗
i , its diameter cannot be more than 2(i − 1). It means that any

maximum path of Hx consists of 2(i − 1) + 1 = 2i − 1 vertices.
Let v be a vertex of Hx and u be a vertex from Vx , which is nearest to v. It is

easy to see that h(v) ≤ d(v, u) + 1 at every iteration of the step 5. Let H
′′
be a

terminal subgraph, added by the procedure AddT F(v, h(v)). By Lemma 2, we have
dc(v,w) ≤ h(v) − 1, for each vertex w of H

′′
. Thus, dc(v,w) ≤ d(v, u). But, every

maximum path, beginning at w, contains v. So, it length cannot be more than 2i − 2.
��

Lemma 6 The graph Hn
x + y\x is a F2i+1-graph.

The proof of this Lemma is the same as in the proof of Lemma 4.

Definition 5 Let M be a pseudograph. Let us define the procedure of RTk-extention
of the pseudograph M as follows:

1. Each cyclic edge of M must be extended by the (A, Fk)-extention.
2. Some non-cyclic edges of M can be extended by the (B, Fi )-extention, where

i ≤ s.
3. For some vertices v ∈ V (M), the procedure AddT F(v, k) can be applied.

Denote by RTk the set of all RTk-extentions of all pseudographs.

Theorem 3 Every subgraph of each RTk-graph is a RTk-graph.

Proof LetG be a RTk-graph,which obtained by the RTk -extention fromapseudograph
M . Let G

′ = G\e be the graph, which obtained from G by deleting an edge e.
We may consider, without loss of generality, that if one of the graphs Hx or Hy is

empty after the (B, Fi )-extension of an edge, then the root of another one has at least
two children. Otherwise, we can consider an root edge as the edge of M .

If e is a bridge of G, then it is a non-cyclic edge of M or an edge of some terminal
subgraph added by the procedure AddT F , or connect such terminal subgraph with
its contact vertex. In this cases, G

′
can be obtained by the RTk-extention from H\e

or M ∪ K1, respectively.
If e is not a bridge of G, then the following cases are possible:
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1. The edge e is in a terminal subgraph T , added by AddT F , or connect such a
terminal subgraph with its contact vertex. Then, T \e can be added by AddT F to
the same contact vertex. Hence, G

′
can be obtained by the RTk-extention from M .

2. The edge e is in a subgraph, added by the (B, Fi )-extension of the edge xy, but
not in a terminal subgraph. Suppose that e is in Hx . Its deletion divides Hx into
two connected components. Denote by H

′
x those of them, which contains x , and

by H
′′
x the another one. It is easy to see that H

′′
x is a terminal Fi -subgraph of G,

so it can be added to y by the procedure AddT F . In its turn, either H
′
x\x is a

terminal Fi -subgraph of G too or a T ∗
i -graph, each leaves of each are adjacent to

y. Hence, G
′
can be obtained by the RTk-extention from M .

3. The edge e is in a subgraph, added by the (A, Fk)-extension of the edge xy, but
not in a terminal subgraph. If deletion of e breaks all the paths x /∈ v--y in the
corresponding Hc, then consider the pseudograph M

′ = M\xy.
Denote by E

′
the set of cyclic edges of M , which are non-cyclic in M

′
. Subdivide

each edge ab ∈ E
′
with two vertices ra and rb in such a manner as ara , brb are the

new edges. Add the vertices rx , ry and the edges xrx if e /∈ Hc
x , yry if e /∈ Hc

y , rxry if
e �= rxry in Hc (it is easy to see, that exactly 2 edges are added). Denote the obtained
graph by M

′′
.

We can see now that each (A, Fk)-extension of the edge ab ∈ E
′
in M corresponds

to some (B, Fs)-extension of ara , brb in M
′′
and, maybe, after applying some proce-

dures AddT F(ra, k) and AddT F(rb, k). In addition, Hc\e can be obtained by some
(B, Fs)-extension of xrx and yry (if the corresponding edge exists) and, maybe, after
applying theprocedures AddT F(rx , k), AddT F(ry, k), AddT F(x, k), AddT F(y, k).
This follows from the definition of the procedures and Lemma 4.

Hence, G
′
can be obtained by the RTk-extention from M

′′
.

If there are some paths x /∈ v--y in the corresponding Hc after deleting of e,
then the connected component of Hc, containing rx and ry can still be added by
the (A, Fk)-extension of the edge xy, and, by Lemma 4 the other components are
terminal Fk-graphs, so, it can be added after applying the procedures AddT F(x, k)
or AddT F(y, k).

Hence, G
′
can be obtained by the RTk-extention from M . ��

Theorem 4 Each RTk-graph is König for 〈Pk〉.
Proof LetG be a RTk-graph,which obtained by the RTk -extention fromapseudograph
M . Considering Lemma 3, we must only prove that μ〈Pk 〉 (G) = β〈Pk 〉 (G).

The proof is by induction on the edge number of G. If every connected component
of G is a Fk-graph, then, obviously, μ〈Pk 〉(G) = β〈Pk 〉(G) = 0.

Now, suppose that G /∈ Fk and μ〈Pk 〉(G
′
) = β〈Pk 〉(G

′
) holds, for any subgraph G

′

of G with any fewer number of edges. We can assume for G to be connected. Since
G contains at least one q-tuple, one of the following conditions holds for it:

1. The graph G contains a terminal Fk-subgraph T with a contact vertex y, such that
T + y contains a q-tuple. Or G contains a pair of terminal Fk-subgraphs T1 and
T2 with a common contact vertex y, such that T1 + T2 + y contains a q-tuple.
Note that each q-tuple of T + y and T1 + T2 + y contains the vertex y. Let Q
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be one of such q-tuples. Consider the graph G
′ = G\Q. Let P be a maximum

〈Pk〉-packing and C be a minimum 〈Pk〉-cover of the graph G
′
. By the inductive

assumption, we have |P| = |C |. But, P ∪{Q} is a 〈Pk〉-packing of the size |P|+1
and C ∪ {y} is a 〈Pk〉-cover of the same cardinality in the graph G.

2. The graphG does not contain terminal Fk-subgraphs from the case 1, but it contains
a cycle of length k or more. Denote by D the set of all such vertices of all such
cycles. Denote byC0 the set of all cyclic vertices of the pseudographM . Obviously,
C0 ⊆ D. Each vertex x of C0 corresponds to at least one q-tuple r1--x--r2, where
r1 and r2 are roots of two Hx graphs, added in the type A extention of two cyclic
edges, incident to x . Denote by P0 the set of such q-tuples. All q-tuples in P0
pairwise have not common vertices, and they are all contained in D. Obviously,
|C0| = |P0|.
Consider the graph G

′ = G\D. Let P be a maximum 〈Pk〉-packing and C be
a minimum 〈Pk〉-cover of the graph G

′
. By the inductive assumption, we have

|P| = |C |. The set P ∪ P0 is a 〈Pk〉-packing of the graph G.
We show that C ∪C0 is a 〈Pk〉-cover of graph G. Consider two vertices x, y ∈ C0
adjacent in the pseudograph M (the case x = y is possible, if xx is a loop in M).
By Lemma 3, the RTk-extention converts the edge xy of the pseudograph M into
a Fk-subgraph of the graph G. Thus, G\C0 is the union of the graph G

′
and a

number of Fk-graphs, so it contains the same set of q-tuples as G
′
. In other words,

C0 covers all q-tuples of the graph G, which are not covered by C , i.e. C ∪ C0 is
a 〈Pk〉-cover of graph G.
Since |C0| = |P0|, we have μ〈Pk 〉 (G) = β〈Pk 〉 (G).

3. The graphG does not contain cycles of length k ormore and terminal Fk-subgraphs
from the case 1. The pseudograph M is a tree in this case.
Without loss of generality, we can consider that all maximal terminal Fk -subgraphs
of the graph G added by some AddT F procedures. In this case, either M = O1
(then, it is easy to see, that μ〈Pk 〉 (G) = β〈Pk 〉 (G) = 0), or at least one AddT F
procedure was applied to each its leaf. In other words, now, we assume that each
terminal subgraph, a contact vertex of which is a leaf, is maximal

Let y be a leaf of M , T be the union of all terminal Fk-subgraphs of the graph G
with the contact vertex y, and x be a neighbour of y in the tree M . Suppose that xy
is an edge of G. Then, the graph T + y is a terminal Fk-subgraph, because it satisfies
the case 1, otherwise. Then, connected components of T are not maximal terminal
Fk-subgraphs, which contradicts the statement above. Thus, the edge xy is extended
by the type B extention.

Note that the type B extention can convert xy into Hn
y + x or Hn

x + y. In both cases,
Hn
y + T or Hc

x + T + y\x is the terminal subgraph in G and, therefore, it contains s
q-tuple. Each such a q-tuple contains y and at least one more vertex from Hn

y or Hn
x .

Consider these two cases separately.
If xy is converted into Hn

x + y, then Hn
x has at least 2 leaves. Without loss of

generality, we can assume that x has degree 2 or more in Hx . Otherwise, we can use
the lowest descendant of x with degree 3 or more as x . Let b, d be any vertices of Hx

adjacent to x . Since Hx ∈ T ∗
i , it has two non-intersected paths a--b and c--d, where

a, c are leaves of Hx and, therefore, adjacent to y. Note that d(a--b) = d(c--d). We
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can assume that a--a
′
is the longest path of Hn

x \x , for some vertex a
′
. Since each

vertex of a--a
′
is a descendant of b (or equals to b), a--a

′
does not intersect c--d.

Let Q be a q-tuple in Hn
x + T + y\x . If a /∈ Q, then exchange Q ∩ V (Hn

x ) into a
part of the same length beginning from a. Since a--a

′
is the longest path of Hn

x \x , we
can find such a part in this path. In other words, we can assume that Q = u--ya--v,
where u ∈ V (T ) and a--v ⊆ a--a

′
.

Consider the graph G
′
, obtained from the graph G by deleting vertices of the part

u--y of the path Q. Let P be a maximum 〈Pk〉-packing and C be a minimum 〈Pk〉-
cover of the graph G

′
. By the inductive assumption, |P| = |C |. By Lemma 5, since

i ≤ s, Hn
x ∈ Fk . Therefore and since x is the cut vertex of G

′
, only one q-tuple of P

can contain some vertices from Hn
x .

If a q-tuple Q
′ ∈ P contains b, then exchange Q

′ ∩ V (Hc
x ) into part of the same

length beginning from d. Since d(a--b) = d(c--d), we can find such a part in c--d. In
other words, we can assume that not a q-tuple of P contain a vertex from a--a

′
.

Then, P ∪ {Q} is a 〈Pk〉-packing of the size |P| + 1 and C ∪ {y} is a 〈Pk〉-cover of
the same cardinality in the graph G.

If xy is converted into Hn
y + x , then y has degree 2 or more in Hy . Repeating

the foregoing argument, we find that Hy has two non-intersected paths a--b and c--d,
where a, c ∈ N (y), b, d are leaves of Hy , adjacent to x , d(a--b) = d(c--d). We can
assume that b--b

′
is the longest path of Hn

y \y, for some vertex b
′
, and b--b

′
does not

intersect c--d.
Let Q be a q-tuple in Hn

y + T . If a ∈ Q, then exchange Q ∩ V (Hn
y ) into a part

of the same length beginning from c. Since d(a--b) = d(c--d), we can find such a
part in c--d. In other words, we can assume that Q = u--yc--v, where u ∈ V (T ) and
v ∈ Hn

y \y\b--b′
.

Consider the graph G
′
, obtained from the graph G by deleting vertices of the part

u--y of the path Q. Let P be a maximum 〈Pk〉-packing and C be a minimum 〈Pk〉-
cover of graph G

′
. By the inductive assumption, we have |P| = |C |. By Lemma 6,

since i ≤ s, Hn
y + x\y ∈ Fk . Therefore and since x is the cut-vertex of G

′
, only one

q-tuple of P can contain some vertices from Hn
y + x\y.

If a q-tuple Q
′ ∈ P does not contain b, then exchange Q

′ ∩ V (Hc
x ) into a part of

the same length beginning from b. Since b--b
′
is the longest path of Hn

y \y, we can
find such a part in this path. In other words, we can assume that if P contain a q-tuple
intersected to Hn

y \y, then each its vertex of this subgraph is in b--b
′
.

Then, P ∪ {Q} is a 〈Pk〉-packing of the size |P| + 1 and C ∪ {y} is a 〈Pk〉-cover of
the same cardinality in the graph G.

Thus, μ〈Pk 〉 (G) = β〈Pk 〉 (G). By Lemma 3, each subgraph of the graph G is a
RTk-graph. Hence, each RTk-graph is a König graph for 〈Pk〉. ��
5 Conclusions and future work

We have considered the family of König graphs for odd paths and all their spanning
supergraphs. Some infinite sets of minimal forbidden subgraphs for them have been
revealed. A procedure for constructing some of the considered König graphs has been
presented. Both results are not finalized, i.e. they both do not give complete descrip-

123



496 D. B. Mokeev , D. S. Malyshev

tions.Describing the classes ofKönig graphs for odd paths and all their spanning super-
graphs in the languages of minimal forbidden subgraphs and/or constructive proce-
dures are interesting research problems for future work, which are open at themoment.

Recall that, according to the König theorem, the papers [2] and [18], the classes
of 〈Pk〉-König graphs are monotone for k ∈ {2, 3, 5}. We conjecture that the class
of 〈Pk〉-König graphs is monotone for any k ≥ 2. Proving or disproving it is also a
challenging research problem for future work.
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3. Brešar, B., Kardoš, F., Katrenič, J., Semanišin, G.: Minimum k-path vertex cover. Discrete Appl. Math.
159(12), 1189–1195 (2011)

4. Cornuéjols, G.: Combinatorial Optimization: Packing and Covering, p. 132. SIAM, New York (2001)
5. Deming, R.W.: Independence numbers of graphs – an extension of the König-Egervary theorem.

Discrete Math. 27, 23–33 (1979)
6. Devi, N.S., Mane, A.C., Mishra, S.: Computational complexity of minimum Pk vertex cover problem

for regular and K1,4-free graphs. Discrete Appl. Math. 184, 114–121 (2015)
7. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)
8. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.

W. H. Freeman and Co., New York (1979)
9. Hell, P.: Graph packing. Electron. Notes Discrete Math. 5, 170–173 (2000)
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