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Abstract. In the present paper, a solution to the 33rd Palis-Pugh problem

for gradient-like diffeomorphisms of a two-dimensional sphere is obtained. It is

precisely shown that with respect to the stable isotopic connectedness relation
there exists countable many of equivalence classes of such systems. 43 words.

1. Introduction. The problem of the existence of an arc with no more than a
countable (finite) number of bifurcations connecting structurally stable systems
(Morse-Smale systems) on manifolds is on the list of fifty Palis-Pugh problems [28]
under number 33. In this paper, this problem is solved for gradient-like diffeomor-
phisms of a two-dimensional sphere.

First the notion of rough (or structural stable) system was introduced in tha clas-
sical paper by A. Andronov and L. Pontryagin [3]. In 1976, S. Newhouse, J. Palis, F.
Takens [24] introduced the concept of a stable arc connecting two structurally sta-
ble systems on a manifold. Such an arc does not change its quality properties with
a little perturbation. In the same year, S. Newhouse and M. Peixoto [25] proved
the existence of a simple arc (containing only elementary bifurcations) between any
two Morse-Smale flows. It follows from the result of G. Fleitas [9] that a simple
arc constructed by Newhouse and Peixoto can always be replaced by a stable one.
For Morse-Smale diffeomorphisms given on manifolds of any dimension, examples
of systems that cannot be connected by a stable arc are known. In this direction,
the question naturally arises of finding an invariant that uniquely determines the
equivalence class of the Morse-Smale diffeomorphism with respect to the relation of
the connection by a stable arc.

According to [23], for diffeomorphisms of a closed manifold Mn with a finite
limit set, the stability of the arc {ft ∈ Diff(Mn), t ∈ [0, 1]} is characterized by
a finite number of bifurcation values 0 < b1 < · · · < bq < 1, while the bifurcation
diffeomorphism ϕbi , i ∈ {1, . . . , q} has the following properties:
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1) diffeomorphism ϕbi has exactly one non-hyperbolic periodic orbit, namely
a flip or a non-critical saddle-node, while the arc unfolds generically through a
bifurcation value;

2) all invariant manifolds of the periodic points of the diffeomorphism ϕbi inter-
sect transversally and it has no cycles.

We say that diffeomorphisms f0, f1 : Mn → Mn belong to the same component
of stable connectedness if in the space of diffeomorphisms they can be connected by
an arc with the properties described above.

Classification from the point of view of the introduced equivalence relation is
already non-trivial for orientation-preserving diffeomorphisms of the circle S1. Here
a countable set of such classes appears, each of which is uniquely determined by the
rotation number of the rough transformation of the circle [26], which is k

m , where
k ∈ (N ∪ 0),m ∈ N, k < m, (k,m) = 1.

In the present paper we also prove that here is a countable set of the components
of the stable connectedness for orientation-preserving gradient-like diffeomorphisms
of 2-sphere.

Namely, consider S1 as the equator of the sphere S2. Then the structurally stable
diffeomorphism of the circle with exactly two periodic orbits of the period m ∈ N
and the rotation number k

m can be extended to the diffeomorphism φk,m : S2 → S2,
which has two fixed sources at the north and south poles. Denote by Ck,m the
component of stable connectedness of the diffeomorphism φk,m and by C−k,m the

component of stable connectedness of the diffeomorphism φ−1
k,m. Also denote by C0

the component of stable connectedness of the source-sink diffeomorphism φ0.

Theorem 1.1. Every orientation-preserving gradient-like diffeomorphism of
2-sphere belongs to one of the components C0, Ck,m, C

−
k,m, k, m ∈ N, k < m/2,

(k,m) = 1. Herewith:

• the components C0, Ck,m, C
−
k,m, k, m ∈ N, k < m/2, (k,m) = 1 are pairwise

disjoint;
• Ck,m = Cm−k,m, C

−
k,m = C−m−k,m, C1,2 = C−1,2 = C0,1 = C−0,1 = C0.

Notice that it follows from a result by P. Blanchard [6] that φk,m, φk′,m′ : S2 →
S2 belong to different components for m = 2r · q,m′ = 2r

′ · q′, where integers
r, r′ ≥ 0 and positive integers q 6= q′. He obtained some necessary conditions
for the connection of Morse-Smale diffeomorphisms on the surface by a stable arc.
However, the question on sufficient conditions was not considered in [6].

The obtained result is closely related with the classification of periodic homeo-
morphisms of a two-dimensional sphere obtained by B. von Kerekjarto [18]. The
topological conjugacy class of the periodic transformation of the period m on a
2-sphere is also completely determined by the rotation number k

m around the north
pole-south pole axis. Since any orientation-preserving gradient-like diffeomorphism
is topologically conjugate to a composition of a periodic homeomorphism with a
one-time shift of a gradient-like flow [5], [14], the natural question is about an
interrelation between these rotation numbers.

The proof of the theorem 1.1 shows that they are not coincide in general. In any
case the construction of a stable arc between diffeomorphisms is an independent
problem that does not directly follow from the topological classification of diffeo-
morphisms. In support of this, it suffices to note that all orientation-preserving
source-sink systems on the n-sphere are pairwise topologically conjugate for a fixed
n. However, they are not connected by a stable arc in general, for example, for
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n = 7 [8]. For n = 2, 3 the non-trivial fact of the existence of an arc without
bifurcations between two source-sink diffeomorphisms was established in [27], [8].

2. Backgrounds.

2.1. Morse-Smale diffeomorphisms. Let a diffeomorphism f : Mn → Mn be
given on a smooth closed (compact without boundary) n-manifold (n ≥ 1) Mn with
a metric d.

A point x ∈ Mn is called wandering for f if there is an open neighborhood Ux
of the point x, such that fn(Ux) ∩ Ux = ∅ for all n ∈ N. Otherwise, the point x is
called non-wandering. The set of non-wandering points f is called non-wandering
set and is denoted by Ωf .

For example, all the limit points of a diffeomorphism are non-wandering. Recall
that a point y ∈ Mn is called a ω-limit point for a point x ∈ Mn if there exists
a sequence tk → +∞, tk ∈ Z such that lim

tk→+∞
d(f tk(x), y) = 0. The set ω(x) of

all ω-limit points for the point x is called ω-limit set. Replacing +∞ with −∞
determines the α-limit set α(x) for the point x. The set Lf = cl (

⋃
x∈Mn

ω(x)∪α(x))

is called the limit set of the diffeomorphism f .
If the set Ωf is finite, then every point p ∈ Ωf is periodic, we denote by mp ∈ N

the period of the periodic point p. Any periodic point p is associated with stable
and unstable manifolds defined as follows
W s
p = {x ∈Mn : lim

k→+∞
d(fkmp(x), p) = 0},

Wu
p = {x ∈Mn : lim

k→+∞
d(f−kmp(x), p) = 0}.

Stable and unstable manifolds are called invariant manifolds. It is said that the
periodic orbits O1, . . . ,Ok form a cycle if W s

Oi ∩W
u
Oi+1

6= ∅ for i ∈ {1, . . . , k} and
Ok+1 = O1.

A periodic point p ∈ Ωf is called hyperbolic if the absolute values of the eigen-

values of the Jacobi matrix
(
∂fmp

∂x

)
|p are not equal one. If all of them are less

(greater) than one, then p is called the sink (source) point. Sink or source points
are called nodal. If a hyperbolic periodic point is not nodal, then it is called saddle
point.

The stableW s
p and the unstableWu

p manifolds of the periodic point p are injective

immersions of the spaces Rqp and Rn−qp , where qp is the number of eigenvalues of
the Jacobi matrix, modulo large ones (see, for example, [31]). The number νp, equal
to +1 (−1) if the map fmp |Wu

p
preserves (changes) the orientation of Wu

p , is called

an orientation type of p. The path-connected component of the set Wu
p \ p (W s

p \ p)
is called an unstable (stable) separatrix of the point p.

A closed f -invariant set A ⊂ Mn is called an attractor of a discrete dynamical
system generated by f f if it has a compact neighborhood UA such that f(UA) ⊂
int UA and A =

⋂
k≥0

fk(UA). The neighborhood UA is called trapping. A repeller is

defined as an attractor for f−1. If the trapping neighborhood of an attractor A is
the complement of a trapping neighborhood of a repeller R then pair A,R is called
dual.

A diffeomorphism f : Mn →Mn is called Morse-Smale, if
1) the non-wandering set Ωf consists of a finite number of hyperbolic orbits;
2) manifolds W s

p , Wu
q intersect transversely for any non-wandering points p, q.
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A Morse-Smale diffeomorphism is called gradient-like if the condition W s
σ1
∩

Wu
σ2
6= ∅ for different σ1, σ2 ∈ Ωf implies that dim Wu

σ1
< dim Wu

σ2
. The Morse-

Smale flow is similar defined and is called gradient-like in the absence of periodic
trajectories.

Notice that the gradient-like diffeomorphism on a surface has no heteroclinic
points – intersection points of the invariant manifolds of different saddle points.

Proposition 1. [14, Lemma 3.3] All saddle separatrices of an orientation-preserving
gradient-like diffeomorphism f on a surface has the same period µf ∈ N.

A homeomorphism φ : M2 → M2 is called periodic of order µ ∈ N if φµ = id
and φj 6= id for any positive integer j < µ.

Proposition 2. [14, Theorems 3.1, 3.3] Every orientation-preserving gradient-like
diffeomorphism f on a surface is topologically conjugate to a composition of a peri-
odic homeomorphism φ

f
of the period µf with the one-time shift of a gradient-like

flow. Moreover, f |Ωf = φ
f
|Ωf .

We denote by G the class of orientation-preserving gradient-like diffeomorphisms
on the two-dimensional sphere S2. According to the classification given by B.
Kerekyarto [18], an orientation-preserving periodic homeomorphism of the period
µ on 2-sphere has periodic points of only two periods 1 and µ, while the set of its
fixed points is not empty. This gives us the following corollary of the propositions
1 and 2 for the class G.

Proposition 3. Any f ∈ G has periodic points of only two periods 1 and µf
(possibly µf = 1). Moreover,

1) if f has saddle points with the negative orientation type then all such points
are fixed and µf = 2;

2) any saddle point with a positive orientation type has the period µf .

2.2. Stable arcs in the space of diffeomorphisms. Consider a one-parameter
family of diffeomorphisms (arc) ϕt : Mn → Mn, t ∈ [0, 1]. Denote by Q the
set of arcs {ϕt}, that begin and end in Morse-Smale diffeomorphisms and every
diffeomorphism ϕt has a finite limit set.

According to [23], an arc {ϕt} ∈ Q is called stable if it is an internal point of the
equivalence class with respect to the following relation: arcs {ϕt}, {ϕ̃t} ∈ Q are
called conjugate, if there are homeomorphisms h : [0, 1] → [0, 1], Ht : Mn → Mn

such that h(b) is a bifurcation value for every bifurcation value b, Htϕt = ϕ̃
h(t)

Ht, t ∈
[0, 1] and Ht continuously depends on t (see figure 2.2).

In [23] also established that the arc {ϕt} ∈ Q is stable if and only if all its points
are structurally stable diffeomorphisms with the exception of a finite number of
bifurcation points ϕbi , i = 1, . . . , q such that ϕbi :

1) has a unique non-hyperbolic periodic orbit, which is a non-critical saddle-node
or flip;

2) has no cycles;
3) the invariant manifolds of all periodic points intersect transversally;
4) the arc ϕt unfolds generically through ϕbi .
Recall the definition of unfolding generically arc ϕt through the saddle-node or

flip. We give the definition for a fixed non-hyperbolic point, in the case when it has
a period k > 1, a similar definition is given for the arc ϕkt .

One says that an arc {ϕt} ∈ Q unfolds generically through a saddle-node bifur-
cation ϕbi (see figure 2), if in some neighborhood of the non-hyperbolic point (p, bi)
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b

h(b)

Figure 1. Conjugate arcs

Figure 2. Saddle-node bifurcation

the arc ϕt is conjugate to the arc

ϕ̃t̃(x1, x2, . . . , x1+nu , x2+nu , . . . , xn) =(
x1 + 2x2

1 + t̃,±2x2, . . . ,±2x1+nu ,
±x2+nu

2
, . . . ,

±xn
2

)
,

where (x1, . . . , xn) ∈ Rn, |xi| < 1/2, |t̃| < 1/10.
In the local coordinates (x1, . . . , xn, t̃) the bifurcation occurs at time t̃ = 0 and the

origin O ∈ Rn is a saddle-node point. The axis Ox1 is called a central manifold, the
half-space {(x1, x2, . . . , xn) ∈ Rn : x1 ≥ 0, x2+nu = · · · = xn = 0} is the unstable
manifold, half-space {(x1, x2, . . . , xn) ∈ Rn : x1 ≤ 0, x2 = · · · = x1+nu = 0} is the
stable manifold of the point O.

If p is a saddle-nodal point of the diffeomorphism ϕbi , then there exists a unique
ϕbi-invariant foliation F ssp with smooth leaves such thatW s

p is a leave of this foliation
[17]. F ssp is called a strongly stable foliation (see figure 3). A similar strongly
unstable foliation is denoted by Fuup . A point p is called s-critical, if there exists
some hyperbolic periodic point q such that Wu

q non-transversally intersect some leaf
of the foliation F ssp ; u-criticality is defined similarly. Point p is called

- semi-critical if it is either s- or u-critical;
- bi-critical if it is s- and u-critical;
- non-critical if it is not semi-critical1.

Remark 1. For surface diffeomorphisms, the non-criticality of the saddle-node
point p means the absence of intersection of the central manifold of the point p
with the separatrices of saddle points.

1For the first time, the effect of arc instability in a neighborhood of a non-critical saddle-node
was discovered in 1974 by V. Afraimovich and L. Shilnikov [1], [2]. The existence of invariant

foliations F ssp , Fuup was also proved earlier in the works of V. Lukyanov and L. Shilnikov [19].
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Figure 3. Strongly stable and unstable foliations

Figure 4. Flip bifurcation

One says that an arc {ϕt} ∈ Q unfolds generically through a flip bifurcation ϕbi
(see figure 4), if in some neighborhood of the non-hyperbolic point (p, bi) the arc ϕt
is conjugate to the arc

ϕ̃t̃(x1, x2, . . . , x1+nu , x2+nu , . . . , xn) =(
−x1(1± t̃) + x3

1,±2x2, . . . ,±2x1+nu ,
±x2+nu

2
, . . . ,

±xn
2

)
,

where (x1, . . . , xn) ∈ Rn, |xi| < 1/2, |t̃| < 1/10.
We say that Morse-Smale diffeomorphisms f0, f1 : Mn →Mn belong to the same

component of stable connectedness, if in the space of diffeomorphisms they can be
connected by a stable arc.

A diffeomorphism source-sink on a closed manifold is a gradient-like diffeomor-
phism having exactly two fixed points: a source and a sink. The ambient manifold
for such diffeomorphisms is always a n-sphere.

Proposition 4. [27, Theorem 1] Every source-sink diffeomorphisms f0, f1 : S2 →
S2 are connected by an arc without bifurcations.

2.3. Reduction of confluence objects to a canonical form. To construct an
arc that unfolds generically through a saddle-node or flip bifurcation, it is neces-
sary to reduce the confluence objects to a canonical form. In this section, we give
necessary facts that make it possible, without loss of generality, to consider any
diffeomorphism by linear in a neighborhood of a hyperbolic point, and the closure
of any saddle separatrix of a 2-diffeomorphism lying on a smooth arc.
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Proposition 5. [22, Theorem 5.8 (Tom’s theorem on the continuation of isotopy)]
Let Y be a smooth manifold without boundary, X be a smooth compact submanifold
of Y and {ft : X → Y, t ∈ [0, 1]} is a smooth isotopy such that f0 is the inclusion
of X in Y . Then for any compact set A ⊂ Y , containing the isotopy support2

supp{ft} there exists a smooth isotopy {gt ∈ Diff(Y ), t ∈ [0, 1]} such that g0 = id,
gt|X = ft|X for any t ∈ [0, 1] and supp{gt} belongs to A.

Proposition 6. [11, Theorem 1 (A “pathwise” Franks’ lemma)] Let a diffeomor-
phism ϕ0 : Mn → Mn has an isolated hyperbolic point r0 of the period m0 and
let (U0, h) is a local map of the manifold Mn such that r0 ∈ U0, h(r0) = O.Then
for any hyperbolic automorphism Q, having the same index as the automorphism
(Dϕm0

0 )r0 , there exist neighborhoods U1, U2 of the point r0, U2 ⊂ U1 ⊂ U0, and the
arc ϕt : Mn →Mn, t ∈ [0, 1] without bifurcations such that:

1) the diffeomorphism ϕt, t ∈ [0, 1], coincides with the diffeomorphism ϕ0 utside

the set
m−1⋃
k=0

ϕk0(U1);

2) Or0 =
m−1⋃
k=0

ϕk0(r0) is an isolated hyperbolic orbit of period m0 of the same

index as the automorphism (Dϕm0
0 )r0 , for every ϕt;

3) W s
Or0

(ϕt) = W s
Or0

(ϕ0) and Wu
Or0

(ϕt) = Wu
Or0

(ϕ0) outside the set
m−1⋃
k=0

ϕk0(U1);

4) the diffeomorphism hϕm1 h
−1 coincides with the diffeomorphism Q on the set

h(U2).

Proposition 7. [21, Lemma 2] Let a diffeomorphism ϕ0 : M2 → M2 has an
isolated hyperbolic sink ω0 and an isolated hyperbolic saddle σ0 such that the unstable
separatrix γϕ0 of the saddle σ0 lies in the sink basin W s

ω0
and has the same period

m, as the sink ω0. Let (V0, ψ0) be a local chart in ω0 such that the diffeomorphism
ψ0ϕ

m
0 ψ
−1
0 : R2 → R2 is the linear contraction g(x1, x2) = (x1/2, x2/2). Then there

exist neighborhoods V1, V2 of the point ω0, V2 ⊂ V1 ⊂ V0 and the arc ϕt : M2 →
M2, t ∈ [0, 1] without bifurcations with the following properties:

1) the diffeomorphism ϕt, t ∈ [0, 1] coincides with the diffeomorphism ϕ0 outside

the set
m−1⋃
k=0

ϕk0(V1) and
m−1⋃
k=0

ϕk0(ω0) is the hyperbolic sink orbit of the period m for

all ϕt;

2) the diffeomorphism ϕ1 coincides with the diffeomorphism ϕ0 on the set
m−1⋃
k=0

ϕk0

(V2) and ψ0(γϕ1 ∩ V2) ⊂ OX1, where γϕ1 is an unstable separatrix of the saddle σ0

with respect to the diffeomorphism ϕ1.

2.4. Necessary information from the graph theory. Recall some definitions
from the graph theory (see, for example, [16]).

Graph Γ is a pair (VΓ, EΓ), where VΓ is a set of vertices, and EΓ is a set of pairs
of vertices, called edges.

Two vertices are called adjacent, if they are connected by an edge (that is, they
form an edge), and the edge in this case is called incidental to each of the vertices.
The number of edges incident to a vertex is called the degree of the vertex.

2The support supp{ft} of isotopy {ft} s the closure of the set {x ∈ X : ft(x) 6=
f0(x) for some t ∈ [0, 1]}.
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The set of vertices {v1, (v1, v2), v2, . . . , vk−1, (vk−1, vk), vk} is called path of length
k. A path is called a cycle, if v1 = vk. A graph without cycles is called acyclic. A
graph is called connected, if every two of its vertices are connected by a path. Tree
is a connected acyclic graph, that is, any two of its vertices are connected in exactly
one way.

Everywhere below Γ is a tree.
Every tree with at least 2 vertices has at least two hanging vertices, that is,

vertices of degree 1. Then every such tree Γ is uniquely associated with the sequence

Γ0, Γ1, . . . ,Γs

trees such that Γ0 = Γ, Γs contain one or two vertices and for any i ∈ {1, ., , , s},
the tree Γi, is obtained from Γi−1 y removing all its hanging vertices. All vertices
of the tree Γs are called central vertices of the tree Γ and if Γs has an edge, then it
is called central edge of the tree Γ.

A tree Γ is called central if it has exactly one central vertex, and bi-central,
otherwise.

Vertex rank x ∈ VΓ, denoted by rank(x), is defined by the formula

rank(x) = max{i : x ∈ VΓi}.

It follows from the definition that if the vertices v, w are incident to an off-center
edge, then |rank(v) − rank(w)| = 1, and the central vertices of the bi-central tree
have the same rank.

Automorphism PΓ of the tree Γ is a bijective map of the set VΓ onto itself,
preserving the adjacency, i.e.

(u, v) ∈ EΓ ⇔ (PΓ(u), PΓ(v)) ∈ EΓ.

The automorphism PΓ can be represented as a superposition of cyclic permuta-
tions. Then the set VΓ can be decomposed into PΓ-orbits – subsets invariant under
the permutations. It is clear that every PΓ-orbit consists of vertices of the same
rank and if the tree is central (bi-central), then its central vertex (central edge)
remains fixed for any automorphism.

The automorphism PΓ naturally induces a map of the set of edges EΓ, which we
will also denote by PΓ.

Proposition 8. [12, Corollary 2.2] Let (v, w) ∈ EΓ be an off-center edge and
rank(v) < rank(w). Then the period of the edge (v, w) is equal to the period of
the vertex v.

3. Dynamics of gradient-like surface diffeomorphisms.

3.1. Dynamics on an arbitrary surface. Consider an orientation-preserving
gradient-like diffeomorphism f , defined on a smooth orientable closed surface M2.
In this section, we describe the general dynamic properties of such diffeomorphisms.

Denote by Ω0
f , Ω1

f , Ω2
f the set of sinks, saddles and sources of f . For any (possibly

empty) f -invariant set Σ ⊂ Ω1
f we set

AΣ = Ω0
f ∪Wu

Σ , RΣ = Ω2
f ∪W s

Ω1
f\Σ

.

It follows from [13] that AΣ, RΣ are dual attractor and repeller. The set

VΣ = M2 \ (AΣ ∪RΣ)
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Figure 5. Illustration to the proof of lemma 3.1

is called characteristic space. We denote by V̂Σ the orbit space of the action of the
diffeomorphism f on VΣ and by p

Σ
: VΣ → V̂Σ the natural projection. According

to [15], each connected component of the manifold V̂Σ is diffeomorphic to a two-
dimensional torus.

Lemma 3.1. For every orientation-preserving gradient-like diffeomorphism f :
M2 →M2 there exists a set Σ, such that the orbit space V̂Σ is connected.

Proof. Let Σ0 = ∅ and consider the corresponding dual attractor and repeller AΣ0
=

Ω0
f and RΣ0 = Ω2

f ∪W s
Ω1
f
. If the orbit space of V̂Σ0 is connected, then Σ = Σ0.

Otherwise, denote by V̂1, . . . , V̂l the connected components of the space V̂Σ0
. For

any saddle point σ ∈ Ω1
f we set L̂uσ = p

Σ0
(Wu

σ \ σ). Due to [14], the set L̂uσ consists
of two closed curves if νσ = +1 and one closed curve if νσ = −1.

Consider the dual attractor and repeller for the set Σ1
f , that is, AΣ1

f
= Ω0

f ∪
Wu

Ω1
f

and RΣ1
f

= Ω2
f . In this case, the repeller has dimension zero and, by [13],

the attractor AΣ1
f

is connected. Then, up to the renumbering of the components

V̂1, . . . , V̂l, there is a sequence of saddle points σ1, . . . , σl−1 such that the set L̂uσi
consists of two closed curves ˆ̀1u

σi ⊂ V̂i, ˆ̀2u
σi ⊂ V̂i+1 (see figure 3.1). Let Oσi denote

the orbit of the point σi. Let

Σi = Σ0 ∪
i⋃

j=1

Wu
Oσj

, i ∈ {1, . . . , l − 1}.

According to [15], the orbit space of V̂Σi consists of l− i connected components.

Thus, the space V̂Σl−1
is connected, and Σ = Σl−1 is the desired set.

For any gradient-like diffeomorphism f : M2 → M2 and a set Σ, satisfying the
conditions of the lemma 3.1, let

Af = AΣ, Rf = RΣ, Vf = VΣ.
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Figure 6 shows a phase portrait of a gradient-like diffeomorphism f with a pair
Af , Rf .

Figure 6. An example of an attractor Af and repeller Rf for a
gradient-like diffeomorphism f

Note that the set Σ, satisfying the conditions of Lemma 3.1, is not unique. Thus
in Figure 7 depicted diffeomorphism f ∈ G with two choices of the pair Af , Rf .

Figure 7. For the shown diffeomorphism, there are two ways to choose
the pair Af , Rf : 1) Af = clWu

σ , Rf = α and 2) Af = ω ∪ f(ω), Rf =

clW s
σ

For any chosen pair Af , Rf let

V̂f = V̂Σ, pf = p
Σ
.

Then the set V̂
f

is connected and homeomorphic to the torus, while the set Vf is
not connected in general. Denote by mf the number of connected components of
the set Vf . Note that the number mf depends on the choice of the pair Af , Rf .
For example, for a diffeomorphism in the figure 7 in case 1) mf = 1, and in case 2)
mf = 2.
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In any case the set Vf is diffeomorphic to (R2 \O)× Zmf and the restriction of
the diffeomorphism f to Vf is topologically conjugate by a homeomorphism hf :
Vf → (R2\O)×Zmf to periodic contraction amf : (R2\O)×Zmf → (R2\O)×Zmf ,
given by the formula

amf (x, y, i) =

{
(x, y, i+ 1), i = 0, . . . ,mf − 2,

(x/2, y/2, 0), i = mf − 1.

Let ci = h−1
f (S1 × {i}), i = 0, . . . ,mf − 1, c = h−1

f (S1 × Zmf ) and ĉ = p
f
(c) (see

figure 6, where the curve c is shown). Curve ĉ is called equator, it is a simple closed

curve on the torus V̂f and its homotopy type is uniquely defined by a diffeomorphism
f , that is, does not depend on the choice of the conjugating homeomorphism hf .

3.2. Dynamics on the two-dimensional sphere. Let us recall that G is the
class of orientation-preserving gradient-like diffeomorphisms on the two-dimensional
sphere S2. Consider f ∈ G. In this case, the attractor and repeller Af , Rf can be

described in more detail. To do this, note that
mf−1⋃
i=0

f i(c) divides the sphere S2

into two disjoint parts U and V such that

f(U) ⊂ U, Af =
⋂
j∈N

f j(U); f−1(V ) ⊂ V, Rf =
⋂
j∈N

f−j(V ).

Df

Af
f   (D )

f (Df)

Figure 8. Illustration to the lemma 3.2

Lemma 3.2. For any diffeomorphism f ∈ G (up to a consideration of the diffeo-
morphism f−1) the following is true (see figure 8):

1) the set U consists of mf pairwise disjoint disks Df , f(Df ), . . . , fmf−1(Df )
such that fmf (cl Df ) ⊂ intDf ;

2) the attractor Af consists of mf connected components A, f(A), . . . , fmf−1(A)
such that A =

⋂
j∈N

f jmf (Df ) and fmf (A) = A;

3) repeller Rf is connected.
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Proof. It follows from the definition of the equator ĉ hat the set c consists of mf

simple closed curves c0, . . . , cmf−1 on the sphere S2 such that ci+1 = f(ci), i =
0, . . . ,mf − 2. Since there are a finite number of such curves, among them there
necessarily exists a curve fk(c), k ∈ {0, . . . ,mf−1}, bounding the disk Df : intDf∩

(
mf−1⋃
i=0

f i(c)) = ∅. For definiteness, we assume that the disk Df is a connected

component of the set U (otherwise, this holds for the diffeomorphism f−1).
Since the restriction of the diffeomorphism fmf to Df ∩ Vf is associated with

linear contraction, fmf (cl Df ) ⊂ intDf . Thus, the set A =
⋂
j∈N

f jmf (Df ) is con-

nected. Since Af =
⋂
j∈N

f jmf (U), A is a connected component of the attractor Af

and Df = (Df ∩ Vf ) ∪ A. Further, we consider separately two cases: (1) mf = 1,
(2) mf > 1.

(1) If mf = 1, then Af = A, Rf =
⋂
j∈N

f−j(S2 \Df ) are connected attractor and

repeller and the lemma is proved.
(2) If mf > 1, then f(c)∩ (Df ∩ Vf ) = ∅ due to conjugation to periodic contrac-

tion, also f(c) ∩ A = ∅, since f(c) ⊂ Vf . So f(Df ) ∩Df = ∅ since f(c) ∩Df = ∅.
Therefore, the disk f(Df ) contains the connected component f(A) of the attrac-
tor Af , which does not intersect with A. Reasoning in the same way, we get mf

of pairwise disjoint connected components A, f(A), . . . , fmf−1(A) of the attractor
Af ,this means that the attractor Af consists of one orbits of the period mf . Thus,
the set U is the union of pairwise disjoint disks Df , f(Df ), . . . , fmf−1(Df ). This
implies that the set V = S2 \U is connected, that implies the connectedness of the
repeller Rf .

4. Proof of the theorem 1.1. In this section, we give a scheme of the proof of
theorem 1.1 with links to statements that will be proven in the following sections.

Recall that by G we denote the class of orientation-preserving gradient-like dif-
feomorphisms on the two-dimensional sphere S2 and in the section 5 we constructed
a family of model diffeomorphisms φk,m, φ0 ∈ G. We denote by Ck,m the compo-
nent of stable connectedness of the diffeomorphism φk,m and we denote by C−k,m the

component of stable connectedness of the diffeomorphism φ−1
k,m. We denote by C0

the component of the stable isotopic connection of the source-drain diffeomorphism
φ0.

We show that any diffeomorphism f ∈ G belongs to one of the components
C0, Ck,m, C

−
k,m, k, m ∈ N, k < m/2, (k,m) = 1.

Proof. Let f ∈ G. By lemma 3.2, diffeomorphism f (with respect to f−1) has
a (not unique) dual pair Af , Rf , in which the repeller Rf is connected and the
attractor consists of the mf connected components of the period mf . Let us show
that f is connected by a stable arc either with the diffeomorphism φ0, or with the
diffeomorphism φk,m, (k,m) = 1.

It follows from the results of sections 6, 7 that if the non-wandering set of f
contains a fixed sink or a saddle of negative orientation type, then there exists a
fixed pair Af , Rf (mf = 1). Otherwise, mf = µf for any pairs Af , Rf , where µf is
a period of non-wandering points of the diffeomorphism f that is different from 1.

Denote by G1 the subset of G consisting of diffeomorphisms of f for which there
exists a fixed pair Af , Rf (mf = 1) and by Gm,m > 1 the subset of G, consisting
of f diffeomorphisms for which mf = m for any pair Af , Rf .
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By the lemmas 6.3, 6.4, any diffeomorphism f ∈ G1 connected by a stable arc
with the diffeomorphism φ0. By the lemmas 8.1, 8.2, 8.3, 8.5, any diffeomorphism
f ∈ Gm is connected by a stable arc with some diffeomorphism φk,m.

Finitely, in section 9 we give a complete classification of the model diffeomor-
phisms φk,m with respect to the stable connectedness.

5. Model diffeomorphisms. In this section, we give an exact description of the
model diffeomorphisms φk,m, φ0 : S2 → S2.

For m ∈ N we define a vector field on the plane R2 using the following system of
differential equations in polar coordinates (r, ϕ){

ṙ = −r(r − 1),

ϕ̇ = −ϕ
(
ϕ− π

m

)
. . .
(
ϕ− (2m−1)π

m

) .

Denote by χtm the flow induced by this vector field and denote by χm its one-
time shift. The resulting diffeomorphism has a hyperbolic source at the origin
O, hyperbolic saddles at A2i

(
1, 2πi

m

)
and hyperbolic sinks at A2i+1

(
1, 2πi+1

m

)
, i ∈

{0, . . . ,m− 1} (see figure 9).
For any integer k ≥ 0 such that k < m, (k,m) = 1 we define a diffeomorphism

θk,m : R2 → R2 as follows θk,m(r, ϕ) = (r, ϕ+ 2πk
m ). We define the diffeomorphism

φ̄k,m : R2 → R2 by the formula

φ̄k,m = θk,m ◦ χ.

By construction, the non-wandering set of the diffeomorphism φ̄k,m coincides with
the non-wandering set of the diffeomorphism χm, and all sink points form a unique
orbit of the period m and all saddle points form a unique orbit of the period m of
the diffeomorphism φ̄k,m.

2m-3A 2m-1A

2m-2A

А3

x2

x1

Figure 9. Phase portrait of diffeomorphism χm



1114 ELENA NOZDRINOVA AND OLGA POCHINKA

Consider the standard two-dimensional sphere

S2 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1}.

Denote by S(0, 0,−1) south pole and define a stereographic projection ϑ : S2\{S} →
R2 by the formula

ϑ(x1, x2, x3) =

(
x1

1 + x3
,

x2

1 + x3

)
.

Then the inverse map ϑ−1 : R2 → S2 \ {S} is given by the formula

ϑ−1(x1, x2) =

(
2x1

x2
1 + x2

2 + 1
,

2x2

x2
1 + x2

2 + 1
,

1− (x2
1 + x2

2)

x2
1 + x2

2 + 1

)
.

Define a diffeomorphism φk,m : S2 → S2 by the formula

φk,m(s) =

{
ϑ−1 ◦ φ̄k,m ◦ ϑ(s), s ∈ S2 \ {S},
S, s = S.

By construction, the diffeomorphism φk,m is a gradient-like diffeomorphism of a
2-sphere with the following non-wandering set (see figure 10):

• fixed source points:
at the north pole α1 = ϑ−1(O), at the south pole α2 = S;

• saddle and sink orbits of the period m at the equator:
saddle orbit Oσ = {ϑ−1(A0), ϑ−1(A2), . . . , ϑ−1(A2m−2)},
sink orbit Oω = {ϑ−1(A1), ϑ−1(A3), . . . , ϑ−1(A2m−1)}.

Figure 10. Diffeomorphism φ1,3

Let us define χ0 as one-time shift of the flow χt0 : R2 → R2 given by the vector
field ṙ = −r. Define a diffeomorphism φ0 : S2 → S2 by the formula

φ0(s) =

{
ϑ−1 ◦ χ0 ◦ ϑ(s), s ∈ S2 \ {S},
S, s = S.

By construction, the diffeomorphism φ0 is a source-sink diffeomorphism with the
source α = ϑ−1(O) and the sink ω = S.
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6. Diffeomorphisms of class G1. Recall that by G1 we denote the subset G,
consisting of diffeomorphisms f , for which there exists a fixed pair Af , Rf (mf = 1).

6.1. Attractor structure. Let f ∈ G1. We associate the attractor Af with the
graph Γf so that its vertices VΓf are in one-to-one correspondence with periodic
points, and the edges EΓf – with saddle separatrices of the diffeomorphism f ,
belonging to the attractor Af . Moreover, the diffeomorphism f naturally induces
the automorphism PΓf of the graph Γf .

Lemma 6.1. If f ∈ G1, then the graph Γf is a tree.

Proof. We show that if the attractor Af is different from the sink, then it does not
contain cycles.

Suppose the opposite: Af contains a cycle formed by the closures of the unstable

manifolds of saddle points σ1, . . . , σr. Then the closed curve
r⋃
i=1

clWu
i bounds a

disk d ⊂ Df . It implies that one of the stable separatrices of every saddle σi lies
in the disk d. Consequently, the closure of this separatrix lies in the disk d. Thus,
Rf ∩Df 6= ∅, which contradicts lemma 3.2.

The following lemma follows directly from the proposition 8.

Lemma 6.2. If f ∈ G1 and the attractor Af of the diffeomorphism f is different
from the sink, then exactly one of the following statements is true:

1) Af = clWu
σ , where σ is a saddle point with a negative orientation type;

2) there is a saddle point σ ∈ Af with a positive orientation type and a sink point
ω ∈ Af such that mσ = mω, ω ∈ clWu

σ and the intersection W s
ω ∩ Af onsists of

exactly one unstable separatrix of the saddle σ and the sink ω.

6.2. Trivialization of the attractor for f ∈ G1. Denote by H1 a subset of G1,
consisting of diffeomorphisms for which the attractor Af consists of one sink orbit.

Lemma 6.3. Any diffeomorphism f ∈ G1 is connected by a stable arc with some
diffeomorphism g ∈ H1, coinciding with f on S2 \Df .

Proof. We divide the set G1 into subsets G1 = G1,1 ∪G1,2 ∪ · · · ∪G1,λ ∪ . . . , where
λ ∈ N is the number of sink orbits in the attractor Afλ for a diffeomorphism fλ ∈
G1,λ. Note that G1,1 = H1, then to prove the statement it is enough to construct
a stable arc connecting a diffeomorphism fλ ∈ G1,λ, λ > 1 with a diffeomorphism
fλ−1 ∈ G1,λ−1.

Let f = fλ. By lemma 6.2 there exist points σ, ω ∈ Af such that qω = 0, qσ = 1,
ω ∈ clWu

σ and the intersection W s
ω∩Af consists of exactly one unstable separatrix γ

of the saddle σ and the sink ω, while the period of ω, we denote it by m. By lemma
7, without loss of generality, we can assume that there exists a local map (U,ψ) of
S2 such that ω ∈ U , ψ(ω) = O, fm(U) ⊂ U ⊂ Df and ψ(γ ∩U) ⊂ OX1. According
to lemma 6.2 for the diffeomorphism f two cases are possible: 1) νσ = −1; 2)
νσ = 1. We construct the desired arc separately for each case.

1) In this case Af = Wu
σ ∪ ω ∪ f(ω) and m = 2. Let l = Wu

σ ∪ ψ−1(OX1) ∪
f(ψ−1(OX1)). Then l is a smooth curve containing Af , the points ω, f(ω) are in-
ternal and f(l) ⊂ l. Let Π1 = {(x1, x2) ∈ R2 : |xi| ≤ 1

2}. Define the diffeomorphism

ϕ̃ : Π1 → R2 by the formula

ϕ̃(x1, x2) =

(
−11

10
x1 + x3

1,−
x2

2

)
.
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By construction ϕ̃(Π1) ⊂ intΠ1, the diffeomorphism ϕ̃ has a saddle point O and
a sink periodic orbit {P0, ϕ̃(P0)}, where P0(−x0, 0), ϕ̃(P0) = (x0, 0), x0 ∈ (0, 1/2).
Let Π2 = ϕ̃(Π1). We choose a closed neighborhood V of the attractor Af and a
diffeomorphism β : V → Π1 so that f(V ) ⊂ int V , β(l∩V ) = Ox1 ∩Π1, β(f(V )) =

Π2, β(ω) = P0 and β(f(ω)) = ϕ̃(P0) (see figure 11). Let f̃ = βfβ−1 : Π1 → Π2.
Then on the set Π2 the family of maps χt : Π2 → R2 is correctly defined by the
formula

χt = (1− t)f̃ + tϕ̃.

By construction χt(Π2) ⊂ intΠ2 for all t ∈ [0, 1]. Note that the origin is a

Figure 11. Illustration to the lemma 6.3, case 1)

fixed saddle point for the diffeomorphism χt and the points P0, ϕ̃(P0) form a sink

orbit. In addition, the isotopy ξt = f̃−1χt|Π2
connects the identity map with the

diffeomorphism f̃−1ϕ̃ and ξt(Π2) ⊂ intΠ1. By proposition 5, there exists an isotopy
Ξt : Π1 → Π1, coinciding with ξt on Π2 and identical on ∂Π1. Let

f̃t = f̃Ξt.

Note that f̃1 = ϕ̃ on Π2. Let Π3 = ϕ̃(Π2). Define the arc ηt : Π3 → R2 by the
formula

ηt(x1, x2) =

(
−x1

(
1 +

1

10
(1− 2t)

)
+ x3

1,−
x2

2

)
.

By construction, ηt(Π3) ⊂ intΠ3 for all t ∈ [0, 1], in addition, the isotopy ζt = ϕ̃−1ηt
connects the identity map with the diffeomorphism ϕ̃−1η1 and ζt(Π3) ⊂ intΠ2. By
the proposition 5, there exists an isotopy θt : R2 → R2, which coincides with ζt on
Π3 and is identical outside Π2. Let

Θ̃t = ϕ̃θt.

Then the desired arc is the product of the arcs ft,Θt : S2 → S2, where ft
coincides with f outside V , ft(z) = β−1(f̃t(β(z))) for z ∈ V and Θt coincides with

f1 outside f1(V ), Θt(z) = β−1(Θ̃t(β(z))) for z ∈ f1(V ).
2) In this case the saddle σ and the sink ω have the same period m. Let l =

Wu
σ ∪ψ−1(OX1). Then l is a smooth curve containing γ and for which the points ω, σ

are internal. Let Π1 = {(x1, x2) ∈ R2 : |xi| ≤ 1
2}, Ũ1 = {(x1, x2) ∈ R2 : |xi| < 3

4},
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Ũ2 = {(x1, x2) ∈ R2 : |xi| < 2
3}. Define the diffeomorphism ϕ̃ : Ũ1 → R2 by the

formula

ϕ̃(x1, x2) =

(
x1 + 2x2

1 −
1

10
,
x2

2

)
.

By construction, the diffeomorphism ϕ̃ has a saddle point P1(0, x1), x1 ∈ (0, 1/2)
and a sink point P2(−x2, 0), x2 ∈ (0, 1/2). Let Π2 = ϕ̃(Π1).

We choose a closed neighborhood V of the arc γ, an open neighborhood of U1 ⊃ V
of the arc γ and a diffeomorphism β : U1 → Ũ1 so that β(σ) = P1, β(ω) = P2, β(l∩
U1) = Ox1 ∩ Ũ1, β(V ) = Π1, β(fm(V )) = Π2 (see figure 12). Let f̃ = βfmβ−1 :

Ũ1 → ϕ̃(Ũ1). Then on the set Π1 the family of maps χt : Π1 → Π2 is correctly
defined by the formula

χt = (1− t)f̃ + tϕ̃.

Figure 12. Illustration to the lemma 6.3, case 2)

Note that the point P1 is a fixed saddle point and the point P2 is a fixed sink
point for the diffeomorphism χt. In addition, the isotopy ξt = f̃−1χt|Π1 : Π1 → Π1

connects the identity map with the diffeomorphism f̃−1ϕ̃. By proposition 5, there
exists an isotopy Ξt : Ũ1 → Ũ1, coinciding with ξt on Π1 and identical on ∂Ũ1. Let

f̃t = f̃Ξt.

Note that f̃1 = ϕ̃ on Π1. Define the arc ηt : Π1 → R2 by the formula

ηt(x1, x2) =

(
x1 + 2x2

1 +
1

10
(2t− 1),

x2

2

)
.

By construction ηt(Π1) ⊂ Π2 for all t ∈ [0, 1], in addition, the isotopy ζt = ϕ̃−1ηt
connects the identity map with the diffeomorphism ϕ̃−1η1 and ζt(Π1) ⊂ Π1. By

proposition 5, there exists an isotopy θt : Ũ2 → Ũ2, coinciding with ζt on Π1 and
identical on ∂Ũ2. Let

Θ̃t = ϕ̃θt.

Let U2 = β−1(Ũ2). Then the desired arc is the product of the arcs ft,Θt : S2 →

S2, where ft coincides with f outside
m−1⋃
k=0

fk(U1), ft(z) = f(z) for z ∈ fk(U1), k ∈

{0, . . . ,m − 2} and ft(z) = β−1(f̃t(β(f1−m(z)))) for z ∈ fm−1(U1); Θt coincides
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with f1 outside
m−1⋃
k=0

fk(U2), Θt(z) = f1(z) for z ∈ fk1 (U2), k ∈ {0, . . . ,m − 2} and

Θt(z) = β−1(Θ̃t(β(f1−m
1 (z)))) for z ∈ fm−1(U2).

6.3. Trivialization of the repeller for f ∈ H1.

Lemma 6.4. Any diffeomorphism f ∈ H1 is connected by a stable arc with diffeo-
morphism φ0.

Proof. Let f ∈ H1. Then the diffeomorphism f−1 belongs to the class G1 and has
a connected attractor Af−1 = Rf in the disk Df−1 = S2 \ intDf .

By lemma 6.3 there exists a stable arc Γf−1,h,t connecting the diffeomorphism
f−1 with some diffeomorphism h ∈ H1 and such that Γf−1,h,t = f−1 on Df . By
construction, the diffeomorphism h is a source-sink diffeomorphism, as well as h−1.
Thus, the arc Γ−1

f−1,h,t connects the diffeomorphism f−1 with the source-sink diffeo-

morphism.
Then the arc Γ−1

f−1,h,t connects the diffeomorphism f with a source-sink diffeo-

morphism. By the proposition 4 it can be connected by an arc without bifurcations
with the diffeomorphism φ0.

7. Properties of the number mf . Denote by G+ the subset of G, consisting of
diffeomorphisms all of whose saddle points have a positive orientation type. Let
G− = G \G+.

7.1. Diffeomorphisms f ∈ G−.

Lemma 7.1. G− ⊂ G1.

Proof. Let f ∈ G−. Choose a pair Af , Rf , satisfying lemma 3.1. By proposition 3,
µf = 2 and, therefore, mf ≤ 2.

If mf = 1, then the lemma is proved. Consider the case mf = 2. Let σ be
a saddle with a negative orientation type. By the lemma 3.2, all periodic points
belonging to the attractor Af have a period at least two. According to proposition
3, σ is a fixed point, therefore σ does not belong to the attractor Af . Adding Wu

σ

to Af ,we get a new attractor Ãf and a dual repeller R̃f to it. By construction, Ãf
is connected and lies in the disk, just like the R̃f repeller. Thus m̃f = 1 for the pair

Ãf , R̃f .

7.2. Diffeomorphisms f ∈ G+. Recall that by proposition 3, for any diffeomor-
phism f ∈ G+ there exists a natural number µf such that all periodic (non-fixed)
points of the diffeomorphism f have period µf .

Lemma 7.2. For any diffeomorphism f ∈ G+ the number mf is uniquely deter-
mined, that is, it does not depend on the choice of the pair Af , Rf . Moreover,
mf = 1, if the diffeomorphism f has at least one fixed sink and mf = µf otherwise.

Proof. It follows from lemma 3.2 that all periodic points of the attractor Af of the
diffeomorphism f ∈ G+ have a period at least mf and there is at least one sink
point of the period mf . If mf > 1, then, by proposition 3, all periodic points of
the attractor Af , and therefore all sinks of f have period µf = mf . Thus, the
number mf is uniquely determined, that is, it does not depend on the choice of
the pair Af , Rf . Moreover, mf = 1, if f has at least one fixed sink, and mf = µf
otherwise.
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Remark 2. If mf = 1 for some diffeomorphism f ∈ G+, then µf may be different
from 1 (see the picture 13).

Figure 13. A diffeomorphism f ∈ G+, for which mf = 1, µf = 3

Thus, the set G+ \G1 is represented as pairwise disjoint subsets of

G+ \G1 = G2 · · · ∪Gm ∪ . . .
such that mf = µf = m for any diffeomorphism f ∈ Gm, m > 1.

8. Diffeomorphisms of the class Gm,m > 1.

8.1. Trivialization of the attractor for f ∈ Gm. For m > 1 denote by Hm the
subset of Gm, consisting of diffeomorphisms for which the attractor Af consists of
one sink orbit Oω (of the period m by lemma 3.2).

Lemma 8.1. Any diffeomorphism f ∈ Gm is connected by a stable arc with some
diffeomorphism g ∈ Hm, coinciding with f on S2 \ (Df ∪ · · · ∪ fmf−1(Df )) (see
figure 14).

Proof. By the lemma 3.2, the attractor Af of f ∈ Gm, m > 1 lies on the disjoint
union of disks Df , . . . , f

m−1(Df ) and the diffeomorphism fm|Df is conjugate to
linear contraction. Let g0 be a 2-sphere diffeomorphism coinciding with fm on
Df and having a unique hyperbolic source in S2 \ Df . By construction, g0 ∈ G1.
By lemma 6.3 there exists a stable arc gt : S2 → S2, t ∈ [0, 1], connecting the
diffeomorphism g0 with the diffeomorphism g1 ∈ H1 and such that gt = g0 on
S2 \Df . Then the desired arc ft has the form

ft(x) =


f(x), x ∈ f i(Df ), i = 0, . . . ,m− 2,

gt(f
1−m(x)), x ∈ fm−1(Df ),

f(x), x ∈ S2 \ (Df ∪ f(Df ) ∪ · · · ∪ fm−1(Df )).
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Figure 14. Transition from the diffeomorphism f ∈ Gm to the diffeo-
morphism g ∈ Hm

Сs

Figure 15. Curve Cσ

Lemma 8.2. For any diffeomorphism f ∈ Hm there exists a saddle orbit Oσ of
period m such that clWu

Oσ is a f -invariant closed curve Cσ (see figure 15).

Proof. Let f ∈ Hm. Then Af consists of m sink points ω, ..., fm−1(ω). Since
the set clWu

Σ1
f

is connected, there exists a saddle point σ ∈ Σ1
f such that the

connected components of the set Wu
σ \ σ are in the different sink basins. Since the

period of the point σ coincides with the period of its separatrices and is m, the set

Cσ = cl
m−1⋃
i=0

Wu
fi(σ) is a closed curve.

Lemma 8.3. For any saddle orbit Oσ, satisfying the conclusion of lemma 8.2, there
exists a unique number k < m/2, (k,m) = 1 such that the map f |Cσ is topologically
conjugate to a rough transformation of the circle with the rotation number k

m .
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Proof. Let Cσ be an f -invariant closed curve constructed in lemma 8.3. Then
the homeomorphism f |Cσ : Cσ → Cσ is topologically conjugate to an orientation-
preserving rough circle transformation. By [20] there is a unique number k <
m/2, (k,m) = 1 such that k

m is the rotation number of this transformation. Sup-
pose that there exists another closed curve Cσ̃, that satisfies lemma 8.3. We show
that the homeomorphism f |Cσ̃ : Cσ̃ → Cσ̃ is topologically conjugate to a rough
transformation of a circle with the same rotation number k

m .

For this we note that the set Ãf = Cσ is a connected attractor of the diffeomor-
phism f and divides the sphere S2 into two disks D1 and D2. The dual repeller
R̃f = Rf \W s

Oσ consists of two f -invariant connected components R1 ⊂ D1, R2 ⊂
D2. Since the curve Cσ̃ is f -invariant, it lies in the closure of one of the disks,
suppose D1, for definiteness (see figure 16).

D1,w

Af
~

R1

R2 C

a 1

a 1

l1

Figure 16. Curve Cσ̃

Similarly to the lemma 6.1 it can be shown that the repeller R1 is a tree, we
denote it by Γ1. Moreover, the diffeomorphism f induces an automorphism PΓ1

,
for which all edges have a period m. This means (see section 2.4), that the graph is
central, that is, the repeller R1 contains a single fixed point, which is the source, we
denote it by α1. Denote by l1 the connected component Wu

σ \ σ, belonging to the
disk D1. Let a1 = cl(l1) \ (l1 ∪ σ) (see the picture 16). Then in the tree R1 there
is a unique path La1,α1

, connecting the source a1 with the source α1. It follows
from the properties of the tree that the path La1,α1

consists of vertices of pairwise
different ranks, that is, La1,α1

∩ f(La1,α1
) = α1.

Let L1 = l1 ∪ La1,α1 . Then the set L1 = L1 ∪ f(L1) ∪ · · · ∪ fm−1(L1) divides
the disk D1 into m of pairwise disjoint parts D1,ω, . . . , D1,fm−1(ω), each of which

contains a single sink ω, . . . , fm−1(ω), accordingly, in its closure. Moreover, by
continuity, the diffeomorphism f induces on the components D1,ω, . . . , D1,fm−1(ω)

a rotation with the same rotation number as on the circle Cσ. Since any saddle
point lying inside such a part has unstable separatrices going to the same sink,
σ̃ ∈ L1. Thus, the homeomorphism f |Cσ̃ is topologically conjugate to the rough
transformation of the circle with the rotation number k

m .
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Lemma 8.4. For any diffeomorphism f ∈ Gm, m > 1 the following properties hold:

• there exists a simple closed f -invariant curve (may be not unique) Cf com-
posed by the closures of the unstable manifolds of saddle points;

• for all such curves Cf the homeomorphisms f |Cf have the same rotation num-

ber k
m , k < m/2, (k,m) = 1.

Proof. According lemmas 6.1 and 8.1, every connected component of Af is a tree
for f ∈ Gm, m > 1. Moreover, by lemma 8.1, there is a diffeomorphism g ∈ Hm,
coinciding with f on S2 \ (Df ∪· · ·∪fmf−1(Df )). Let A be a connected component
of Af belonging to Df . Then for the saddle orbit Oσ, satisfying the conclusion of
lemma 8.2, denote by Aσ the intersection clWu

Oσ ∩ A. If Aσ consists of a unique
point then Cf = clWu

Oσ . In the opposite case Aσ consists of two vertex of the
tree Af . Let cσ be a simple path connected them. Then Cf = clWu

Oσ ∪ cσ. By
lemma 8.3, for all such curves Cf the homeomorphisms f |Cf have the same rotation

number k
m , k < m/2, (k,m) = 1.

For k ∈ (N ∪ 0), m ∈ N, k < m/2, (k,m) = 1 we denote by Gk,m the subset of
Gm such that f |Cf is topologically conjugate to a rough transformation of the circle

with the rotation number k
m for any f ∈ Gk,m. We denote by Hk,m the subset of

Gk,m consisting from diffeomorphisms with unique sink orbit.

8.2. Trivialization of the repeller for f ∈ Hk,m. Denote by Fk,m the subset
of Hk,m, consisting of diffeomorphisms having a repeller Rf , containing a unique
saddle orbit (of the period m by lemma 8.2).

Lemma 8.5. Any diffeomorphism f ∈ Hk,m is connected by a stable arc with some
diffeomorphism g ∈ Fk,m.

Proof. The set Af = clWu
Oσ is a connected attractor, homeomorphic to a circle.

Then there exists a neighborhood K of this attractor diffeomorphic to an annulus
and such that f(K) ⊂ intK. Then the set S2 \ K consists of two disjoint disks
D1, D2. Denote by gi a 2-sphere diffeomorphism coinciding with f on Di and having
a unique hyperbolic sink in S2 \Di. By construction, gi ∈ G1. By lemma 6.4 there
exists a stable arc gi,t : S2 → S2, t ∈ [0, 1], connecting the diffeomorphism gi with
the source-sink diffeomorphism, while gi,t = gi on S2 \ f−1(Di). Define the arc ft
by the formula

ft(x) =

{
f(x), x ∈ f−1(K),

gi,t(x), x ∈ f−1(Di).

Lemma 8.6. Any diffeomorphism f ∈ Fk,m is connected by an arc without bifur-
cations with diffeomorphism φk,m.

Proof. Let f ∈ Fk,m. Then the non-wandering set of diffeomorphism f consists of
one saddle orbit Oσ = {σ, f(σ), . . . , fm−1(σ)}, one sink orbits Oω = {ω, f(ω), . . . ,
fm−1(ω)} and fixed sources α1, α2. Moreover, the closures of unstable saddle sep-
aratrices form a circle

Cσ = Wu
Oσ ∪ Oω.

Also a similar non-wandering set has a diffeomorphism φk,m, which we will denote
by φ for brevity (see figure 20). By proposition 7 the circle Cσ can be considered
smooth. Since all orientation-preserving diffeomorphisms of a 2-sphere are smoothly
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Сs

Figure 17. f ∈ Hk,m

f(   )

Figure 18. g ∈ Fk,m

isotopic to the identity map (see, for example, [30]), the circle Cσ can be considered
to coincide with the similar circle of the diffeomorphism φ, we can also consider the
same non-wandering sets of two diffeomorphisms. By proposition 6, we can assume
that the diffeomorphisms f and φ coincide in some neighborhoods of the periodic
points.

Since the circle Cσ is an attractor of both diffeomorphisms, there exist smooth
annulus Kf , Kφ, containing Cσ and such that f(Kf ) ⊂ intKf , φ(Kφ) ⊂ intKφ.
We choose a diffeomorphism β : Kf → Kφ so that β|Cσ = id and β(f(Kf )) =

φ(Kφ). Let f̃ = βfβ−1 : Kφ → φ(Kφ). Then on the set Kφ the family of maps
χt : φ(Kφ)→ S2 is correctly defined by the formula

χt = (1− t)f̃ + tφ.

By construction, χt(φ(Kφ)) ⊂ int φ(Kφ) for all t ∈ [0, 1]. Note that the circle
Cσ is χt-invariant and Cσ = Wu

Oσ ∪ Oω for any diffeomorphism χt. In addition,

the isotopy ξt = f̃−1χt|φ(Kφ) connects the identity map with the diffeomorphism

f̃−1φ and ξt(φ(Kφ)) ⊂ intKφ. By proposition 5, there is an isotopy Ξt : Kφ → Kφ,
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2

Figure 19. f ∈ F1,3

Figure 20. φ1,3

coinciding with ξt on φ(Kφ) and identical on ∂Kφ. Let

f̃t = f̃Ξt.

Note that f̃1 = φ on φ(Kφ). Define the arc ft : S2 → S2 so that ft coincides with f

outside Kf , ft(z) = β−1(f̃t(β(z))) for z ∈ Kf .
Let γ = f1 and Di, i = 1, 2 denotes the connected component of the set S2 \ Cσ,

containing αi. Let γi = γ|Di . By construction, there is a neighborhood Vαi of the
point αi, where γi|Vαi = φ|Vαi . Define the diffeomorphism ψγi : Di → Di by the
formula

ψγi(w) = φk(γ−ki (w)),

where k ∈ Z such that γ−ki (w) ∈ φ(Kφ) for w ∈ Di. Then γi = ψ−1
γi φψγi . If ψγi can

be smoothly extended to the point αi by the condition ψγi(αi) = αi, then, by [30],
there exists a smooth isotopy ρi,t : S2 → S2 such that ρi,0 = ψγi , ρi,1 = id. Let

δi,t = ρ−1
i,t φρi,t. Denote by δt : S2 → S2 the arc coinciding δi,t on Di and from φ to

φ(Kφ). Then the product of the arcs ft and δt is the desired arc.
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In the case when at least one of the diffeomorphisms ψγi , i ∈ {1, 2} can not be
smoothly continued to αi we show that there is an arc ζi,t : Di → Di, connecting
the diffeomorphism ζi,0 = γ|Di with some diffeomorphism ζi,1 such so that ψζi,1 can
be smoothly extended to αi by the condition ψζi,1(αi) = αi.

For definiteness, let i = 1. Br(O) = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1} and Kr =
Br(O) \ φ(intBr(O))) for r > 0. Let γ̄1 = ϑγ1ϑ

−1 and ψ̄γ1
= ϑψγ1

ϑ−1, where
ϑ : S2 \ {α2} → R2 is the stereographic projection and ϑ(α1) = O. Then there
exists r0 ∈ (0, 1) such that γ̄1 = φ̄ = ϑφϑ−1 on Br0 and the ring Kr0 is the
fundamental domain of the diffeomorphism of φ̄ (and γ̄1) and intB1(O) \ {O}.
Represent T2 as the orbit space of (intB1(O) \ {O})/φ̄. Let p : Br0 \ {O} → T2

denote the natural projection. Then the curves a = p(Ox1), b = p(∂Br0) are the
generators of the fundamental group π1(T2). Since ψ̄γ1 translates the orbits φ̄ into
the orbits γ̄1 and Kr0 is a common fundamental domain for φ̄, γ̄1 on intB1(O)\{O},
then ψ̄γ1

is projected onto T2 by the formula ψ̂γ1
= pψ̄γ1

p−1. Then the induced

isomorphism ψ̂γ1∗ : π1(T2)→ π1(T2) preserves the homotopy class of the generator
a and, therefore, is given matrix  1 n0

0 1


for some integer n0.

The arc ζ1,t will be the smooth product of the arcs νt and µt, where
1) νt is a smooth arc without bifurcations connecting the diffeomorphism ν0 =

γ1 with the diffeomorphism ν1 such that ψ̂ν1
induces an identical isomorphism in

π1(T2);
2) µt is a smooth arc without bifurcations connecting the diffeomorphism µ0 = ν1

with the diffeomorphism µ1 such that ψ̂µ1
= id, which means ψµ1

= φk for some
k ∈ Z \ {0}, that is, the diffeomorphism ψµ1

is smoothly continued to αi.
1) We introduce the polar coordinates r, ϕ on R2. Define the diffeomorphism θ̄t

by the formula θ̄t(re
iϕ) =


reiϕ, ρ > r0,

re
i
(
ϕ+4n0πt

(
1− r

r0

))
, r02 ≤ r ≤ r0;

rei(ϕ+2n0πt), r < r0
2 .

Let θt = ϑ−1θ̄tϑ : D1 → D1 \ {α1} → D1 \ {α1}, then θt can be smoothly

continued to α1 by the condition θt(α1) = α1. Moreover, by construction, ψ̂θ1γ1

induces an identical isomorphism on π1(T2). Thus, νt = θtγ1 : D1 → D1 is the
desired arc.

2) Here we are dealing with a diffeomorphism ν1 : D1 → D1 such that a dif-

feomorphism ψ̂ν1 induces an identical isomorphism in π1(T2). Then, by [29, 7],

the diffeomorphism ψ̂ν1
is smoothly isotopic to the identity map. We choose

a cover U = {U1, . . . , Uq} of the torus T2 consisting of disks such that a con-
nected component of the set p−1(Ui) is a subset of Kri for some ri such that
Bri(O) ⊂ φ(Bri−1(O)). By [4, Lemma de fragmentation] there exist smoothly
isotopic to the identity diffeomorphisms ŵ1, . . . , ŵq : T2 → T2 such that

i) for each i = 1, q there exists Uj(i) ∈ U such that for each t ∈ [0, 1] the map ŵi,t
is identical outside Uj(i), where {ŵi,t} is the smooth isotopy between the identity
map and ŵi;

ii) ψ̂ν1 = ŵ1 . . . ŵq.



1126 ELENA NOZDRINOVA AND OLGA POCHINKA

Let w̄i,t : D1 → D1 be a diffeomorphism that coincides with (p|Kri )
−1ŵi,tp on

Kri and is identical outside Kri . Let µ̄t = ν̄1w̄1,t . . . w̄q,t : D1 \ {α1} → D1 \
{α1}. By construction, µ̄0 = ν̄1 and µ̄1 has the property: ψ̂µ1 = ŵ−1

q . . . ŵ−1
1 ψ̂ν1 =

ŵ−1
q . . . ŵ−1

1 ŵ1 . . . ŵq = id.

9. Classification of the model diffeomorphisms with respect to the stable
connectedness. The classification directly follows from two lemmas below.

Lemma 9.1. There is a stable arc connecting the diffeomorphism φ0,1 (φ1,2, φ
−1
1,2,

φ−1
0,1) with diffeomorphism φ0.

Proof. We show how to construct a stable arc connecting:
1) φ−1

1,2 with φ0; 2) φ−1
0,1 with φ0.

For diffeomorphisms φ1,2, φ0,1 the constructions are similar.

1) Let f = φ−1
1,2 (see picture 21). Consider a smooth curve l = clWu

Oσ \ {ω2}, for

which points σ, f(σ) are internal, while f(l) ⊂ l.
Let Π1 = {(x1, x2) ∈ R2 : |xi| ≤ 1

2}. Define a diffeomorphism ϕ̃ : Π1 → R2

formula along the axis Ox1

ϕ̃(x1, x2) =

(
− 9

10
x1 − x3

1,−
x2

2

)
.

By construction ϕ̃(Π1) ⊂ intΠ1, diffeomorphism ϕ̃ has a sink point O and saddle
periodic orbit {P0, ϕ̃(P0)}, where P0(−x0, 0), ϕ̃(P0) = (x0, 0), x0 ∈ (0, 1/2). Let
Π2 = ϕ̃(Π1). We choose a closed neighborhood V of arc l and diffeomorphism
β : V → Π1 in the following way f(V ) ⊂ int V , β(l ∩ V ) = Ox1 ∩ Π1, β(f(V )) =

Π2, β(ω) = P0 and β(f(ω)) = ϕ̃(P0) (see picture 21). Set f̃ = βfβ−1 : Π1 → Π2.
Then on the set Π2 correctly defined family of maps χt : Π2 → R2 by the formula

χt = (1− t)f̃ + tϕ̃.

x1

x2

x3

β

Figure 21. Illustration to the lemma 9.1, the case 1)

By construction χt(Π2) ⊂ intΠ2 for all t ∈ [0, 1]. Note that the origin is a
fixed sink point for the diffeomorphism χt and the points P0, ϕ̃(P0) form a saddle

orbit. In addition, the isotopy ξt = f̃−1χt|Π2 connects the identity map with the
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diffeomorphism f̃−1ϕ̃ and ξt(Π2) ⊂ intΠ1. By proposition 5, there exists an isotopy
Ξt : Π1 → Π1, coinciding with ξt on Π2 and identical on ∂Π1. Let

f̃t = f̃Ξt.

Note that f̃1 = ϕ̃ on Π2. Let Π3 = ϕ̃(Π2). Define the arc ηt : Π3 → R2 by the
formula

ηt(x1, x2) =

(
−x1

(
1 +

1

10
(2t− 1)

)
− x3

1,−
x2

2

)
.

By construction ηt(Π3) ⊂ intΠ3 for all t ∈ [0, 1], in addition, isotopy ζt = ϕ̃−1ηt
connects the identity map with a diffeomorphism ϕ̃−1η1 and ζt(Π3) ⊂ intΠ2. By
proposition 5, there exists isotopy θt : R2 → R2, coinciding with ζt on Π3 and
identical outside Π2. Let

Θ̃t = ϕ̃θt.

Let δt = ft ∗ Θt : S2 → S2, where ft coincides with f outside V , ft(z) =

β−1(f̃t(β(z))) for z ∈ V and Θt coincides with f1 outside f1(V ), Θt(z) = β−1(Θ̃t

(β(z))) for z ∈ f1(V ). Phase portrait of diffeomorphism δ1 depicted on the picture
22.

x1

x2

x3

Figure 22. Illustration to the lemma 9.1, case 1)

Having done similar constructions in a neighborhood of the arc clW s
σ , we connect

the diffeomorphism δ1 with the source-sink diffeomorphism by a stable arc with one
flip bifurcation. By the proposition4, any source-sink diffeomorphism is connected
by an arc without bifurcations with the diffeomorphism φ0.

2) Let f = φ−1
0,1 (see figure 23). For the diffeomorphism f the saddle σ and

the drain ω1 are fixed. Let l = Ox1x3 ∩ S2 and denote by γ ⊂ l an arc bounded
by the points ω1, σ and not containing α. Set Π1 = {(x1, x2) ∈ R2 : |xi| ≤ 1

2},
Ũ1 = {(x1, x2) ∈ R2 : |xi| < 3

4}, Ũ2 = {(x1, x2) ∈ R2 : |xi| < 2
3}. Define the

diffeomorphism ϕ̃ : Ũ1 → R2 by the formula

ϕ̃(x1, x2) =

(
x1 + 2x2

1 −
1

10
,
x2

2

)
.
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By construction, a diffeomorphism ϕ̃ has a saddle point P1(0, x1), x1 ∈ (0, 1/2)
and sink point P2(−x2, 0), x2 ∈ (0, 1/2). Let Π2 = ϕ̃(Π1).

We choose a closed neighborhood V of arc γ, open neighborhood U1 ⊃ V of arc
γ and diffeomorphism β : U1 → Ũ1 so that β(σ) = P1, β(ω1) = P2, β(l ∩ U1) =

Ox1∩Ũ1, β(V ) = Π1, β(f(V )) = Π2 (see picture 23). Let f̃ = βfβ−1 : Ũ1 → ϕ̃(Ũ1).
Then on the set Π1 correctly defined family of mappings χt : Π1 → Π2 by the
formula

χt = (1− t)f̃ + tϕ̃.

x1

x2

x3

Figure 23. Illustration to the lemma 9.1, case 2)

Note that the point P1 is a fixed saddle point and the point P2 is a fixed sink
for diffeomorphism χt. In addition, isotopy ξt = f̃−1χt|Π1

: Π1 → Π1 connects the

identity map with a diffeomorphism f̃−1ϕ̃. By virtue of the proposition 5, there
exists isotopy Ξt : Ũ1 → Ũ1, coinciding with ξt on Π1 and identical on ∂Ũ1. Let

f̃t = f̃Ξt.

Notice, that f̃1 = ϕ̃ on Π1. Define an arc ηt : Π1 → R2 by the formula

ηt(x1, x2) =

(
x1 + 2x2

1 +
1

10
(2t− 1),

x2

2

)
.

By construction ηt(Π1) ⊂ Π2 for all t ∈ [0, 1], in addition, isotopy ζt = ϕ̃−1ηt ϕ̃
−1η1

and ζt(Π1) ⊂ Π1. By virtue of the proposition 5,there exists isotopy θt : Ũ2 → Ũ2,

coinciding with ζt on Π1 and identical on ∂Ũ2. Let

Θ̃t = ϕ̃θt.

Let U2 = β−1(Ũ2) and δt = ft ∗ Θt : S2 → S2, ft coincides with f out of

U1 and ft(z) = β−1(f̃t(β(z))) for z ∈ U1; Θt coincides with f1 out of U2 and

Θt(z) = β−1(Θ̃t(β(z))) for z ∈ U2. By construction, a diffeomorphism δ1 is a source-
sink diffeomorphism. By virtue of the proposition 4, any source-sink diffeomorphism
is connected by an arc without bifurcations with a diffeomorphism φ0.

Lemma 9.2. Diffeomorphism φk,m, k < m/2, m > 2 is connected by a stable arc
with a diffeomorphism φk′,m′ if and only if m′ = m, k′ = m−k; and is not connected

with any diffeomorphism φ−1
k′,m′ .
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Proof. Assume that diffeomorphism φk,m, k < m/2, m > 2 is connected by a stable

arc ϕt with some diffeomorphism φk′,m′ such that k
m 6=

k′

m′ . By remark 1, all
diffeomorphisms on ϕt, except bifurcations, belongs to class G. Firstly, let us show
that all these ϕt belongs to the same subclass Gm.

Indeed, in the opposite case, as φk,m ∈ Gm, there is a stable arc ft with unique
bifurcation value b such that f0 ∈ Gm and f1 ∈ Gm̃, m̃ 6= m. By proposition 3, f0

has the periodic points of exactly two periods 1 and m, moreover, all saddle points
have the positive type of the orientation and the period m. As a flip bifurcation
is connected with an appearing or disappearing of points of two different periods
k and 2k, then for fb is impossible to be disappearing because m > 2. If fb is an
appearing, then k = 1 or k = m and, hence, f1 necessary has periodic points of three
different periods 1, 2,m or 1,m, 2m, that is impossible according to proposition 3.
Thus, fb is a saddle-node bifurcation.

A saddle-node bifurcation is connected with an appearing or disappearing of
saddle of the positive type of orientation and node points of the same period. If fb
is an appearing than, by proposition 3, this period equals m and, hence, by lemma
7.2, m̃ = m, that is a contradiction. If fb is a disappearing then there are two
possibilities: 1) fb has no saddle points; 2) fb has a saddle point. In the case 1) fb
has a saddle-node cycle, that contradicts to definition of the stable arc. In the case
2), by lemma 7.2, f1 ∈ Gm. Thus, m = m̃.

Let us assume now that k 6= k′. There are two possibilities: 1) ϕt has no
bifurcation at all; 2) ϕt contains bifurcations. In the case 1) ϕ0 is topologically
conjugated with ϕ1. Hence, they are conjugated on the equator, where ϕ0 is a
rough transformation of the circle with the rotation number k

m , k <
m
2 and ϕ1 –

with k′

m . By [20], it implies k′ = m − k. Let us show that there indeed exists a

stable arc ϕt, connecting φk,m with φm−k,m. To do this, denote by Θt : S2 → S2

a rotation S2 on the angle 2πt around an axis passing through points (1, 0, 0) and
(−1, 0, 0). Then ϕt = Θtφk,mΘ−1

t .
In the case 2) let us show that all these ϕt belongs to the same subclass Gk,m.
Indeed, in the opposite case, as φk,m ∈ Gk,m, there is a stable arc ft with

unique bifurcation value b such that f0 ∈ Gk,m and f1 ∈ Gk̃,m, k̃ 6= k. Similar
to the arguments above it is possible to show that for fb is impossible to be a flip
bifurcation. Thus, fb is a saddle-node bifurcation connected with an appearing or
disappearing of saddle of the positive type of orientation and node points of the
same period m. By proposition 8.4, f0 possesses a simple closed f -invariant curve
Cf composed by the closures of the unstable manifolds of saddle points such that

the homeomorphism f |Cf has the rotation number k
m . If fb is an appearing than

the curve is preserved for f1 and, hence, k̃ = k, that is a contradiction. If fb is
a disappearing then there are two possibilities: 1) the disappearing points do not
belong to Cf ; 2) the disappearing points belong to Cf . In the case 1) the curve Cf
is preserved for f1 and, hence, k̃ = k, that is a contradiction. In the case 2) fb has
periodic points different from saddle-node on Cf (in the opposite case we have a

saddle-node cycle) then, by [20], fb|Cf and f1|Cf has the rotation number k
m . Thus,

k = k̃.

REFERENCES

[1] V. S. Afraimovich and L. P. Shilnikov, On some global bifurcations associated with the dis-
appearance of a saddle-node fixed point, Doc. USSR Acad. Sci., 219 (1974), 1281–1284.



1130 ELENA NOZDRINOVA AND OLGA POCHINKA

[2] V. S. Afraimovich and L. P. Shilnikov, On small periodic disturbances of autonomous systems,
Doc. USSR Acad. Sci., 214 (1974), 739–742.

[3] A. Andronov and L. Pontryagin, Rough systems, Doklady Akademii Nauk SSSR, 14 (1937),

247–250.
[4] A. Banyaga, The structure of the group of equivariant diffeomorphism, Topology, 16 (1977),

279–283.
[5] A. N. Bezdenezhnykh and V. Z. Grines, Realization of gradient-like diffeomorphisms of two-

dimensional manifolds, Differential Integral Equations, (1985), 33–37.

[6] P. R. Blanchard, Invariants of the NPT isotopy classes of Morse-Smale diffeomorphisms of
surfaces, Duke Math. J., 47 (1980), 33–46.

[7] S. K. Boldsen, Different versions of mapping class groups of surfaces, preprint,

arXiv:0908.2221.
[8] Kh. Bonatti, V. Z. Grines, V. S. Medvedev and O. V. Pochinka, Bifurcations of Morse-Smale

diffeomorphisms with wildly embedded separatrices, Tr. Mat. Inst. Steklova, 256 (2007),

54–69.
[9] G. Fleitas, Replacing tangencies by saddle-nodes, Bol. Soc. Brasil. Mat., 8 (1977), 47–51.

[10] J. Franks, Necessary conditions for the stability of diffeomorphisms, Trans. A. M. S., 158

(1971), 301–308.
[11] N. Gourmelon, A Franks’ lemma that preserves invariant manifolds, Ergodic Theory Dynam.

Systems, 36 (2016), 1167–1203.
[12] V. Grines, E. Gurevich, O. Pochinka and D. Malyshev, On topological classification of Morse-

Smale diffeomorphisms on the sphere Sn, preprint, arXiv:1911.10234.

[13] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev and O. V. Pochinka, Global attractor and
repeller of Morse–Smale diffeomorphisms, Proc. Steklov Inst. Math., 271 (2010), 103–124.

[14] V. Z. Grines, T. V. Medvedev and O. V. Pochinka, Dynamical Systems on 2- and 3-Manifolds,

Developments in Mathematics, 46, Springer, Cham, 2016.
[15] V. Z. Grines, O. V. Pochinka and S. Van Strien, On 2-diffeomorphisms with one-dimensional

basic sets and a finite number of moduli, Mosc. Math. J., 16 (2016), 727–749.

[16] F. Harary, Graph Theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-
London, 1969.

[17] M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics,

583, Springer-Verlag, Berlin-New York, 1977.
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