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Abstract

We consider graphs, which and all induced subgraphs of which possess the following
property: the maximum number of disjoint paths on k vertices equals the minimum
cardinality of vertex sets, covering all paths on k vertices. We call such graphs Konig
for the k-path and all its spanning supergraphs. For each odd k, we reveal an infinite
family of minimal forbidden subgraphs for them. Additionally, for every odd &, we
present a procedure for constructing some of such graphs, based on the operations of
adding terminal subgraphs and replacement of edges with subgraphs.

Keywords k-path packing - k-path cover - Minimal forbidden subgraph -
Constructive description

1 Introduction

Let G be a simple graph and & be a set of simple graphs. Any subgraph (respectively,
induced subgraph) of G, isomorphic to an element of X, is called an X-subgraph
(respectively, an induced X-subgraph). An arbitrary set of pairwise vertex-disjoint
induced X'-subgraphs of G is called an X-packing of G. An arbitrary subset of vertices
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of G, having a nonempty intersection with vertex set of each induced &’-subgraph of
G, is called an X'-cover of G.

The maximum number of elements in X-packings of a graph G is denoted by
nwx(G), the minimum number of vertices in its X'-covers is denoted by Sy (G). A
graph G is called Konig for X if uy(H) = Bx(H), for every induced subgraph H of
the graph G. The class of all Konig graphs for X is denoted by IC(X'). For X = {P,},
where P, is the simple path on n vertices, X'-packings are known as matchings and
X-covers are known as vertex covers. The known Konig theorem claims that, for any
bipartite graph G, we have pp,(G) = Bp,(G). The converse statement is also true in
a certain sense: if this equality holds for a graph G and any its induced subgraph, then
G is bipartite. These remarks was the reason to choose the name for graphs in (X)),
firstly introduced in [1].

The class K(X) is hereditary for every X, i.e. K(X) is closed under vertex removal.
It is known that any hereditary class can be defined by the set of its minimal forbidden
induced subgraphs, i.e. minimal under deletion of vertices graphs not belonging to the
class.

The X-packing and X'-cover problems, i.e. the problems for computing u y (G) and
Bx (G) foragiven graph G, are dual as being formulated as integer linear programming
problems. Hence, Konig graphs for X are exactly instances of these problems, having
hereditarily zero duality gap. There is a conjecture claiming that for any X the X-
packing and X'-cover problems can be solved in polynomial time on Konig graphs
for X'. It is still open, but some advances here give a support for confirmation of this
conjecture (see, for example, [2]).

Note that, in literature, an X’-cover also often means a set of vertices in G, covering
all X'-subgraphs of G, not necessarily induced, see, for example, [10,13]. However,
any induced X'-subgraph is a spanning subgraph of some X’-subgraph.

Denote by (X') the set of all spanning supergraphs of all graphs in &X', i.e. the set of
graphs, containing all graphs in X’ and all graphs, obtained from them by adding edges.
Hereafter, we also use the notation (H) (instead of ({ H})) for the set of all spanning
supergraphs of a graph H. Any (X')-cover is a vertex set, whose removal produces
a subgraph, containing no X-subgraphs. Any (X')-packing is a set of X'-subgraphs,
pairwise not containing common vertices.

Several papers on the X-packing and X'-cover problems are devoted to their algo-
rithmic aspects (see, for example, [4,9,22]). It is known that the X'-packing problem
is NP-hard for any X, containing a graph, having a connected component with three
or more vertices [11]. It is also known that the P>-cover problem is NP-hard [8].

Several papers are devoted to algorithmic aspects of the X-packing and X’-cover
problems both for the induced and general cases, where X" consists of Py. It is known,
in particular, that the (Py)-cover problem is NP-hard, for any k > 2 [3,21], and the
(Px)-packing problem is polynomial-time solvable, for k = 2 [7], NP-hard, for k > 3
[11,15], and APX-hard, for k > 4 [6].

It is known, however, that the Py- and (P )-packing problems as well as the Py-
and ( Py)-cover problems can be solved in linear time in the class of forests, for any
[3,15]. Moreover, more complex graph classes are known, on which these problems
can be solved for various k in polynomial time [5,12,20], including some classes of
Konig graphs and their subclasses (see [2,16,19]).
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The present paper continues a series of investigations carried out earlier for the
graph classes KC({ P3)) [2] and K ({Ps)) [18]. These classes were appeared to be strongly
hereditary or monotone, i.e. they are closed under deletion of vertices and edges. Any
strongly hereditary class can be defined by the set of its minimal forbidden subgraphs,
i.e. graphs, minimal under deletion of vertices and edges, not belonging to the class.

In the case of general X, the class IC({X)) is hereditary, but not strongly hereditary.
Indeed, let us consider the class C({claw)), where claw is the complete bipartite
graph with one vertex in the first part and three vertices in the second one. The graph
B is the graph of a 3-dimensional cube, and the graph B’ is obtained from B by
deleting all edges of some cycle with 4 vertices of B. Clearly, B’ ¢ K({claw)),
as Uiclaw)(B") = 1, Blelawy(B') = 2, and B € K({claw)). Therefore, for any X,
all minimal forbidden fragments for K((X')) are split into two categories: minimal
forbidden induced subgraphs and minimal forbidden subgraphs.

In [2,18], for IC({P3)) and KC({P5)), complete descriptions of minimal forbidden
subgraphs have been obtained as well as constructive descriptions have been presented,
i.e. procedures to construct any graph from the classes. A similar result was obtained
in [14] for IC({P4)). In [1,2], for K(P3), a complete description of minimal forbidden
induced subgraphs have been obtained. In [17], for C(Py), a partial description of
minimal forbidden induced subgraphs have been obtained.

In the present paper, we give a generalization of the descriptions, mentioned above,
for the parametric family {/C({Px)) : k is odd}. In Sect. 3, we reveal some infinite
family of minimal forbidden subgraphs for each class from the family. In Sect. 4, for
any odd k, we define the class of RTj-graphs, obtained from pseudographs by applying
replacement of edges with subgraphs and adding the so-called terminal subgraphs, and
prove that each such a class is contained in /C({Py)).

2 Notation
2.1 Basic notation

Throughout the paper, & is the main parameter for class IC({ Px)). It is always odd and
means the number of vertices in the basic path. Throughout the paper, s equals %,
ie. k=2s+ 1.

We use the notation K,,, O,,, P,, C, for the complete graphs, empty graphs, simple
paths and simple cycles on n vertices, respectively.

An edge, incident to vertices x and y, is denoted by xy. An arbitrary path
(x,v1, v2, ..., v, y) is denoted by x--y. To accent that such a path contains a vertex
z or an edge z1 72, we use the notation x--z--y and x--z1z2--y, respectively.

We denote by V (G) the set of vertices of a graph G. The set of vertices, adjacent
to a vertex v, is called the neighbourhood of v and denoted by Ng (v).

We call a ( Py)-subgraph of G its k-tuple.

We use the notation Free()) for the class of all graphs, all induced subgraphs of
which are not in ).
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2.2 Some operations with graphs and subgraphs

Let G be a graph, A € V(G). We denote by G[A] the subgraph, induced by A. We
denote by G\ A the subgraph, induced by V(G)\A. If A consists from one vertex v,
then we denote G\{v} as G\v.

The subgraph of G, obtained by deleting an edge e, is denoted by G\e. Let H
be an induced subgraph of G and v € V(G), where v € V(G)\V (H). The graph
G[V(H) U {v}] is denoted by H + v. Let H; and H, be induced subgraphs of G with
V(Hy) N V(Hy) = A. The graph G[V (Hy) U V(H>)] is denoted by H| + H».

2.3 Distances, lengths, and critical paths

The distance between vertices u, v is denoted by d(u, v). The length of paths x--y and
x--y--z is denoted by d(x--y) and d(x--y--z), respectively.

We call a critical path between u and v a simple path u--v of the maximum length.
We call the critical distance between vertices u, v the length of a critical path u--v and
denote it as d. (u, v), i.e. d.(u, v) = max,_, d(u--v). Note that the critical distance is
not a metric (for example, d. (v, v) # 0, for any cyclic vertex v).

2.4 Specific notation

We denote by F;, the set of all connected graphs in Free({P,)). Its elements will be
called F,-graphs. Note that, in each F),-graph, the critical distance between any pair
of its vertices is no more than n — 2. Also, note that F| =, F» = {K}.

We denote by T, the set of all rooted trees with the following properties:

1. For each leaf [, we have d(r,l) = n — 1, where r is the root.
2. For each pair of non-intersected paths a--b and c¢--d, containing no r, where a, ¢
are leaves, the inequality d(a, b) + d(c,d) < 2n — 3 is true.

We denote by Z,, the set {0, 1,...,n — 1}.

Considering a cycle C,,, we assume that its vertices are labeled along the cycle as
0,1,....,n—1.If n = km, m € N, then each residue class of vertices modulo % is
called a k-class. The k-class, which contains a vertex v, is denoted by Qy (v).

We call the class distance dj(u, v) between vertices u, v the minimum distance
between vertices of their k-classes. In other words,

di(u, v) = min dx,y).
xX€Qk(u),yeQk(v)

3 Forbidden subgraphs

It was proved in [16] that, for each k > 4, every forest is a Konig graph for Py (this
follows from Theorem 1 from [16]). Combining this fact with the fact that any forest
has no other (Py)-subgraphs, except Py, we have

Lemma 1 For every k, each forest is a Konig graph for ( Py).
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Foranyi € {0,1,...,k — 1} andn > 2, we have

(P (Crn+i) = B(p)(Ckn—i) = n and p(p,) (Ckti) = B,y (Cr) = 1.
By this fact and by Lemma 1, we have

Theorem 1 The cycle C,, belongs to K({Py)) if n < k or k divides n. It is a minimal
forbidden subgraph for IC({Py)), if n > k and k does not divide n.

3.1 Medusas

Let us consider the family of connected graphs, obtained from a simple cycle by adding
a set of simple paths in such a way, that exactly one end vertex of each added path is
a vertex of the cycle. We call such graphs medusas.

Denote by M, (m1, m», ..., m,) the medusa, obtained from the cycle C, by adding
the paths of length m, m», ..., m, to the vertices 1, 2, .. ., n, respectively. If there is
no a path to add to a vertex i, we assume that such a path has one vertex and its length
equals 0, i.e. m; = 0 in this case. We call the added paths of non-zero length as the
tentacles of the medusa.

Theorem 2 The graph My,(m|, ma, ..., myy,) belongs to KC({Py)) iff
di € Zy :Vj € L\ Qi (i) :mj < di(i, j). )

Proof Put M = My, (m,m, ..., my,) and denote the cycle of M by Cy;. From
the remark before the statement of Theorem 1, Cy; contains a (Px)-packing of the
cardinality n. Similarly, each k-class of Cyy is its (P)-cover of the same cardinality.
We will formulate a criterion whether a k-class Q (i) of Cy is a (Py)-cover of the
whole graph M.

The graph M\ Qy (i) is a forest. The set Qy (i) is a (Px)-cover of the whole graph
M iff each connected component of M\ Q (i) belongs to Fj. Let T be one of those
connected components. It is induced by the vertices k¢ + 1, kt +2...,kt +k — 1,
where ¢ € N, and by the corresponding tentacles. Let us consider the case t = 0. All
the cases r > 0 are similar.

We have T € Fy iff mjyp + mjyy +d@i + p,i +q) < k—2,forany p,q €
{1,2,...,k — 1}. Without loss of generality, assume p < ¢g. Then,

di+p,i+qg)=q—p,iemiyp+mig <k+p—qg-—2

Substituting p = 1,qg =k — 1, wegetm; 1 +mjrr—1 <0,ie.mjp1 = mjyr—1 = 0.
Then, substituting p = 1,q = k—r, we getm;y—, < r — 1, substituting p =r,q =
k — 1, we get m;jy, <r — 1 (in both cases, r is an arbitrary integer from 1 to s). Note
that, for the vertices i + r and i — r, the distances to the nearest vertices from Qy (i)
equal r,ie. di(i,i +7) = di(i,i —r) = r. Thus, m; < di(i, j), for every vertex
jefi+1,i+2,...,i+k—1}
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Thus, Qk (i) is a (Py)-cover of the graph M iff Vj € Zy \Qr (i) : m; < di (i, j).
In this case, obviously, wup,)(M) = B(p,)(M) = n. Since each subgraph of M is
either a medusa with the same properties or a forest, we, by Lemma 1, conclude that
M € KC({Py)). Thus, the sufficiency is proved.

Let us prove the necessity. Let now M be a graph, which does not satisfy the
condition (1). It means that the following condition holds:

Vi€ Zi:3j € Lu\Qk() :mj = di(i, J). @

Moreover, if at least one m ; is decreased by 1, then the obtained graph satisfies the
condition (1). So, in addition, for M the following condition holds:

Vi € Lng,my = 1:311) € Zy 2V € L\ Qe L)\ {1} :
mj < di((1), j) and m; < di (1), 1). 3)

It is followed from (2) that any k-class is a not (Px)-cover of the graph M. So,
Bipy(M) >n + 1.

Let m; > 1. Then, it is followed from (2) and (3) that m;, = di(I(¢), t). Suppose
that m, is the minimum non-zero number for all 1 € Q(¢). But, m, < di (I(1), /)=
di(l(t), t) = m;, for each /e Or(O\{t}. So,m,; = 0.

Thus, it can be m; > 1, for no more than one number ¢ from each k-class. So, we
can associate the index of any tentacle with the number of its k-class. Without loss of
generality, we can assume that m, > 1 only for ¢t € Z. Then, [(t) equals either ¢ + m;,
ort — my.

Denote by S the sum of all m; in M. For any i € Zi, denote by N; the quantity
of numbers ¢ # i, such that m; > di(i, t). Note that, for each #, there are exactly
2m; numbers i, such that m; > di (i, t) (they are all belong to {t —m,, ...t — 1,1+
1,...,t+mg).So, Yk Ny =25.

In addition, note that none of the numbers in {t —m,, ...t —1,t+1,...,t+m;}
cannot be l(t,), for any = L.

Consider the sequence 1, t1, ..., tp, such that my; > 1, foreach j € {0,..., p},
mi,) = 0,and t; = I(tj—1) = tj—1 — Mme; s for each j € {1,..., p}. We prove

by induction that there are exactly m; numbers i between /(¢,) and #; — 1, such that
N; = 1 and N; = 2, for the others i.

Obviously, N; = 1 holds, for each i € {I(tp), ...,t, — 1}, i.e. for my, numbers of
this set. Thus, if p = 1, then the condition is true.

Suppose that N; = 1 holds for my; numbers i from the set {{(z,),...,t; — 1}.
Then, N; = 1 holds, for i = t; and each i € {t; + m; + I,....,tj—1},and N; = 2
holds, foreachi € {t; +1,...,¢; + m,j}. So, the quantity of numbers i from the set
{{(tp),...,tj — 1}, where N; = 1, equals

my; + L+t — (@ +my; + D=tj_1—1 =my;_,.
The same statement is true for the sequence 7y, 1, . . ., fp, such thatm,j > 1, foreach

j € {O,...,p},ml(,p) =0,andt; =1(tj_1) =tj_1 +m,j71,f0reachj ef{l,..., p}
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Let Ni/ = N; — 2, foreach i € Zy. Let §' = Zle Nl./. It is easy to see that
S =2(5 —k).

Consider a number i € Zj; and the numbers ¢1, t>, such that me; > di(i,tj),j €
{1,2}and 0 > ty —my < t —my, forall t # t;,m; > di(i,t), and t + m; <
h+my >k —1,forallt # to,m; > di(i, t). Note, that t; +m; <1 < tr —my,.
So, for each t1 —m;, > j > t + m,, but, maybe, 1 and t, either m, > di(j, t1) or
my, > di(j, 12). So, if my > di (i, t), fort ¢ {t1, 12}, then [(¢) equals either #| or 1,.

Suppose that N; = 4 (note that it cannot be more). Then, there are 4 numbers
t1, b, 13, t4, such that

H<B<ty<tbvandl(t)) <t1,l(t) > t,I(t3) =11,1(t4) =
The number of vertices between [(¢1) and /(#2) equals
mg +mt3 + (t4 —13+ 1) +mt4 +mlzv

which is not less than m;, + m;, + m, + m,, + 2. Moreover, for each i from #; to 1,
the inequality m; > di (i, t) can be true only for ¢ € {t1, l‘z, 13, t4}. Since [(13) = 1
and /(#4) = 1, we can consider two sequences 1?1, tl, R ¢ with the property (3.1)

and 1, ti/, .. t” with the property (3.1). The number of vertices between l(tp) and

I(t) — 1 equals m / + my e fmy. The number of vertices between [(#;) and
p 1

l(t )—lequalsm//+m~ + .-+ 4+ my, Thus,

q 1

) (1)1 -1 ) 1ty

Yoni= > N+ZN+ZN+ZN+ YN

Ity 1(1,) 1) I(12)+1

< my A+ my A+ my +2my A+ 2myy +my, — 2(my +my, +myy +myy +2) = —4

Suppose that N; = 3 and, for each j between #; and #,, we have N; < 3. Then,
without loss of generality, there are 3 numbers #1, 1>, 13, such that

<tz <t,lty) <t,l(tz) > 1p,1(13) = 1.

If my,y) > 1, then, similarly to the previous reasonings, we have

14

l(zq)

YN <-4

Otherwise, for each i from #; to [(t2), the inequality m; > di (i, t) can be true only
fort € {11, 1, 13}. The quantity of vertices between [(¢1) and [ (o) equals m;, +m, +
(ty — t3 + 1) + my,, which is not less than m, + my, + ms + 2. Since I(t3) = 11,
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. / / . .
we can consider a sequence f1, 1, ..., f, with the property (3.1) and the quantity of

vertices my +my A tmy. Thus,
P p—1

1(12) [()—1 -1 1(2)

DoNi= ) N+ N+ N,
1)) 1) (1) f
S mtl +m,1 —+ 2mt2 —+ th3 —_ 2(mt1 +m,2 +mt3 —+ 2) = —4

For the other numbers i, N; equals either 1 or 2, i.e. Nl./ < 0. So, by the arguments

above, if there exists i, for which N; > 3, then s < —4.
Suppose that for each i, N; equals either 1 or 2. For each t, where m; > 1, Ny = 1

holds and, therefore, N l, o= —1. Since there are at least two tentacles in M, the total

sum of all Ni/ is less or equal than —2.
Thus, in any case, s = 2(S§ — k) < —2 and, therefore, S < k — 1. It means that M
has no more than k(n + 1) — 1 vertices, and, therefore, u(p,)(M) < n < B(p,)(M).
O

Corollary 1 The graph My, (m|, my, ..., my,) is a minimal forbidden subgraph for
KC({Py)) iff the following conditions simultaneously hold:

1. Vi€ Zy :3j € Zu\QOx (i) : mj > di(i, j).
2.Vt,my > 1:3i € Zy :Vj € L \Qr(O\{t} : mj < di(i, j) and m; = di (i, t).

4 RTy-graphs

In this Section, we describe the procedure of RTj-extention of pseudographs and the
class RTj. We prove here that any RTy-extention of every pseudograph is a Konig
graph for (Py).

Definition 1 We call a connected subgraph H of a graph G terminal if there exists a
vertex ¢ € V(G)\V (H), such that c is adjacent to one or more vertices of H and H
is a connected component of graph G\c. We call c as a contact vertex of H.

By adding a terminal subgraph H to a vertex v € V(G), we mean that we add H
to G and connect some vertices of H with v by new edges.

Definition 2 Let us define the recursive procedure of “cascade” adding some terminal
Fi-subgraphs. We denote this procedure as AddT F (v, i), where v is a vertex of a
graph G and i is a positive integer.

If i = 1, then we cannot add any subgraph and have to stop the procedure.

If i > 2, then we choose some positive integers ji, ja, - .., jm, €ach no more than
i, and add to v some arbitrary terminal subgraphs Hy, H,, ..., Hy, where H; € F},,
for each t € {1, ..., m}. After this we can (not necessary) choose a vertex v; in H;

and apply the procedure AddT F (v;,i — j: + 1), foreacht € {1, ..., m}.
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Lemma2 Let H be a terminal subgraph, added by the procedure AddT F (v, 1) to a
vertex v of a graph G. Then, d.(v, x) <i — 1, for each vertex x of H.

Proof The proof is by induction on the number of applications for the procedure
AddTF.

Assume that AddT F (v, i) have been applied one time, i.e. there is no another
procedure AddT F inside. Then, H € F; andd(x, y) < i — 2, for each pair of vertices
x,yof H. Thus, d.(v, x) <i — 1, for each vertex x of H.

Now, suppose that the assertion is true for the procedure AddT F, having no more
than & recursive calls. Let us consider the procedure AddT F, having k + 1 calls.

The first call of AddT F is adding to v some terminal subgraphs Hy, H>, ..., H,
and choosing vertices vy, . .., Uy in them. Consider ¢t € {1, ..., m}. By the definition,
Jr < iand H; is a Fj,-graph. Thus, d.(v, x) < j; —1 < i —1, for each vertex x of H;.

The second call is applying the procedure AddT F (v, i — j; + 1). Let H "be a
terminal subgraph, added by this procedure. By the inductive assumption d, (v, x) <
i — Ji, for each vertex x of H " Hence, we have

de(v,x) =dc(v,v) +de (v, x) < jr—14+i—jr=i—-1

]

Definition 3 Let G be a graph and xy be an edge of G. Define the procedure, which

will be called the (A, Fy)-extension of the edge xy.

1. Delete xy from G.

2. Addto G all vertices and edges of two arbitrary T,*-graphs H, and Hy. Letry, ry
be the roots and V,, V, be the sets of leaves of H, and H,, respectively.

3. Add the edge ryry.
All the following steps are described for H,. The steps for H), are similar.

4. Add the edge uyx, for each u, € Vy.

5. For each vertex v of H,, put

h(v) := min{d(v, x), v_r_&lipw {k — d(v--x--w) — 1}}.

Iy §v--x--w

6. Perform all the steps of the following procedure:

{

while(true)

(a) Chose an arbitrary vertex v € {v: h(v) > 2}.
(b) Apply the procedure AddT F (v, h(v)).
(c) For each vertex w, where r, ¢ v--x--w, change

h(w) := min{h(w), k — d(v--x—-w) — h(v)}.
}

Hereafter, we denote by H{ and H)‘? the subgraphs, obtained from H, and H after
applying all the AddT F procedures. Put H* = H{ + H.
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Lemma 3 The graph H® is a Fy-graph.

Proof Since H, and Hy are T,*-graphs, each maximum path in H, 4 H, connects two
vertices u, € Vy,uy € V) and

de(uy,uy) = duy,uy) =duy,re) +1+dry, uy)
=s—14+14+s—-1=2s—1=k—2.

It means that any maximum path in H, + H, consists of k — 1 vertices.

Let v be a vertex of H, and u be a vertex from V,, which is nearest to v. It is
easy to see that h(v) < d(v,u) + 1 at every iteration of the step 6. Let H " be a
terminal subgraph, added by the procedure AddT F (v, h(v)). By Lemma 2, we have
d.(v,w) < h(v) — 1, for each vertex w of H . Thus, d.(v, w) < d(v,u). But,
every maximum path, beginning at w, contains v. So, it length cannot be more than
k—2. O

Corollary 2. Both graphs Hy and Hy' are Fi.-graphs.
Lemma 4 Both graphs H + x\rx and Hy + y\ry are Fi-graphs.

Proof We will prove it only for H¢ + x.

If |Vy| = 1, then H, = P;. In this case, we have h(v) = d(v, x), for each
v € V(Hy). Letvy, v € V(Hy), suchthatd (v, x) < d(va, x), HIN and H; be termi-
nal subgraphs, added by the procedures AddT F (v, h(v1)) and AddT F (va, h(v2)),
respectively, wi and w; be vertices of H {/ and Hz”, respectively. In the graph H; +x\rx,
we have

de(wy, w2) = de(wy, v1) +de(v1, v2) + de(v2, w2).
By Lemma 2, we have

de(wy, w2) < h(vy) —1+d(vi,v2) +h(v2) —1
<d(vi,x)+d(i,v2) +d(vp, x) — 2.

Since d(vy, x) < d(vy, x), we have d(v, x) = d(vy, x) + d(vy, v2). Therefore,
de(wy, wp) <2d(vy,x) —2<2s —2=k—3.
Similarly, d.(w1,x) < 2s — 1 = k —2 and d.(wo,x) < 2s — 1 = k — 2, ie.
H{ 4+ x\ry € Fy.
Now, assume that | Vy| > 2. As H, € T,", any maximum path of Hy +x\r, consists
of the edges ax, cx, and two non-intersected paths a--b and c--d, where a, ¢ € V.
Then, by the properties of 7., we have

de(a,b) +d.(c,d) =d(a,b) +d(c,d) <2s — 3.

So, the maximum length of paths of H, + x\ryis2s — 1 =k — 2.
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By the description of the step 5, we have h(v) < k—d(v--x--w) — 1, where v--x--w
has the maximum length among such paths containing no ry.

Let H! be the graph obtained from H, + x\ry after i iterations of the step 6. Now,
we prove the two following statements for the graph ch' by induction on i.

1. The inequality 2(v) < k — d(v--x-—t_u) — 1 is true, for any vertices v, w € V(H)’;).
2. The maximum length of paths in H{ is k — 2.

The induction base of the proofis HS = H,+x\ry. It was described above. Assume
that both statements hold for the graph H. )’;_1.

Letv, w € V(H};_l), such that path v--x--w exists, and u be an arbitrary vertex of
a terminal subgraph, added by the procedure AddT F (v, h(v)) on the i-th iteration of
the step 6.

By the inductive assumption, we have i (v) < k — d(v--x--w) — 1. By Lemma 2,
we have d.(v,u) < h(v) — 1,1.e. dc.(u,v) < k — d(v--x--w) — 2. Then, d.(u, v) +
d(v--x--w) < k — 2. But, every path u--x contains v, so the maximum length of paths
u--x--w is k — 2. Since it holds for arbitrary # and w, we proved the statement 2.

Now, we evaluate the value of 2(w) in H;. We denote it by i; (w). Let h(w) be the
corresponding value in H)’;_l. By the description of the step 6, we have

hi(w) = min{h(w), k — d(v--x--w) — h(v)}.
By the inductive assumption, we have h(w) < k — d(v--x--w) — 1. So,
hi(w) < h(w) <k —dw-x--w) — 1, d(u--x--w) = d.(u, v) + d(v--x--w),
for each path u--x--w. But d. (v, u) < h(v) — 1. So,
d(u--x--w) < d(@--x--w) + h(v) — 1 and d(v--x--w) > d(u--x--w) — h(v) + 1.
Finally,

hi(w) <k —dw-x-w) —h() <k —du--x-w)+h(@)—1—h)
=k —du--x--w) — 1.

Since it holds for arbitrary u, v, and w, we proved the statement 1. O

Definition 4 Let G be a graph and xy be an edge of G and i > 3 be a natural. Let us
define the procedure of the (B, F;)-extension of the edge xy.

1. Delete xy from G.

2. Addto G an arbitrary 7;*-graph H,, in such a way that x is the root of H,. Denote
by V, the set of leaves of H,.

Add the edge u, y, for each u, € V.

4. For each vertex v of H,, put

bt

h(v) := min{d (v, x), U_I_nipw {k —d(v--y--w) — 1}}.
xgév%]—y——;u
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5. Perform all the steps of the following procedure:

{

while(true)

(a) Chose an arbitrary vertex v € {v : h(v) > 2}
(b) Apply the procedure AddT F (v, h(v)).
(c) For each vertex w, where x ¢ v--y--w, change

h(w) := min{h(w), i — d(v--y--w) — h(v)}.

}
Hereafter, we denote by H' the subgraph, obtained from H, after applying all the

procedures AddT F.
Lemma5 The graph H} is a F»;1-graph.

Proof Since H, € T, its diameter cannot be more than 2(i — 1). It means that any
maximum path of H, consists of 2(i — 1) + 1 = 2i — 1 vertices.

Let v be a vertex of H, and u be a vertex from V., which is nearest to v. It is
easy to see that h(v) < d(v,u) + 1 at every iteration of the step 5. Let H " be a
terminal subgraph, added by the procedure AddT F (v, h(v)). By Lemma 2, we have
d.(v, w) < h(v) — 1, for each vertex w of H . Thus, d. (v, w) < d(v, u). But, every
maximum path, beginning at w, contains v. So, it length cannot be more than 2i — 2.

O

Lemma 6 The graph H! 4 y\x is a F»;y1-graph.
The proof of this Lemma is the same as in the proof of Lemma 4.

Definition 5 Let M be a pseudograph. Let us define the procedure of RTj-extention
of the pseudograph M as follows:

1. Each cyclic edge of M must be extended by the (A, F)-extention.

2. Some non-cyclic edges of M can be extended by the (B, F;)-extention, where
i <s.

3. For some vertices v € V (M), the procedure AddT F (v, k) can be applied.

Denote by RTj the set of all RTj-extentions of all pseudographs.
Theorem 3 Every subgraph of each RTy-graph is a RTy-graph.

Proof Let G bea RT-graph, which obtained by the R 7} -extention from a pseudograph
M.LetG = G\e be the graph, which obtained from G by deleting an edge e.

We may consider, without loss of generality, that if one of the graphs Hy or H) is
empty after the (B, Fj)-extension of an edge, then the root of another one has at least
two children. Otherwise, we can consider an root edge as the edge of M.

If e is a bridge of G, then it is a non-cyclic edge of M or an edge of some terminal
subgraph added by the procedure AddT F', or connect such terminal subgraph with
its contact vertex. In this cases, G’ can be obtained by the RT-extention from H\e
or M U K, respectively.

If e is not a bridge of G, then the following cases are possible:
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1. The edge e is in a terminal subgraph 7', added by AddT F, or connect such a
terminal subgraph with its contact vertex. Then, 7 \e can be added by AddT F to
the same contact vertex. Hence, G’ can be obtained by the RTj-extention from M.

2. The edge e is in a subgraph, added by the (B, F;j)-extension of the edge xy, but
not in a terminal subgraph. Suppose that e is in H,. Its deletion divides H, into
two connected components. Denote by H ;C those of them, which contains x, and
by H; the another one. It is easy to see that H; is a terminal F;-subgraph of G,
so it can be added to y by the procedure AddT F. In its turn, either H;C\x isa
terminal F;-subgraph of G too or a T;*-graph, each leaves of each are adjacent to

y. Hence, G’ can be obtained by the R7j-extention from M.

3. The edge e is in a subgraph, added by the (A, Fy)-extension of the edge xy, but
not in a terminal subgraph. If deletion of e breaks all the paths x ¢ v--y in the
corresponding H¢, then consider the pseudograph M ‘=M \xy.

Denote by E " the set of cyclic edges of M, which are non-cyclic in M ", Subdivide
each edge ab € E " with two vertices r, and rp in such a manner as ar,, brp are the
new edges. Add the vertices 7, ry and the edges xry if e ¢ H, yryife ¢ H;', ity if
e # rery in HC (it is easy to see, that exactly 2 edges are added). Denote the obtained
graph by M "

We can see now that each (A, Fy)-extension of the edge ab € E "inM corresponds
to some (B, Fy)-extension of arg, brp in M" and, maybe, after applying some proce-
dures AddT F (ry, k) and AddT F (rp, k). In addition, H“\e can be obtained by some
(B, Fy)-extension of xry and yr, (if the corresponding edge exists) and, maybe, after
applying the procedures AddT F (ry, k), AddT F(ry, k), AddT F (x, k), AddT F(y, k).
This follows from the definition of the procedures and Lemma 4.

Hence, G’ can be obtained by the RTy-extention from M "

If there are some paths x ¢ v--y in the corresponding H€ after deleting of e,
then the connected component of H¢, containing r, and r, can still be added by
the (A, Fy)-extension of the edge xy, and, by Lemma 4 the other components are
terminal Fj-graphs, so, it can be added after applying the procedures AddT F(x, k)
or AddT F (y, k).

Hence, G’ can be obtained by the RTj-extention from M. O

Theorem 4 Each RTy-graph is Konig for {Py).

Proof Let G bea RT-graph, which obtained by the R 7 -extention from a pseudograph
M. Considering Lemma 3, we must only prove that wp,) (G) = B(p,) (G).

The proof is by induction on the edge number of G. If every connected component
of G is a Fi-graph, then, obviously, up,)(G) = B(p,)(G) = 0.

Now, suppose that G ¢ Fy and ju(p,) (G/) = ﬂ<pk>(G,) holds, for any subgraph G
of G with any fewer number of edges. We can assume for G to be connected. Since
G contains at least one g-tuple, one of the following conditions holds for it:

1. The graph G contains a terminal Fj-subgraph T with a contact vertex y, such that
T + y contains a g-tuple. Or G contains a pair of terminal Fj-subgraphs 77 and
T» with a common contact vertex y, such that 77 + 7> + y contains a g-tuple.
Note that each g-tuple of T 4+ y and 71 + T, + y contains the vertex y. Let Q
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be one of such g-tuples. Consider the graph G = G\ Q. Let P be a maximum
(Px)-packing and C be a minimum (Py)-cover of the graph G. By the inductive
assumption, we have | P| = |C|. But, PU{Q} is a ( P)-packing of the size | P| 41
and C U {y} is a (Py)-cover of the same cardinality in the graph G.

2. The graph G does not contain terminal Fi-subgraphs from the case 1, butit contains
a cycle of length k or more. Denote by D the set of all such vertices of all such
cycles. Denote by Cy the set of all cyclic vertices of the pseudograph M. Obviously,
Co C D. Each vertex x of Cy corresponds to at least one g-tuple r;--x--r», where
r1 and r, are roots of two H, graphs, added in the type A extention of two cyclic
edges, incident to x. Denote by Py the set of such g-tuples. All g-tuples in Py
pairwise have not common vertices, and they are all contained in D. Obviously,
|Col = |Pol- ,

Consider the graph G = G\D. Let P be a maximum (Py)-packing and C be
a minimum (Py)-cover of the graph G. By the inductive assumption, we have
|P| =|C]|. The set P U Py is a ( Px)-packing of the graph G.

We show that C U Cy is a ( Py )-cover of graph G. Consider two vertices x, y € Cy
adjacent in the pseudograph M (the case x = y is possible, if xx is a loop in M).
By Lemma 3, the RTj-extention converts the edge xy of the pseudograph M into
a Fy-subgraph of the graph G. Thus, G\Cj is the union of the graph G and a
number of Fy-graphs, so it contains the same set of g-tuples as G'. In other words,
Cy covers all g-tuples of the graph G, which are not covered by C, i.e. C U Cy is
a (Py)-cover of graph G.

Since |Co| = | Pyl, we have w(p,) (G) = B(p,) (G).

3. The graph G does not contain cycles of length k or more and terminal Fi-subgraphs

from the case 1. The pseudograph M is a tree in this case.
Without loss of generality, we can consider that all maximal terminal Fy-subgraphs
of the graph G added by some AddT F procedures. In this case, either M = O
(then, it is easy to see, that u(p,) (G) = B(p,) (G) = 0), or at least one AddT F
procedure was applied to each its leaf. In other words, now, we assume that each
terminal subgraph, a contact vertex of which is a leaf, is maximal

Let y be a leaf of M, T be the union of all terminal Fj-subgraphs of the graph G
with the contact vertex y, and x be a neighbour of y in the tree M. Suppose that xy
is an edge of G. Then, the graph T + y is a terminal Fy-subgraph, because it satisfies
the case 1, otherwise. Then, connected components of 7 are not maximal terminal
Fy-subgraphs, which contradicts the statement above. Thus, the edge xy is extended
by the type B extention.

Note that the type B extention can convert xy into Hy +x or Hy + y. Inboth cases,
H;? + T or H{ + T + y\x is the terminal subgraph in G and, therefore, it contains s
g-tuple. Each such a g-tuple contains y and at least one more vertex from H}’,’ or H.
Consider these two cases separately.

If xy is converted into H' + y, then H has at least 2 leaves. Without loss of
generality, we can assume that x has degree 2 or more in H,. Otherwise, we can use
the lowest descendant of x with degree 3 or more as x. Let b, d be any vertices of H,
adjacent to x. Since H, € T}*, it has two non-intersected paths a--b and c--d, where
a, c are leaves of H, and, therefore, adjacent to y. Note that d(a--b) = d(c--d). We
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can assume that a--a’ is the longest path of H'\x, for some vertex d'. Since each
vertex of a--a’ is a descendant of b (or equals to b), a--a’ does not intersect c--d.

Let Q beag-tuplein H}! + T 4 y\x.If a ¢ Q, then exchange Q N V(H}) into a
part of the same length beginning from a. Since a--a is the longest path of H'\x, we
can find such a part in this path. In other words, we can assume that Q = u--ya--v,
where u € V(T) and a--v C a—a.

Consider the graph G', obtained from the graph G by deleting vertices of the part
u--y of the path Q. Let P be a maximum (P )-packing and C be a minimum (Py)-
cover of the graph G. By the inductive assumption, |P| = |C|. By Lemma 5, since
i <s, H! € Fy. Therefore and since x is the cut vertex of G/, only one g-tuple of P
can contain some vertices from H'.

If a g-tuple Q' € P contains b, then exchange Q/ N V(HY) into part of the same
length beginning from d. Since d(a--b) = d(c--d), we can find such a part in c¢--d. In
other words, we can assume that not a g-tuple of P contain a vertex from a--da .

Then, P U {Q} is a ( Px)-packing of the size | P| 4+ 1 and C U {y} is a { Px)-cover of
the same cardinality in the graph G.

If xy is converted into Hy" + x, then y has degree 2 or more in H,. Repeating
the foregoing argument, we find that Hy has two non-intersected paths a--b and c--d,
where a, ¢ € N(y), b, d are leaves of Hy, adjacent to x, d(a--b) = d(c--d). We can
assume that b--b’ is the longest path of H)’,’\ y, for some vertex b, and b--b does not
intersect c--d.

Let Q be a g-tuple in H;’ + T.If a € Q, then exchange Q N V(H;l) into a part
of the same length beginning from c. Since d(a--b) = d(c--d), we can find such a
part in c--d. In other words, we can assume that Q = u--yc--v, where u € V(T) and
ve HN\y\b--b.

Consider the graph G', obtained from the graph G by deleting vertices of the part
u--y of the path Q. Let P be a maximum (P )-packing and C be a minimum (Py)-
cover of graph G. By the inductive assumption, we have |P| = |C|. By Lemma 6,
since i <s, H;’ + x\y € Fg. Therefore and since x is the cut-vertex of G,, only one
g-tuple of P can contain some vertices from H;‘ + x\y.

If a g-tuple Q/ € P does not contain b, then exchange Q/ N V(HY) into a part of
the same length beginning from b. Since b--b' is the longest path of H/\y, we can
find such a part in this path. In other words, we can assume that if P contain a g-tuple
intersected to H{/\y, then each its vertex of this subgraph is in b--b' .

Then, P U {Q} is a (Px)-packing of the size | P| + 1 and C U {y} is a (Px)-cover of
the same cardinality in the graph G.

Thus, p(p) (G) = B(p,) (G). By Lemma 3, each subgraph of the graph G is a
RTj-graph. Hence, each RTj-graph is a Konig graph for (Py). O

5 Conclusions and future work

We have considered the family of Konig graphs for odd paths and all their spanning
supergraphs. Some infinite sets of minimal forbidden subgraphs for them have been
revealed. A procedure for constructing some of the considered Konig graphs has been
presented. Both results are not finalized, i.e. they both do not give complete descrip-
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tions. Describing the classes of Konig graphs for odd paths and all their spanning super-
graphs in the languages of minimal forbidden subgraphs and/or constructive proce-
dures are interesting research problems for future work, which are open at the moment.

Recall that, according to the Konig theorem, the papers [2] and [18], the classes
of (Pr)-Konig graphs are monotone for k € {2, 3, 5}. We conjecture that the class
of (Py)-Konig graphs is monotone for any k > 2. Proving or disproving it is also a
challenging research problem for future work.
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