ORIGINAL PAPER

On partial descriptions of König graphs for odd paths and all their spanning supergraphs

Dmitry B. Mokeev ${ }^{1,2}$. Dmitry S. Malyshev ${ }^{2}$

Received: 4 May 2021 / Accepted: 11 June 2021 / Published online: 20 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

We consider graphs, which and all induced subgraphs of which possess the following property: the maximum number of disjoint paths on k vertices equals the minimum cardinality of vertex sets, covering all paths on k vertices. We call such graphs König for the k-path and all its spanning supergraphs. For each odd k, we reveal an infinite family of minimal forbidden subgraphs for them. Additionally, for every odd k, we present a procedure for constructing some of such graphs, based on the operations of adding terminal subgraphs and replacement of edges with subgraphs.

Keywords k-path packing $\cdot k$-path cover \cdot Minimal forbidden subgraph \cdot Constructive description

1 Introduction

Let G be a simple graph and \mathcal{X} be a set of simple graphs. Any subgraph (respectively, induced subgraph) of G, isomorphic to an element of \mathcal{X}, is called an \mathcal{X}-subgraph (respectively, an induced \mathcal{X}-subgraph). An arbitrary set of pairwise vertex-disjoint induced \mathcal{X}-subgraphs of G is called an \mathcal{X}-packing of G. An arbitrary subset of vertices

[^0]of G, having a nonempty intersection with vertex set of each induced \mathcal{X}-subgraph of G, is called an \mathcal{X}-cover of G.

The maximum number of elements in \mathcal{X}-packings of a graph G is denoted by $\mu_{\mathcal{X}}(G)$, the minimum number of vertices in its \mathcal{X}-covers is denoted by $\beta_{\mathcal{X}}(G)$. A graph G is called König for \mathcal{X} if $\mu_{\mathcal{X}}(H)=\beta_{\mathcal{X}}(H)$, for every induced subgraph H of the graph G. The class of all König graphs for \mathcal{X} is denoted by $\mathcal{K}(\mathcal{X})$. For $\mathcal{X}=\left\{P_{2}\right\}$, where P_{n} is the simple path on n vertices, \mathcal{X}-packings are known as matchings and \mathcal{X}-covers are known as vertex covers. The known König theorem claims that, for any bipartite graph G, we have $\mu_{P_{2}}(G)=\beta_{P_{2}}(G)$. The converse statement is also true in a certain sense: if this equality holds for a graph G and any its induced subgraph, then G is bipartite. These remarks was the reason to choose the name for graphs in $\mathcal{K}(\mathcal{X})$, firstly introduced in [1].

The class $\mathcal{K}(\mathcal{X})$ is hereditary for every \mathcal{X}, i.e. $\mathcal{K}(\mathcal{X})$ is closed under vertex removal. It is known that any hereditary class can be defined by the set of its minimal forbidden induced subgraphs, i.e. minimal under deletion of vertices graphs not belonging to the class.

The \mathcal{X}-packing and \mathcal{X}-cover problems, i.e. the problems for computing $\mu_{\mathcal{X}}(G)$ and $\beta_{\mathcal{X}}(G)$ for a given graph G, are dual as being formulated as integer linear programming problems. Hence, König graphs for \mathcal{X} are exactly instances of these problems, having hereditarily zero duality gap. There is a conjecture claiming that for any \mathcal{X} the \mathcal{X} packing and \mathcal{X}-cover problems can be solved in polynomial time on König graphs for \mathcal{X}. It is still open, but some advances here give a support for confirmation of this conjecture (see, for example, [2]).

Note that, in literature, an \mathcal{X}-cover also often means a set of vertices in G, covering all \mathcal{X}-subgraphs of G, not necessarily induced, see, for example, [10,13]. However, any induced \mathcal{X}-subgraph is a spanning subgraph of some \mathcal{X}-subgraph.

Denote by $\langle\mathcal{X}\rangle$ the set of all spanning supergraphs of all graphs in \mathcal{X}, i.e. the set of graphs, containing all graphs in \mathcal{X} and all graphs, obtained from them by adding edges. Hereafter, we also use the notation $\langle H\rangle$ (instead of $\langle\{H\}\rangle$) for the set of all spanning supergraphs of a graph H. Any $\langle\mathcal{X}\rangle$-cover is a vertex set, whose removal produces a subgraph, containing no \mathcal{X}-subgraphs. Any $\langle\mathcal{X}\rangle$-packing is a set of \mathcal{X}-subgraphs, pairwise not containing common vertices.

Several papers on the \mathcal{X}-packing and \mathcal{X}-cover problems are devoted to their algorithmic aspects (see, for example, $[4,9,22]$). It is known that the \mathcal{X}-packing problem is NP-hard for any \mathcal{X}, containing a graph, having a connected component with three or more vertices [11]. It is also known that the P_{2}-cover problem is NP-hard [8].

Several papers are devoted to algorithmic aspects of the \mathcal{X}-packing and \mathcal{X}-cover problems both for the induced and general cases, where \mathcal{X} consists of P_{k}. It is known, in particular, that the $\left\langle P_{k}\right\rangle$-cover problem is NP-hard, for any $k \geq 2$ [3,21], and the $\left\langle P_{k}\right\rangle$-packing problem is polynomial-time solvable, for $k=2$ [7], NP-hard, for $k \geq 3$ [11,15], and APX-hard, for $k \geq 4$ [6].

It is known, however, that the $P_{k^{-}}$and $\left\langle P_{k}\right\rangle$-packing problems as well as the $P_{k^{-}}$ and $\left\langle P_{k}\right\rangle$-cover problems can be solved in linear time in the class of forests, for any k [3,15]. Moreover, more complex graph classes are known, on which these problems can be solved for various k in polynomial time [5,12,20], including some classes of König graphs and their subclasses (see [2,16,19]).

The present paper continues a series of investigations carried out earlier for the graph classes $\mathcal{K}\left(\left\langle P_{3}\right\rangle\right)$ [2] and $\mathcal{K}\left(\left\langle P_{5}\right\rangle\right)$ [18]. These classes were appeared to be strongly hereditary or monotone, i.e. they are closed under deletion of vertices and edges. Any strongly hereditary class can be defined by the set of its minimal forbidden subgraphs, i.e. graphs, minimal under deletion of vertices and edges, not belonging to the class.

In the case of general \mathcal{X}, the class $\mathcal{K}(\langle\mathcal{X}\rangle)$ is hereditary, but not strongly hereditary. Indeed, let us consider the class $\mathcal{K}(\langle c l a w\rangle)$, where claw is the complete bipartite graph with one vertex in the first part and three vertices in the second one. The graph B is the graph of a 3-dimensional cube, and the graph B^{\prime} is obtained from B by deleting all edges of some cycle with 4 vertices of B. Clearly, $B^{\prime} \notin \mathcal{K}(\langle c l a w\rangle)$, as $\mu_{\langle c l a w\rangle}\left(B^{\prime}\right)=1, \beta_{\langle c l a w\rangle}\left(B^{\prime}\right)=2$, and $B \in \mathcal{K}(\langle c l a w\rangle)$. Therefore, for any \mathcal{X}, all minimal forbidden fragments for $\mathcal{K}(\langle\mathcal{X}\rangle)$ are split into two categories: minimal forbidden induced subgraphs and minimal forbidden subgraphs.

In [2,18], for $\mathcal{K}\left(\left\langle P_{3}\right\rangle\right)$ and $\mathcal{K}\left(\left\langle P_{5}\right\rangle\right)$, complete descriptions of minimal forbidden subgraphs have been obtained as well as constructive descriptions have been presented, i.e. procedures to construct any graph from the classes. A similar result was obtained in [14] for $\mathcal{K}\left(\left\langle P_{4}\right\rangle\right)$. In [1,2], for $\mathcal{K}\left(P_{3}\right)$, a complete description of minimal forbidden induced subgraphs have been obtained. In [17], for $\mathcal{K}\left(P_{4}\right)$, a partial description of minimal forbidden induced subgraphs have been obtained.

In the present paper, we give a generalization of the descriptions, mentioned above, for the parametric family $\left\{\mathcal{K}\left(\left\langle P_{k}\right\rangle\right): k\right.$ is odd $\}$. In Sect. 3, we reveal some infinite family of minimal forbidden subgraphs for each class from the family. In Sect. 4, for any odd k, we define the class of $R T_{k}$-graphs, obtained from pseudographs by applying replacement of edges with subgraphs and adding the so-called terminal subgraphs, and prove that each such a class is contained in $\mathcal{K}\left(\left\langle P_{k}\right\rangle\right)$.

2 Notation

2.1 Basic notation

Throughout the paper, k is the main parameter for class $\mathcal{K}\left(\left\langle P_{k}\right\rangle\right)$. It is always odd and means the number of vertices in the basic path. Throughout the paper, s equals $\frac{k-1}{2}$, i.e. $k=2 s+1$.

We use the notation $K_{n}, O_{n}, P_{n}, C_{n}$ for the complete graphs, empty graphs, simple paths and simple cycles on n vertices, respectively.

An edge, incident to vertices x and y, is denoted by $x y$. An arbitrary path $\left(x, v_{1}, v_{2}, \ldots, v_{t}, y\right)$ is denoted by $x--y$. To accent that such a path contains a vertex z or an edge $z_{1} z_{2}$, we use the notation $x--z--y$ and $x--z_{1} z_{2}--y$, respectively.

We denote by $V(G)$ the set of vertices of a graph G. The set of vertices, adjacent to a vertex v, is called the neighbourhood of v and denoted by $N_{G}(v)$.

We call a $\left\langle P_{k}\right\rangle$-subgraph of G its k-tuple.
We use the notation $\operatorname{Free}(\mathcal{Y})$ for the class of all graphs, all induced subgraphs of which are not in \mathcal{Y}.

2.2 Some operations with graphs and subgraphs

Let G be a graph, $A \subseteq V(G)$. We denote by $G[A]$ the subgraph, induced by A. We denote by $G \backslash A$ the subgraph, induced by $V(G) \backslash A$. If A consists from one vertex v, then we denote $G \backslash\{v\}$ as $G \backslash v$.

The subgraph of G, obtained by deleting an edge e, is denoted by $G \backslash e$. Let H be an induced subgraph of G and $v \in V(G)$, where $v \in V(G) \backslash V(H)$. The graph $G[V(H) \cup\{v\}]$ is denoted by $H+v$. Let H_{1} and H_{2} be induced subgraphs of G with $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\emptyset$. The graph $G\left[V\left(H_{1}\right) \cup V\left(H_{2}\right)\right]$ is denoted by $H_{1}+H_{2}$.

2.3 Distances, lengths, and critical paths

The distance between vertices u, v is denoted by $d(u, v)$. The length of paths $x--y$ and $x--y--z$ is denoted by $d(x--y)$ and $d(x--y--z)$, respectively.

We call a critical path between u and v a simple path $u--v$ of the maximum length. We call the critical distance between vertices u, v the length of a critical path $u--v$ and denote it as $d_{c}(u, v)$, i.e. $d_{c}(u, v)=\max _{u-v} d(u--v)$. Note that the critical distance is not a metric (for example, $d_{c}(v, v) \neq 0$, for any cyclic vertex v).

2.4 Specific notation

We denote by F_{n} the set of all connected graphs in Free $\left(\left\langle P_{n}\right\rangle\right)$. Its elements will be called F_{n}-graphs. Note that, in each F_{n}-graph, the critical distance between any pair of its vertices is no more than $n-2$. Also, note that $F_{1}=\emptyset, F_{2}=\left\{K_{1}\right\}$.

We denote by T_{n}^{*} the set of all rooted trees with the following properties:

1. For each leaf l, we have $d(r, l)=n-1$, where r is the root.
2. For each pair of non-intersected paths $a--b$ and $c--d$, containing no r, where a, c are leaves, the inequality $d(a, b)+d(c, d) \leq 2 n-3$ is true.
We denote by \mathbb{Z}_{n} the set $\{0,1, \ldots, n-1\}$.
Considering a cycle C_{n}, we assume that its vertices are labeled along the cycle as $0,1, \ldots, n-1$. If $n=k m, m \in \mathbb{N}$, then each residue class of vertices modulo k is called a k-class. The k-class, which contains a vertex v, is denoted by $Q_{k}(v)$.

We call the class distance $d_{k}(u, v)$ between vertices u, v the minimum distance between vertices of their k-classes. In other words,

$$
d_{k}(u, v)=\min _{x \in Q_{k}(u), y \in Q_{k}(v)} d(x, y) .
$$

3 Forbidden subgraphs

It was proved in [16] that, for each $k \geq 4$, every forest is a König graph for P_{k} (this follows from Theorem 1 from [16]). Combining this fact with the fact that any forest has no other $\left\langle P_{k}\right\rangle$-subgraphs, except P_{k}, we have
Lemma 1 For every k, each forest is a König graph for $\left\langle P_{k}\right\rangle$.

For any $i \in\{0,1, \ldots, k-1\}$ and $n \geq 2$, we have

$$
\mu_{\left\langle P_{k}\right\rangle}\left(C_{k n+i}\right)=\beta_{\left\langle P_{k}\right\rangle}\left(C_{k n-i}\right)=n \text { and } \mu_{\left\langle P_{k}\right\rangle}\left(C_{k+i}\right)=\beta_{\left\langle P_{k}\right\rangle}\left(C_{k}\right)=1 .
$$

By this fact and by Lemma 1, we have
Theorem 1 The cycle C_{n} belongs to $\mathcal{K}\left(\left\langle P_{k}\right\rangle\right)$ if $n \leq k$ or k divides n. It is a minimal forbidden subgraph for $\mathcal{K}\left(\left\langle P_{k}\right\rangle\right)$, if $n>k$ and k does not divide n.

3.1 Medusas

Let us consider the family of connected graphs, obtained from a simple cycle by adding a set of simple paths in such a way, that exactly one end vertex of each added path is a vertex of the cycle. We call such graphs medusas.

Denote by $M_{n}\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ the medusa, obtained from the cycle C_{n} by adding the paths of length $m_{1}, m_{2}, \ldots, m_{n}$ to the vertices $1,2, \ldots, n$, respectively. If there is no a path to add to a vertex i, we assume that such a path has one vertex and its length equals 0 , i.e. $m_{i}=0$ in this case. We call the added paths of non-zero length as the tentacles of the medusa.

Theorem 2 The graph $M_{k n}\left(m_{1}, m_{2}, \ldots, m_{k n}\right)$ belongs to $\mathcal{K}\left(\left\langle P_{k}\right\rangle\right)$ iff

$$
\begin{equation*}
\exists i \in \mathbb{Z}_{k}: \forall j \in \mathbb{Z}_{n k} \backslash Q_{k}(i): m_{j}<d_{k}(i, j) \tag{1}
\end{equation*}
$$

Proof Put $M=M_{k n}\left(m_{1}, m_{2}, \ldots, m_{k n}\right)$ and denote the cycle of M by C_{M}. From the remark before the statement of Theorem $1, C_{M}$ contains a $\left\langle P_{k}\right\rangle$-packing of the cardinality n. Similarly, each k-class of C_{M} is its $\left\langle P_{k}\right\rangle$-cover of the same cardinality. We will formulate a criterion whether a k-class $Q_{k}(i)$ of C_{M} is a $\left\langle P_{k}\right\rangle$-cover of the whole graph M.

The graph $M \backslash Q_{k}(i)$ is a forest. The set $Q_{k}(i)$ is a $\left\langle P_{k}\right\rangle$-cover of the whole graph M iff each connected component of $M \backslash Q_{k}(i)$ belongs to F_{k}. Let T be one of those connected components. It is induced by the vertices $k t+1, k t+2 \ldots, k t+k-1$, where $t \in \mathbb{N}$, and by the corresponding tentacles. Let us consider the case $t=0$. All the cases $t>0$ are similar.

We have $T \in F_{k}$ iff $m_{i+p}+m_{i+q}+d(i+p, i+q) \leq k-2$, for any $p, q \in$ $\{1,2, \ldots, k-1\}$. Without loss of generality, assume $p<q$. Then,

$$
d(i+p, i+q)=q-p, \text { i.e. } m_{i+p}+m_{i+q} \leq k+p-q-2 .
$$

Substituting $p=1, q=k-1$, we get $m_{i+1}+m_{i+k-1} \leq 0$, i.e. $m_{i+1}=m_{i+k-1}=0$. Then, substituting $p=1, q=k-r$, we get $m_{i+k-r} \leq r-1$, substituting $p=r, q=$ $k-1$, we get $m_{i+r} \leq r-1$ (in both cases, r is an arbitrary integer from 1 to s). Note that, for the vertices $i+r$ and $i-r$, the distances to the nearest vertices from $Q_{k}(i)$ equal r, i.e. $d_{k}(i, i+r)=d_{k}(i, i-r)=r$. Thus, $m_{j}<d_{k}(i, j)$, for every vertex $j \in\{i+1, i+2, \ldots, i+k-1\}$.

Thus, $Q_{k}(i)$ is a $\left\langle P_{k}\right\rangle$-cover of the graph M iff $\forall j \in \mathbb{Z}_{n k} \backslash Q_{k}(i): m_{j}<d_{k}(i, j)$. In this case, obviously, $\mu_{\left\langle P_{k}\right\rangle}(M)=\beta_{\left\langle P_{k}\right\rangle}(M)=n$. Since each subgraph of M is either a medusa with the same properties or a forest, we, by Lemma 1, conclude that $M \in \mathcal{K}\left(\left\langle P_{k}\right\rangle\right)$. Thus, the sufficiency is proved.

Let us prove the necessity. Let now M be a graph, which does not satisfy the condition (1). It means that the following condition holds:

$$
\begin{equation*}
\forall i \in \mathbb{Z}_{k}: \exists j \in \mathbb{Z}_{n k} \backslash Q_{k}(i): m_{j} \geq d_{k}(i, j) \tag{2}
\end{equation*}
$$

Moreover, if at least one m_{j} is decreased by 1 , then the obtained graph satisfies the condition (1). So, in addition, for M the following condition holds:

$$
\begin{array}{r}
\forall t \in \mathbb{Z}_{n k}, m_{t} \geq 1: \exists l(t) \in \mathbb{Z}_{k}: \forall j \in \mathbb{Z}_{n k} \backslash Q_{k}(l(t)) \backslash\{t\}: \\
 \tag{3}\\
m_{j}<d_{k}(l(t), j) \text { and } m_{t} \leq d_{k}(l(t), t) .
\end{array}
$$

It is followed from (2) that any k-class is a not $\left\langle P_{k}\right\rangle$-cover of the graph M. So, $\beta_{\left\langle P_{k}\right\rangle}(M) \geq n+1$.

Let $m_{t} \geq 1$. Then, it is followed from (2) and (3) that $m_{t}=d_{k}(l(t), t)$. Suppose that m_{t} is the minimum non-zero number for all $t \in Q_{k}(t)$. But, $m_{t^{\prime}}<d_{k}\left(l(t), t^{\prime}\right)=$ $d_{k}(l(t), t)=m_{t}$, for each $t^{\prime} \in Q_{k}(t) \backslash\{t\}$. So, $m_{t^{\prime}}=0$.

Thus, it can be $m_{t} \geq 1$, for no more than one number t from each k-class. So, we can associate the index of any tentacle with the number of its k-class. Without loss of generality, we can assume that $m_{t} \geq 1$ only for $t \in \mathbb{Z}_{k}$. Then, $l(t)$ equals either $t+m_{t}$ or $t-m_{t}$.

Denote by S the sum of all m_{t} in M. For any $i \in \mathbb{Z}_{k}$, denote by N_{i} the quantity of numbers $t \neq i$, such that $m_{t} \geq d_{k}(i, t)$. Note that, for each t, there are exactly $2 m_{t}$ numbers i, such that $m_{t} \geq d_{k}(i, t)$ (they are all belong to $\left\{t-m_{t}, \ldots t-1, t+\right.$ $\left.1, \ldots, t+m_{t}\right\}$). So, $\sum_{i=1}^{k} N_{i}=2 S$.

In addition, note that none of the numbers in $\left\{t-m_{t}, \ldots t-1, t+1, \ldots, t+m_{t}\right\}$ cannot be $l\left(t^{\prime}\right)$, for any $t^{\prime} \in \mathbb{Z}_{k}$.

Consider the sequence $t_{0}, t_{1}, \ldots, t_{p}$, such that $m_{t_{j}} \geq 1$, for each $j \in\{0, \ldots, p\}$, $m_{l\left(t_{p}\right)}=0$, and $t_{j}=l\left(t_{j-1}\right)=t_{j-1}-m_{t_{j-1}}$, for each $j \in\{1, \ldots, p\}$. We prove by induction that there are exactly $m_{t_{1}}$ numbers i between $l\left(t_{p}\right)$ and $t_{1}-1$, such that $N_{i}=1$ and $N_{i}=2$, for the others i.

Obviously, $N_{i}=1$ holds, for each $i \in\left\{l\left(t_{p}\right), \ldots, t_{p}-1\right\}$, i.e. for $m_{t_{p}}$ numbers of this set. Thus, if $p=1$, then the condition is true.

Suppose that $N_{i}=1$ holds for $m_{t_{j}}$ numbers i from the set $\left\{l\left(t_{p}\right), \ldots, t_{j}-1\right\}$. Then, $N_{i}=1$ holds, for $i=t_{j}$ and each $i \in\left\{t_{j}+m_{t_{j}}+1, \ldots, t_{j-1}\right\}$, and $N_{i}=2$ holds, for each $i \in\left\{t_{j}+1, \ldots, t_{j}+m_{t_{j}}\right\}$. So, the quantity of numbers i from the set $\left\{l\left(t_{p}\right), \ldots, t_{j}-1\right\}$, where $N_{i}=1$, equals

$$
m_{t_{j}}+1+t_{j-1}-\left(t_{j}+m_{t_{j}}+1\right)=t_{j-1}-t_{j}=m_{t_{j-1}}
$$

The same statement is true for the sequence $t_{0}, t_{1}, \ldots, t_{p}$, such that $m_{t_{j}} \geq 1$, for each $j \in\{0, \ldots, p\}, m_{l\left(t_{p}\right)}=0$, and $t_{j}=l\left(t_{j-1}\right)=t_{j-1}+m_{t_{j-1}}$, for each $j \in\{1, \ldots, p\}$

Let $N_{i}^{\prime}=N_{i}-2$, for each $i \in \mathbb{Z}_{k}$. Let $S^{\prime}=\sum_{i=1}^{k} N_{i}^{\prime}$. It is easy to see that $S^{\prime}=2(S-k)$.

Consider a number $i \in \mathbb{Z}_{k}$ and the numbers t_{1}, t_{2}, such that $m_{t_{j}} \geq d_{k}\left(i, t_{j}\right), j \in$ $\{1,2\}$ and $0 \geq t_{1}-m_{t_{1}}<t-m_{t}$, for all $t \neq t_{1}, m_{t} \geq d_{k}(i, t)$, and $t+m_{t}<$ $t_{2}+m_{t_{2}} \geq k-1$, for all $t \neq t_{2}, m_{t} \geq d_{k}(i, t)$. Note, that $t_{1}+m_{t_{1}} \leq i \leq t_{2}-m_{t_{2}}$. So, for each $t_{1}-m_{t_{1}} \geq j \geq t_{2}+m_{t_{2}}$ but, maybe, t_{1} and t_{2}, either $m_{t_{1}} \geq d_{k}\left(j, t_{1}\right)$ or $m_{t_{2}} \geq d_{k}\left(j, t_{2}\right)$. So, if $m_{t} \geq d_{k}(i, t)$, for $t \notin\left\{t_{1}, t_{2}\right\}$, then $l(t)$ equals either t_{1} or t_{2}.

Suppose that $N_{i}=4$ (note that it cannot be more). Then, there are 4 numbers $t_{1}, t_{2}, t_{3}, t_{4}$, such that

$$
t_{1}<t_{3}<t_{4}<t_{2} \text { and } l\left(t_{1}\right)<t_{1}, l\left(t_{2}\right)>t_{2}, l\left(t_{3}\right)=t_{1}, l\left(t_{4}\right)=t_{2}
$$

The number of vertices between $l\left(t_{1}\right)$ and $l\left(t_{2}\right)$ equals

$$
m_{t_{1}}+m_{t_{3}}+\left(t_{4}-t_{3}+1\right)+m_{t_{4}}+m_{t_{2}},
$$

which is not less than $m_{t_{1}}+m_{t_{2}}+m_{t_{3}}+m_{t_{4}}+2$. Moreover, for each i from t_{1} to t_{2}, the inequality $m_{t} \geq d_{k}(i, t)$ can be true only for $t \in\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. Since $l\left(t_{3}\right)=t_{1}$ and $l\left(t_{4}\right)=t_{2}$, we can consider two sequences $t_{1}, t_{1}^{\prime}, \ldots, t_{p}^{\prime}$ with the property (3.1) and $t_{2}, t_{1}^{\prime \prime}, \ldots, t_{q}^{\prime \prime}$ with the property (3.1). The number of vertices between $l\left(t_{p}^{\prime}\right)$ and $l\left(t_{1}\right)-1$ equals $m_{t_{p}^{\prime}}+m_{t_{p-1}^{\prime}}+\cdots+m_{t_{1}}$. The number of vertices between $l\left(t_{2}\right)$ and $l\left(t_{q}^{\prime \prime}\right)-1$ equals $m_{t_{q}^{\prime \prime}}+m_{t_{q-1}^{\prime \prime}}+\cdots+m_{t_{2}}$ Thus,

$$
\begin{aligned}
& l\left(t_{q}^{\prime \prime}\right) \\
& \sum_{l\left(t_{p}^{\prime}\right)}^{\prime} N_{i}^{\prime}=\sum_{l\left(t_{p_{p}^{\prime}}^{\prime}\right)}^{l\left(t_{1}\right)-1} N_{i}^{\prime}+\sum_{l\left(t_{1}\right)}^{t_{1}-1} N_{i}^{\prime}+\sum_{t_{1}}^{t_{2}} N_{i}^{\prime}+\sum_{t_{2}}^{l\left(t_{2}\right)} N_{i}^{\prime}+\sum_{l\left(t_{2}\right)+1}^{l\left(t_{q}^{\prime \prime}\right)} N_{i}^{\prime} \\
& \quad \leq m_{t_{1}}+m_{t_{1}}+m_{t_{2}}+2 m_{t_{3}}+2 m_{t_{4}}+m_{t_{2}}-2\left(m_{t_{1}}+m_{t_{2}}+m_{t_{3}}+m_{t_{4}}+2\right)=-4
\end{aligned}
$$

Suppose that $N_{i}=3$ and, for each j between t_{1} and t_{2}, we have $N_{j} \leq 3$. Then, without loss of generality, there are 3 numbers t_{1}, t_{2}, t_{3}, such that

$$
t_{1}<t_{3}<t_{2}, l\left(t_{1}\right)<t_{1}, l\left(t_{2}\right)>t_{2}, l\left(t_{3}\right)=t_{1}
$$

If $m_{l\left(t_{2}\right)} \geq 1$, then, similarly to the previous reasonings, we have

$$
\sum_{l\left(t_{p}^{\prime}\right)}^{l\left(t_{q}^{\prime \prime}\right)} N_{i}^{\prime} \leq-4
$$

Otherwise, for each i from t_{1} to $l\left(t_{2}\right)$, the inequality $m_{t} \geq d_{k}(i, t)$ can be true only for $t \in\left\{t_{1}, t_{2}, t_{3}\right\}$. The quantity of vertices between $l\left(t_{1}\right)$ and $l\left(t_{2}\right)$ equals $m_{t_{1}}+m_{t_{3}}+$ $\left(t_{2}-t_{3}+1\right)+m_{t_{2}}$, which is not less than $m_{t_{1}}+m_{t_{2}}+m_{t_{3}}+2$. Since $l\left(t_{3}\right)=t_{1}$,
we can consider a sequence $t_{1}, t_{1}^{\prime}, \ldots, t_{p}^{\prime}$ with the property (3.1) and the quantity of vertices $m_{t_{p}^{\prime}}+m_{t_{p-1}^{\prime}}+\cdots+m_{t_{1}}$. Thus,

$$
\begin{aligned}
& \sum_{l\left(t_{p}^{\prime}\right)}^{l\left(t_{2}\right)} N_{i}^{\prime}=\sum_{l\left(t_{p}^{\prime}\right)}^{l\left(t_{1}\right)-1} N_{i}^{\prime}+\sum_{l\left(t_{1}\right)}^{t_{1}-1} N_{i}^{\prime}+\sum_{t_{1}}^{l\left(t_{2}\right)} N_{i}^{\prime} \\
& \leq m_{t_{1}}+m_{t_{1}}+2 m_{t_{2}}+2 m_{t_{3}}-2\left(m_{t_{1}}+m_{t_{2}}+m_{t_{3}}+2\right)=-4 .
\end{aligned}
$$

For the other numbers i, N_{i} equals either 1 or 2 , i.e. $N_{i}^{\prime} \leq 0$. So, by the arguments above, if there exists i, for which $N_{i} \geq 3$, then $S^{\prime} \leq-4$.

Suppose that for each i, N_{i} equals either 1 or 2 . For each t, where $m_{t} \geq 1, N_{l(t)}=1$ holds and, therefore, $N_{l(t)}^{\prime}=-1$. Since there are at least two tentacles in M, the total sum of all N_{i}^{\prime} is less or equal than -2 .

Thus, in any case, $S^{\prime}=2(S-k) \leq-2$ and, therefore, $S \leq k-1$. It means that M has no more than $k(n+1)-1$ vertices, and, therefore, $\mu_{\left\langle P_{k}\right\rangle}(M) \leq n<\beta_{\left\langle P_{k}\right\rangle}(M)$.

Corollary 1 The graph $M_{k n}\left(m_{1}, m_{2}, \ldots, m_{k n}\right)$ is a minimal forbidden subgraph for $\mathcal{K}\left(\left\langle P_{k}\right\rangle\right)$ iff the following conditions simultaneously hold:

1. $\forall i \in \mathbb{Z}_{k}: \exists j \in \mathbb{Z}_{n k} \backslash Q_{k}(i): m_{j} \geq d_{k}(i, j)$.
2. $\forall t, m_{t} \geq 1: \exists i \in \mathbb{Z}_{k}: \forall j \in \mathbb{Z}_{n k} \backslash Q_{k}(i) \backslash\{t\}: m_{j}<d_{k}(i, j)$ and $m_{t}=d_{k}(i, t)$.

$4 \boldsymbol{R T}_{\boldsymbol{k}}$-graphs

In this Section, we describe the procedure of $R T_{k}$-extention of pseudographs and the class $R T_{k}$. We prove here that any $R T_{k}$-extention of every pseudograph is a König graph for $\left\langle P_{k}\right\rangle$.

Definition 1 We call a connected subgraph H of a graph G terminal if there exists a vertex $c \in V(G) \backslash V(H)$, such that c is adjacent to one or more vertices of H and H is a connected component of graph $G \backslash c$. We call c as a contact vertex of H.

By adding a terminal subgraph H to a vertex $v \in V(G)$, we mean that we add H to G and connect some vertices of H with v by new edges.

Definition 2 Let us define the recursive procedure of "cascade" adding some terminal F_{i}-subgraphs. We denote this procedure as $\operatorname{AddT} F(v, i)$, where v is a vertex of a graph G and i is a positive integer.

If $i=1$, then we cannot add any subgraph and have to stop the procedure.
If $i \geq 2$, then we choose some positive integers $j_{1}, j_{2}, \ldots, j_{m}$, each no more than i, and add to v some arbitrary terminal subgraphs $H_{1}, H_{2}, \ldots, H_{m}$, where $H_{t} \in F_{j_{t}}$, for each $t \in\{1, \ldots, m\}$. After this we can (not necessary) choose a vertex v_{t} in H_{t} and apply the procedure $\operatorname{Add} T F\left(v_{t}, i-j_{t}+1\right)$, for each $t \in\{1, \ldots, m\}$.

Lemma 2 Let H be a terminal subgraph, added by the procedure $\operatorname{AddT} F(v, i)$ to a vertex v of a graph G. Then, $d_{c}(v, x) \leq i-1$, for each vertex x of H.
Proof The proof is by induction on the number of applications for the procedure AddT F.

Assume that $\operatorname{AddTF}(v, i)$ have been applied one time, i.e. there is no another procedure $A d d T F$ inside. Then, $H \in F_{i}$ and $d(x, y) \leq i-2$, for each pair of vertices x, y of H. Thus, $d_{c}(v, x) \leq i-1$, for each vertex x of H.

Now, suppose that the assertion is true for the procedure $\operatorname{Add} T F$, having no more than k recursive calls. Let us consider the procedure $\operatorname{Add} T F$, having $k+1$ calls.

The first call of $\operatorname{AddT} F$ is adding to v some terminal subgraphs $H_{1}, H_{2}, \ldots, H_{m}$ and choosing vertices v_{1}, \ldots, v_{m} in them. Consider $t \in\{1, \ldots, m\}$. By the definition, $j_{t} \leq i$ and H_{t} is a $F_{j_{t}}$-graph. Thus, $d_{c}(v, x) \leq j_{t}-1 \leq i-1$, for each vertex x of H_{t}.

The second call is applying the procedure $\operatorname{AddT} F\left(v_{t}, i-j_{t}+1\right)$. Let H^{\prime} be a terminal subgraph, added by this procedure. By the inductive assumption $d_{c}\left(v_{t}, x\right) \leq$ $i-j_{t}$, for each vertex x of H^{\prime}. Hence, we have

$$
d_{c}(v, x)=d_{c}\left(v, v_{t}\right)+d_{c}\left(v_{t}, x\right) \leq j_{t}-1+i-j_{t}=i-1 .
$$

Definition 3 Let G be a graph and $x y$ be an edge of G. Define the procedure, which will be called the $\left(A, F_{k}\right)$-extension of the edge $x y$.

1. Delete $x y$ from G.
2. Add to G all vertices and edges of two arbitrary T_{s}^{*}-graphs H_{x} and H_{y}. Let r_{x}, r_{y} be the roots and V_{x}, V_{y} be the sets of leaves of H_{x} and H_{y}, respectively.
3. Add the edge $r_{x} r_{y}$.

All the following steps are described for H_{x}. The steps for H_{y} are similar.
4. Add the edge $u_{x} x$, for each $u_{x} \in V_{x}$.
5. For each vertex v of H_{x}, put

$$
h(v):=\min \left\{d(v, x), \min _{\substack{v-x-w, r_{x} \notin v-x--w}}\{k-d(v--x--w)-1\}\right\} .
$$

6. Perform all the steps of the following procedure:
\{
while(true)
(a) Chose an arbitrary vertex $v \in\{v: h(v) \geq 2\}$.
(b) Apply the procedure $\operatorname{AddT} F(v, h(v))$.
(c) For each vertex w, where $r_{x} \notin v--x--w$, change

$$
h(w):=\min \{h(w), k-d(v--x--w)-h(v)\} .
$$

\}
Hereafter, we denote by H_{x}^{a} and H_{y}^{a} the subgraphs, obtained from H_{x} and H_{y} after applying all the $A d d T F$ procedures. Put $H^{a}=H_{x}^{a}+H_{y}^{a}$.

Lemma 3 The graph H^{a} is a F_{k}-graph.
Proof Since H_{x} and H_{y} are T_{s}^{*}-graphs, each maximum path in $H_{x}+H_{y}$ connects two vertices $u_{x} \in V_{x}, u_{y} \in V_{y}$ and

$$
\begin{aligned}
d_{c}\left(u_{x}, u_{y}\right) & =d\left(u_{x}, u_{y}\right)=d\left(u_{x}, r_{x}\right)+1+d\left(r_{y}, u_{y}\right) \\
& =s-1+1+s-1=2 s-1=k-2 .
\end{aligned}
$$

It means that any maximum path in $H_{x}+H_{y}$ consists of $k-1$ vertices.
Let v be a vertex of H_{x} and u be a vertex from V_{x}, which is nearest to v. It is easy to see that $h(v) \leq d(v, u)+1$ at every iteration of the step 6 . Let $H^{\prime \prime}$ be a terminal subgraph, added by the procedure $\operatorname{AddT} F(v, h(v))$. By Lemma 2, we have $d_{c}(v, w) \leq h(v)-1$, for each vertex w of $H^{\prime \prime}$. Thus, $d_{c}(v, w) \leq d(v, u)$. But, every maximum path, beginning at w, contains v. So, it length cannot be more than $k-2$.

Corollary 2 Both graphs H_{x}^{a} and H_{y}^{a} are F_{k}-graphs.
Lemma 4 Both graphs $H_{x}^{a}+x \backslash r_{x}$ and $H_{y}^{a}+y \backslash r_{y}$ are F_{k}-graphs.
Proof We will prove it only for $H_{x}^{a}+x$.
If $\left|V_{x}\right|=1$, then $H_{x} \cong P_{s}$. In this case, we have $h(v)=d(v, x)$, for each $v \in V\left(H_{x}\right)$. Let $v_{1}, v_{2} \in V\left(H_{x}\right)$, such that $d\left(v_{1}, x\right)<d\left(v_{2}, x\right), H_{1}^{\prime \prime}$ and $H_{2}^{\prime \prime}$ be terminal subgraphs, added by the procedures $\operatorname{Add} T F_{\prime \prime}\left(v_{1}, h\left(v_{1}\right)\right)$ and $\operatorname{AddT} F\left(v_{2}, h\left(v_{2}\right)\right)$, respectively, w_{1} and w_{2} be vertices of $H_{1}^{\prime \prime}$ and $H_{2}^{\prime \prime}$, respectively. In the graph $H_{x}^{\prime}+x \backslash r_{x}$, we have

$$
d_{c}\left(w_{1}, w_{2}\right)=d_{c}\left(w_{1}, v_{1}\right)+d_{c}\left(v_{1}, v_{2}\right)+d_{c}\left(v_{2}, w_{2}\right)
$$

By Lemma 2, we have

$$
\begin{aligned}
d_{c}\left(w_{1}, w_{2}\right) & \leq h\left(v_{1}\right)-1+d\left(v_{1}, v_{2}\right)+h\left(v_{2}\right)-1 \\
& \leq d\left(v_{1}, x\right)+d\left(v_{1}, v_{2}\right)+d\left(v_{2}, x\right)-2 .
\end{aligned}
$$

Since $d\left(v_{1}, x\right)<d\left(v_{2}, x\right)$, we have $d\left(v_{2}, x\right)=d\left(v_{1}, x\right)+d\left(v_{1}, v_{2}\right)$. Therefore,

$$
d_{c}\left(w_{1}, w_{2}\right) \leq 2 d\left(v_{2}, x\right)-2 \leq 2 s-2=k-3 .
$$

Similarly, $d_{c}\left(w_{1}, x\right) \leq 2 s-1=k-2$ and $d_{c}\left(w_{2}, x\right) \leq 2 s-1=k-2$, i.e. $H_{x}^{a}+x \backslash r_{x} \in F_{k}$.

Now, assume that $\left|V_{x}\right| \geq 2$. As $H_{x} \in T_{s}^{*}$, any maximum path of $H_{x}+x \backslash r_{x}$ consists of the edges $a x, c x$, and two non-intersected paths $a--b$ and $c--d$, where $a, c \in V_{x}$. Then, by the properties of T_{s}^{*}, we have

$$
d_{c}(a, b)+d_{c}(c, d)=d(a, b)+d(c, d) \leq 2 s-3 .
$$

So, the maximum length of paths of $H_{x}+x \backslash r_{x}$ is $2 s-1=k-2$.

By the description of the step 5, we have $h(v) \leq k-d(v--x--w)-1$, where $v--x--w$ has the maximum length among such paths containing no r_{x}.

Let H_{x}^{i} be the graph obtained from $H_{x}+x \backslash r_{x}$ after i iterations of the step 6. Now, we prove the two following statements for the graph H_{x}^{i} by induction on i.

1. The inequality $h(v) \leq k-d(v--x--w)-1$ is true, for any vertices $v, w \in V\left(H_{x}^{i}\right)$.
2. The maximum length of paths in H_{x}^{i} is $k-2$.

The induction base of the proof is $H_{x}^{0}=H_{x}+x \backslash r_{x}$. It was described above. Assume that both statements hold for the graph H_{x}^{i-1}.

Let $v, w \in V\left(H_{x}^{i-1}\right)$, such that path $v--x--w$ exists, and u be an arbitrary vertex of a terminal subgraph, added by the procedure $\operatorname{AddTF}(v, h(v))$ on the i-th iteration of the step 6.

By the inductive assumption, we have $h(v) \leq k-d(v--x--w)-1$. By Lemma 2, we have $d_{c}(v, u) \leq h(v)-1$, i.e. $d_{c}(u, v) \leq k-d(v--x--w)-2$. Then, $d_{c}(u, v)+$ $d(v--x--w) \leq k-2$. But, every path $u--x$ contains v, so the maximum length of paths $u--x--w$ is $k-2$. Since it holds for arbitrary u and w, we proved the statement 2 .

Now, we evaluate the value of $h(w)$ in H_{x}^{i}. We denote it by $h_{i}(w)$. Let $h(w)$ be the corresponding value in H_{x}^{i-1}. By the description of the step 6 , we have

$$
h_{i}(w)=\min \{h(w), k-d(v--x--w)-h(v)\} .
$$

By the inductive assumption, we have $h(w) \leq k-d(v--x--w)-1$. So,

$$
h_{i}(w) \leq h(w) \leq k-d(v--x--w)-1, d(u--x--w)=d_{c}(u, v)+d(v--x--w),
$$

for each path $u--x--w$. But $d_{c}(v, u) \leq h(v)-1$. So,

$$
d(u--x--w) \leq d(v--x--w)+h(v)-1 \text { and } d(v--x--w) \geq d(u--x--w)-h(v)+1 .
$$

Finally,

$$
\begin{aligned}
h_{i}(w) & \leq k-d(v--x--w)-h(v) \leq k-d(u--x--w)+h(v)-1-h(v) \\
& =k-d(u-x--w)-1 .
\end{aligned}
$$

Since it holds for arbitrary u, v, and w, we proved the statement 1 .
Definition 4 Let G be a graph and $x y$ be an edge of G and $i \geq 3$ be a natural. Let us define the procedure of the $\left(B, F_{i}\right)$-extension of the edge $x y$.

1. Delete $x y$ from G.
2. Add to G an arbitrary T_{i}^{*}-graph H_{x}, in such a way that x is the root of H_{x}. Denote by V_{x} the set of leaves of H_{x}.
3. Add the edge $u_{x} y$, for each $u_{x} \in V_{x}$.
4. For each vertex v of H_{x}, put

$$
h(v):=\min \left\{d(v, x), \min _{\substack{v-y-w, x \notin v-y-w}}\{k-d(v--y--w)-1\}\right\} .
$$

5. Perform all the steps of the following procedure:
\{
while(true)
(a) Chose an arbitrary vertex $v \in\{v: h(v) \geq 2\}$
(b) Apply the procedure $\operatorname{AddT} F(v, h(v))$.
(c) For each vertex w, where $x \notin v--y--w$, change

$$
h(w):=\min \{h(w), i-d(v--y--w)-h(v)\} .
$$

\}
Hereafter, we denote by H_{x}^{n} the subgraph, obtained from H_{x} after applying all the procedures $A d d T F$.
Lemma 5 The graph H_{x}^{n} is a $F_{2 i+1 \text {-graph }}$.
Proof Since $H_{x} \in T_{i}^{*}$, its diameter cannot be more than 2(i-1). It means that any maximum path of H_{x} consists of $2(i-1)+1=2 i-1$ vertices.

Let v be a vertex of H_{x} and u be a vertex from V_{x}, which is nearest to v. It is easy to see that $h(v) \leq d(v, u)+1$ at every iteration of the step 5 . Let $H^{\prime \prime}$ be a terminal subgraph, added by the procedure $\operatorname{AddT} F(v, h(v))$. By Lemma 2, we have $d_{c}(v, w) \leq h(v)-1$, for each vertex w of $H^{\prime \prime}$. Thus, $d_{c}(v, w) \leq d(v, u)$. But, every maximum path, beginning at w, contains v. So, it length cannot be more than $2 i-2$.

Lemma 6 The graph $H_{x}^{n}+y \backslash x$ is a $F_{2 i+1-g r a p h .}$
The proof of this Lemma is the same as in the proof of Lemma 4.
Definition 5 Let M be a pseudograph. Let us define the procedure of $R T_{k}$-extention of the pseudograph M as follows:

1. Each cyclic edge of M must be extended by the (A, F_{k})-extention.
2. Some non-cyclic edges of M can be extended by the (B, F_{i})-extention, where $i \leq s$.
3. For some vertices $v \in V(M)$, the procedure $\operatorname{AddT} F(v, k)$ can be applied.

Denote by $R T_{k}$ the set of all $R T_{k}$-extentions of all pseudographs.
Theorem 3 Every subgraph of each $R T_{k}$-graph is a $R T_{k}$-graph.
Proof Let G be a $R T_{k}$-graph, which obtained by the $R T_{k}$-extention from a pseudograph M. Let $G^{\prime}=G \backslash e$ be the graph, which obtained from G by deleting an edge e.

We may consider, without loss of generality, that if one of the graphs H_{x} or H_{y} is empty after the $\left(B, F_{i}\right)$-extension of an edge, then the root of another one has at least two children. Otherwise, we can consider an root edge as the edge of M.

If e is a bridge of G, then it is a non-cyclic edge of M or an edge of some terminal subgraph added by the procedure $A d d T F$, or connect such terminal subgraph with its contact vertex. In this cases, G^{\prime} can be obtained by the $R T_{k}$-extention from $H \backslash e$ or $M \cup K_{1}$, respectively.

If e is not a bridge of G, then the following cases are possible:

1. The edge e is in a terminal subgraph T, added by $A d d T F$, or connect such a terminal subgraph with its contact vertex. Then, $T \backslash e$ can be added by $A d d T F$ to the same contact vertex. Hence, G^{\prime} can be obtained by the $R T_{k}$-extention from M.
2. The edge e is in a subgraph, added by the $\left(B, F_{i}\right)$-extension of the edge $x y$, but not in a terminal subgraph. Suppose that e is in H_{x}. Its deletion divides H_{x} into two connected components. Denote by H_{x}^{\prime} those of them, which contains x, and by $H_{x}^{\prime \prime}$ the another one. It is easy to see that $H_{x}^{\prime \prime}$ is a terminal F_{i}-subgraph of G, so it can be added to y by the procedure $\operatorname{Add} T F$. In its turn, either $H_{x}^{\prime} \backslash x$ is a terminal F_{i}-subgraph of G too or a T_{i}^{*}-graph, each leaves of each are adjacent to y. Hence, G^{\prime} can be obtained by the $R T_{k}$-extention from M.
3. The edge e is in a subgraph, added by the $\left(A, F_{k}\right)$-extension of the edge $x y$, but not in a terminal subgraph. If deletion of e breaks all the paths $x \notin v--y$ in the corresponding H^{c}, then consider the pseudograph $M^{\prime}=M \backslash x y$.
Denote by E^{\prime} the set of cyclic edges of M, which are non-cyclic in M^{\prime}. Subdivide each edge $a b \in E^{\prime}$ with two vertices r_{a} and r_{b} in such a manner as $a r_{a}, b r_{b}$ are the new edges. Add the vertices r_{x}, r_{y} and the edges $x r_{x}$ if $e \notin H_{x}^{c}, y r_{y}$ if $e \notin H_{y}^{c}, r_{x} r_{y}$ if $e \neq r_{x} r_{y}$ in H^{c} (it is easy to see, that exactly 2 edges are added). Denote the obtained graph by $M^{\prime \prime}$.

We can see now that each $\left(A, F_{k}\right)$-extension of the edge $a b \in E^{\prime}$ in M corresponds to some (B, F_{S})-extension of $a r_{a}, b r_{b}$ in $M^{\prime \prime}$ and, maybe, after applying some procedures $\operatorname{Add} T F\left(r_{a}, k\right)$ and $\operatorname{AddT} F\left(r_{b}, k\right)$. In addition, $H^{c} \backslash e$ can be obtained by some $\left(B, F_{S}\right)$-extension of $x r_{x}$ and $y r_{y}$ (if the corresponding edge exists) and, maybe, after applying the procedures $\operatorname{Add} T F\left(r_{x}, k\right)$, $\operatorname{Add} T F\left(r_{y}, k\right), \operatorname{AddT} F(x, k), \operatorname{AddT} F(y, k)$. This follows from the definition of the procedures and Lemma 4.

Hence, G^{\prime} can be obtained by the $R T_{k}$-extention from $M^{\prime \prime}$.
If there are some paths $x \notin v--y$ in the corresponding H^{c} after deleting of e, then the connected component of H^{c}, containing r_{x} and r_{y} can still be added by the $\left(A, F_{k}\right)$-extension of the edge $x y$, and, by Lemma 4 the other components are terminal F_{k}-graphs, so, it can be added after applying the procedures $\operatorname{AddT} F(x, k)$ or $\operatorname{AddTF}(y, k)$.

Hence, G^{\prime} can be obtained by the $R T_{k}$-extention from M.

Theorem 4 Each $R T_{k}$-graph is König for $\left\langle P_{k}\right\rangle$.

Proof Let G be a $R T_{k}$-graph, which obtained by the $R T_{k}$-extention from a pseudograph M. Considering Lemma 3, we must only prove that $\mu_{\left\langle P_{k}\right\rangle}(G)=\beta_{\left\langle P_{k}\right\rangle}(G)$.

The proof is by induction on the edge number of G. If every connected component of G is a F_{k}-graph, then, obviously, $\mu_{\left\langle P_{k}\right\rangle}(G)=\beta_{\left\langle P_{k}\right\rangle}(G)=0$.

Now, suppose that $G \notin F_{k}$ and $\mu_{\left\langle P_{k}\right\rangle}\left(G^{\prime}\right)=\beta_{\left\langle P_{k}\right\rangle}\left(G^{\prime}\right)$ holds, for any subgraph G^{\prime} of G with any fewer number of edges. We can assume for G to be connected. Since G contains at least one q-tuple, one of the following conditions holds for it:

1. The graph G contains a terminal F_{k}-subgraph T with a contact vertex y, such that $T+y$ contains a q-tuple. Or G contains a pair of terminal F_{k}-subgraphs T_{1} and T_{2} with a common contact vertex y, such that $T_{1}+T_{2}+y$ contains a q-tuple.
Note that each q-tuple of $T+y$ and $T_{1}+T_{2}+y$ contains the vertex y. Let Q
be one of such q-tuples. Consider the graph $G^{\prime}=G \backslash Q$. Let P be a maximum $\left\langle P_{k}\right\rangle$-packing and C be a minimum $\left\langle P_{k}\right\rangle$-cover of the graph G^{\prime}. By the inductive assumption, we have $|P|=|C|$. But, $P \cup\{Q\}$ is a $\left\langle P_{k}\right\rangle$-packing of the size $|P|+1$ and $C \cup\{y\}$ is a $\left\langle P_{k}\right\rangle$-cover of the same cardinality in the graph G.
2. The graph G does not contain terminal F_{k}-subgraphs from the case 1, but it contains a cycle of length k or more. Denote by D the set of all such vertices of all such cycles. Denote by C_{0} the set of all cyclic vertices of the pseudograph M. Obviously, $C_{0} \subseteq D$. Each vertex x of C_{0} corresponds to at least one q-tuple $r_{1}--x--r_{2}$, where r_{1} and r_{2} are roots of two H_{x} graphs, added in the type A extention of two cyclic edges, incident to x. Denote by P_{0} the set of such q-tuples. All q-tuples in P_{0} pairwise have not common vertices, and they are all contained in D. Obviously, $\left|C_{0}\right|=\left|P_{0}\right|$.
Consider the graph $G^{\prime}=G \backslash D$. Let P be a maximum $\left\langle P_{k}\right\rangle$-packing and C be a minimum $\left\langle P_{k}\right\rangle$-cover of the graph G^{\prime}. By the inductive assumption, we have $|P|=|C|$. The set $P \cup P_{0}$ is a $\left\langle P_{k}\right\rangle$-packing of the graph G.
We show that $C \cup C_{0}$ is a $\left\langle P_{k}\right\rangle$-cover of graph G. Consider two vertices $x, y \in C_{0}$ adjacent in the pseudograph M (the case $x=y$ is possible, if $x x$ is a loop in M). By Lemma 3, the $R T_{k}$-extention converts the edge $x y$ of the pseudograph M into a F_{k}-subgraph of the graph G. Thus, $G \backslash C_{0}$ is the union of the graph G^{\prime} and a number of F_{k}-graphs, so it contains the same set of q-tuples as G. In other words, C_{0} covers all q-tuples of the graph G, which are not covered by C, i.e. $C \cup C_{0}$ is a $\left\langle P_{k}\right\rangle$-cover of graph G.
Since $\left|C_{0}\right|=\left|P_{0}\right|$, we have $\mu_{\left\langle P_{k}\right\rangle}(G)=\beta_{\left\langle P_{k}\right\rangle}(G)$.
3. The graph G does not contain cycles of length k or more and terminal F_{k}-subgraphs from the case 1 . The pseudograph M is a tree in this case.
Without loss of generality, we can consider that all maximal terminal F_{k}-subgraphs of the graph G added by some $A d d T F$ procedures. In this case, either $M=O_{1}$ (then, it is easy to see, that $\mu_{\left\langle P_{k}\right\rangle}(G)=\beta_{\left\langle P_{k}\right\rangle}(G)=0$), or at least one $A d d T F$ procedure was applied to each its leaf. In other words, now, we assume that each terminal subgraph, a contact vertex of which is a leaf, is maximal

Let y be a leaf of M, T be the union of all terminal F_{k}-subgraphs of the graph G with the contact vertex y, and x be a neighbour of y in the tree M. Suppose that $x y$ is an edge of G. Then, the graph $T+y$ is a terminal F_{k}-subgraph, because it satisfies the case 1, otherwise. Then, connected components of T are not maximal terminal F_{k}-subgraphs, which contradicts the statement above. Thus, the edge $x y$ is extended by the type B extention.

Note that the type B extention can convert $x y$ into $H_{y}^{n}+x$ or $H_{x}^{n}+y$. In both cases, $H_{y}^{n}+T$ or $H_{x}^{c}+T+y \backslash x$ is the terminal subgraph in G and, therefore, it contains s q-tuple. Each such a q-tuple contains y and at least one more vertex from H_{y}^{n} or H_{x}^{n}. Consider these two cases separately.

If $x y$ is converted into $H_{x}^{n}+y$, then H_{x}^{n} has at least 2 leaves. Without loss of generality, we can assume that x has degree 2 or more in H_{x}. Otherwise, we can use the lowest descendant of x with degree 3 or more as x. Let b, d be any vertices of H_{x} adjacent to x. Since $H_{x} \in T_{i}^{*}$, it has two non-intersected paths $a--b$ and $c--d$, where a, c are leaves of H_{x} and, therefore, adjacent to y. Note that $d(a--b)=d(c--d)$. We
can assume that $a--a^{\prime}$ is the longest path of $H_{x}^{n} \backslash x$, for some vertex a^{\prime}. Since each vertex of $a--a^{\prime}$ is a descendant of b (or equals to b), $a--a^{\prime}$ does not intersect $c--d$.

Let Q be a q-tuple in $H_{x}^{n}+T+y \backslash x$. If $a \notin Q$, then exchange $Q \cap V\left(H_{x}^{n}\right)$ into a part of the same length beginning from a. Since $a--a^{\prime}$ is the longest path of $H_{x}^{n} \backslash x$, we can find such a part in this path. In other words, we can assume that $Q=u--y a--v$, where $u \in V(T)$ and $a--v \subseteq a--a^{\prime}$.

Consider the graph G^{\prime}, obtained from the graph G by deleting vertices of the part $u--y$ of the path Q. Let P be a maximum $\left\langle P_{k}\right\rangle$-packing and C be a minimum $\left\langle P_{k}\right\rangle$ cover of the graph G^{\prime}. By the inductive assumption, $|P|=|C|$. By Lemma 5, since $i \leq s, H_{x}^{n} \in F_{k}$. Therefore and since x is the cut vertex of G^{\prime}, only one q-tuple of P can contain some vertices from H_{x}^{n}.

If a q-tuple $Q^{\prime} \in P$ contains b, then exchange $Q^{\prime} \cap V\left(H_{x}^{c}\right)$ into part of the same length beginning from d. Since $d(a--b)=d(c--d)$, we can find such a part in $c--d$. In other words, we can assume that not a q-tuple of P contain a vertex from $a--a$.

Then, $P \cup\{Q\}$ is a $\left\langle P_{k}\right\rangle$-packing of the size $|P|+1$ and $C \cup\{y\}$ is a $\left\langle P_{k}\right\rangle$-cover of the same cardinality in the graph G.

If $x y$ is converted into $H_{y}^{n}+x$, then y has degree 2 or more in H_{y}. Repeating the foregoing argument, we find that H_{y} has two non-intersected paths $a--b$ and $c--d$, where $a, c \in N(y), b, d$ are leaves of H_{y}, adjacent to $x, d(a--b)=d(c--d)$. We can assume that $b--b^{\prime}$ is the longest path of $H_{y}^{n} \backslash y$, for some vertex b^{\prime}, and $b--b^{\prime}$ does not intersect $c--d$.

Let Q be a q-tuple in $H_{y}^{n}+T$. If $a \in Q$, then exchange $Q \cap V\left(H_{y}^{n}\right)$ into a part of the same length beginning from c. Since $d(a--b)=d(c--d)$, we can find such a part in $c--d$. In other words, we can assume that $Q=u--y c--v$, where $u \in V(T)$ and $v \in H_{y}^{n} \backslash y \backslash b--b^{\prime}$.

Consider the graph G^{\prime}, obtained from the graph G by deleting vertices of the part $u--y$ of the path Q. Let P be a maximum $\left\langle P_{k}\right\rangle$-packing and C be a minimum $\left\langle P_{k}\right\rangle-$ cover of graph G^{\prime}. By the inductive assumption, we have $|P|=|C|$. By Lemma 6 , since $i \leq s, H_{y}^{n}+x \backslash y \in F_{k}$. Therefore and since x is the cut-vertex of G^{\prime}, only one q-tuple of P can contain some vertices from $H_{y}^{n}+x \backslash y$.

If a q-tuple $Q^{\prime} \in P$ does not contain b, then exchange $Q^{\prime} \cap V\left(H_{x}^{c}\right)$ into a part of the same length beginning from b. Since $b--b^{\prime}$ is the longest path of $H_{y}^{n} \backslash y$, we can find such a part in this path. In other words, we can assume that if P contain a q-tuple intersected to $H_{y}^{n} \backslash y$, then each its vertex of this subgraph is in $b--b^{\prime}$.

Then, $P \cup\{Q\}$ is a $\left\langle P_{k}\right\rangle$-packing of the size $|P|+1$ and $C \cup\{y\}$ is a $\left\langle P_{k}\right\rangle$-cover of the same cardinality in the graph G.

Thus, $\mu_{\left\langle P_{k}\right\rangle}(G)=\beta_{\left\langle P_{k}\right\rangle}(G)$. By Lemma 3, each subgraph of the graph G is a $R T_{k}$-graph. Hence, each $R T_{k}$-graph is a König graph for $\left\langle P_{k}\right\rangle$.

5 Conclusions and future work

We have considered the family of König graphs for odd paths and all their spanning supergraphs. Some infinite sets of minimal forbidden subgraphs for them have been revealed. A procedure for constructing some of the considered König graphs has been presented. Both results are not finalized, i.e. they both do not give complete descrip-
tions. Describing the classes of König graphs for odd paths and all their spanning supergraphs in the languages of minimal forbidden subgraphs and/or constructive procedures are interesting research problems for future work, which are open at the moment.

Recall that, according to the König theorem, the papers [2] and [18], the classes of $\left\langle P_{k}\right\rangle$-König graphs are monotone for $k \in\{2,3,5\}$. We conjecture that the class of $\left\langle P_{k}\right\rangle$-König graphs is monotone for any $k \geq 2$. Proving or disproving it is also a challenging research problem for future work.

References

1. Alekseev, V.E., Mokeev, D.B.: König graphs with respect to the 3-path. Diskretnyi Analiz i Issledovanie Operatsii. 19(4), 3-14 (2012). (in Russian)
2. Alekseev, V.E., Mokeev, D.B.: König graphs for 3-paths and 3-cycles. Discrete Appl. Math. 204, 1-5 (2016)
3. Brešar, B., Kardoš, F., Katrenič, J., Semanišin, G.: Minimum k-path vertex cover. Discrete Appl. Math. 159(12), 1189-1195 (2011)
4. Cornuéjols, G.: Combinatorial Optimization: Packing and Covering, p. 132. SIAM, New York (2001)
5. Deming, R.W.: Independence numbers of graphs - an extension of the König-Egervary theorem. Discrete Math. 27, 23-33 (1979)
6. Devi, N.S., Mane, A.C., Mishra, S.: Computational complexity of minimum P_{k} vertex cover problem for regular and $K_{1,4}$-free graphs. Discrete Appl. Math. 184, 114-121 (2015)
7. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449-467 (1965)
8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1979)
9. Hell, P.: Graph packing. Electron. Notes Discrete Math. 5, 170-173 (2000)
10. Kardoš, F., Katrenič, J., Schiermeyer, I.: On computing the minimum 3-path vertex cover and dissociation number of graphs. Theor. Comput. Sci. 412(50), 7009-7017 (2011)
11. Kirkpatrick, D.G., Hell, P.(1978): On the completeness of a generalized matching problem. In: Lipton R. et al (eds.). Proceedings of the 10th Annual ACM Symposium on Theory of Computing, ACM, New York pp. 240-245
12. Kosowski, A., Małafiejski, M., Żyliński, P.: Combinatorial and computational aspects of graph packing and graph decomposition. Gr. Comb. 24(5), 461-468 (2008)
13. Li, Y., Tu, J.: A 2-approximation algorithm for the vertex cover P_{k} problem in cubic graphs. Int. J. Comput. Math. 91(10), 2103-2108 (2014)
14. Malyshev, D.S., Mokeev, D.B.: König graphs with respect to the 4-path and its spanning supergraphs. J. Appl. Ind. Math. 13(1), 85-92 (2019)
15. Masuyama, S., Ibaraki, T.: Chain packing in graphs. Algorithmica 6(1), 826-839 (1991)
16. Mokeev, D.B.: P_{q}-König extended forests and cycles. In: Kononov, A et al. (eds.) Proceedings of the 9th International Conference on Discrete Optimization and Operations Research (Vladivostok, September 19-23, 2016), pp. 86-95. Springer (2016)
17. Mokeev, D.B.: On König graphs with respect to P_{4}. J. Appl. Ind. Math. 11(3), 421-430 (2017)
18. Mokeev, D.B., Malyshev, D.S.: On the König graphs for the 5-path and its spanning supergraphs. J. Appl. Ind. Math. 14(2), 369-384 (2020)
19. Mokeev, D.B., Malyshev, D.S.: A polynomial-time algorithm of finding a minimum k-path vertex cover and a maximum k-path packing in some graphs. Optim. Lett. 14(6), 1317-1322 (2020)
20. Sterboul, F.: A characterization of graphs in which the transversal number equals the matching number. J. Comb. Theory, Ser. B 27, 228-229 (1979)
21. Tu, J., Zhou, W.: A primal-dual approximation algorithm for the vertex cover P_{3} problem. Theor. Comput. Sci. 412(50), 7044-7048 (2011)
22. Yuster, R.: Combinatorial and computational aspects of graph packing and graph decomposition. Comput. Sci. Rev. 1, 12-26 (2007)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: The Sect. 3 was prepared within the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE). The Sect. 4 was funded by RFBR and BRFBR, Project Number 20-51-04001.

 Dmitry S. Malyshev
 dsmalyshev@rambler.ru
 Dmitry B. Mokeev
 MokeevDB@gmail.com
 1 Lobachevsky State University of Nizhny Novgorod, 23 Gagarina ave., Nizhny Novgorod, Russia 603950
 2 Laboratory of Algorithms and Technologies for Networks Analysis, National Research University Higher School of Economics, 136 Rodionova Str., Nizhny Novgorod, Russia 603093

