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Stable Arcs Connecting Polar Cascades on a Torus
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The problem of the existence of an arc with at most countable (finite) number of bifurcations
connecting structurally stable systems (Morse – Smale systems) on manifolds was included in the
list of fifty Palis –Pugh problems at number 33.

In 1976 S.Newhouse, J. Palis, F.Takens introduced the concept of a stable arc connecting two
structurally stable systems on a manifold. Such an arc does not change its quality properties with
small changes. In the same year, S.Newhouse and M.Peixoto proved the existence of a simple arc
(containing only elementary bifurcations) between any two Morse – Smale flows. From the result
of the work of J. Fliteas it follows that the simple arc constructed by Newhouse and Peixoto can
always be replaced by a stable one. For Morse – Smale diffeomorphisms defined on manifolds of
any dimension, there are examples of systems that cannot be connected by a stable arc. In this
connection, the question naturally arises of finding an invariant that uniquely determines the
equivalence class of a Morse – Smale diffeomorphism with respect to the relation of connection
by a stable arc (a component of a stable isotopic connection).

In the article, the components of the stable isotopic connection of polar gradient-like diffeo-
morphisms on a two-dimensional torus are found under the assumption that all non-wandering
points are fixed and have a positive orientation type.
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24 O.V.Pochinka, E.V.Nozdrinova

1. Introduction and formulation of results

The problem of the existence of an arc with no more than a countable (finite) number of
bifurcations connecting structurally stable systems (Morse – Smale systems) on manifolds is on
the list of fifty Palis –Pugh problems [21] under number 33.

In 1976, S.Newhouse, J. Palis and F.Takens [15] introduced the concept of a stable arc
connecting two structurally stable systems on a manifold. Such an arc does not change its quality
properties with a small perturbation. In the same year, S.Newhouse and M.Peixoto [17] proved
the existence of a simple arc (containing only elementary bifurcations) between any two Morse –
Smale flows. It follows from the result of G. Fleitas [8] that a simple arc constructed by Newhouse
and Peixoto can always be replaced by a stable one [16]. For Morse – Smale diffeomorphisms given
on manifolds of any dimension, examples of systems that cannot be connected by a stable arc
are known.

Obstructions appear already for orientation-preserving diffeomorphisms of the circle S1,
which are connected by a stable arc only if the rotation numbers coincide [18].

Beginning with dimension two, additional obstructions appear to the existence of stable
arcs between isotopic diffeomorphisms. They are associated with the existence of periodic
points [6, 20], heteroclinic intersections [13], wild embeddings of separatrices [10], etc.

On the 6-dimensional sphere, examples of source-sink diffeomorphisms are known that are
not connected by any smooth arc [7], which, in fact, became the source for constructing different
smooth structures on a sphere of dimension 7. For n = 2, 3 the nontrivial fact of the existence of
an arc without bifurcations between two source-sink diffeomorphisms was established in [7, 19].

Polar diffeomorphisms, i.e., gradient-like diffeomorphisms with a unique source and a unique
sink, are a natural generalization of source-sink systems. It follows from Morse theory that such
diffeomorphisms exist on any manifolds.

In this paper, we consider the class G of polar gradient-like diffeomorphisms on the two-
dimensional torus T2 under the assumption that all nonwandering points are fixed and of positive
orientation type. In Chapter 2 it is established that any diffeomorphism f ∈ G has exactly
two saddle points and is isotopic to the identity. Moreover, all diffeomorphisms of the class
under consideration are pairwise topologically conjugate (see, for example, [5, 9]). Moreover,
the closures of stable (unstable) manifolds of saddle points of different diffeomorphisms can
belong to different homotopy classes of closed curves on the torus. Therefore, in the general
case there is no arc without bifurcations connecting two diffeomorphisms of the class under
consideration.

The main result of this work is the proof of the following theorem.

Theorem 1. Any diffeomorphisms f, f ′ ∈ G can be connected by a stable arc with a finite
number of saddle-node bifurcations.

2. Diffeomorphisms of class G

2.1. General properties

In this section, we establish the basic dynamical properties of diffeomorphisms f : T2 → T2

from the class G.
Recall that a diffeomorphism f is gradient-like if its nonwandering set Ωf consists of a finite

number of hyperbolic points and the invariant manifolds of different saddle points do not intersect.
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Stable Arcs Connecting Polar Cascades on a Torus 25

A gradient-like diffeomorphism f is called polar if the set Ωf contains exactly two nodal points,
namely, one sink and one source.

Fix a system of generators of the fundamental group of torus T2 = S1 × S1:

a = S
1 × {0} = 〈1, 0〉, b = {0} × S

1 = 〈0, 1〉.

Recall that the algebraic torus automorphism L̂ : T2 → T2, T2 = R2/Z2 is called the diffeomor-

phism defined by the matrix L =

(
α β

γ δ

)
, belonging to the set GL(2,Z) unimodular matrices —

integer matrices with determinant ±1. That is,

L̂(x, y) = (αx+ βy, γx+ δy) (mod 1).

The following statement follows directly from the relationship of gradient-like dynamics with
the topology of the ambient surface and the homotopy properties of the torus.

Statement 2.1. Any diffeomorphism f ∈ G has the following properties:

1. The nonwandering set Ωf of the diffeomorphism f consists of exactly four fixed hyperbolic
points: the sink ωf , the source αf , and the saddles σ1f , σ

2
f , the closures of invariant mani-

folds of which are closed curves:

cs1f = cl W s
σ1f

=W s
σ1f
∪ αf , cu1f = clW u

σ1f
=W u

σ1f
∪ ωf ,

cs2f = cl W s
σ2f

=W s
σ2f
∪ αf , cu2f = clW u

σ2f
=W u

σ2f
∪ ωf .

2. There is only one choice of saddle points numbering σ1f , σ
2
f and the orientation of the clo-

sures of their invariant manifolds such that the curves cs1f , cu2f are of homotopy type 〈μ1f , ν1f 〉

and the curves cs2f , cu1f are of homotopy type 〈μ2f , ν2f 〉 in the basis a, b; also, Jf =

(
μ1f μ2f

ν1f ν2f

)
is a unimodular matrix with the following properties:

a) μ1f � μ2f � 0,

b) ν1f > ν2f , if μ1f = μ2f ,

c) ν2f = 1, if μ2f = 0.

3. The diffeomorphism f is isotopic to the identity map.

2.2. Construction of model diffeomorphisms in the class G

In this section, for any unimodular matrix J =

(
μ1 μ2

ν1 ν2

)
such that μ1 � μ2 � 0 and ν1 > ν2

if μ1 = μ2, we construct a model diffeomorphism fJ ∈ G for which JfJ = J .
The simplest example of a diffeomorphism from the class G is the direct product of two

copies of a source-sink diffeomorphism on the circle S1, which we denote by f0. First, we construct
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26 O.V.Pochinka, E.V.Nozdrinova

a source-sink diffeomorphism on the circle. In order to do this, consider the map F 0 : R → R

given by the formula

F 0(x) = x− 1

4π
sin

(
2π

(
x− 1

4

))
.

By construction, x = 1
4

and x = 3
4

are fixed points of the map F 0 on the segment [0, 1]

(Fig. 1).

Fig. 1. Graph of the map F 0.

Consider the projection π : R → S1 given by the formula π(x) = e2πix. As F 0 is strictly
increasing and satisfies the condition F 0(x+1) = F 0(x)+1, there is a diffeomorphism projecting
it to the circle

F0 = πF 0π
−1 : S1 → S

1.

By construction, the diffeomorphism F0 has a fixed hyperbolic sink at the point N = π
(
1
4

)
and a fixed hyperbolic source at the point S = π

(
3
4

)
.

Define the diffeomorphism f0 : T
2 → T2 by the formula (Fig. 2)

f0(z, w) = (F0(z), F0(w)), z, w ∈ S
1.

Fig. 2. Cartesian square of the diffeomorphism F0.
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Fig. 3. Diffeomorphism f0.

By construction, the diffeomorphism f0 contains a fixed hyper-
bolic sink at the point ω = (N,N), a hyperbolic source α = (S, S)
and has two saddle points σ1 = (N,S), σ2 = (S,N) (Fig. 3). More-
over, the closures of their invariant manifolds lie in the classes of
generators a and b, namely,

cs1f0 = cl W s
σ1 = S

1 × {S}, cu1f0 = cl W u
σ1 = {N} × S

1,

cs2f0 = cl W s
σ2 = {S} × S

1, cu2f0 = cl W u
σ2 = S

1 × {N}.

Let fJ = Ĵf0Ĵ
−1. We will call the diffeomorphism fJ a model

diffeomorphism. By construction, fE = f0.
Using the methods of [20], one can construct an arc without

bifurcations from the diffeomorphism f ∈ G to the model one,
namely, to prove the following statement:

Statement 2.2. Every diffeomorphism f ∈ G is connected
by an arc without bifurcations Hf,t with the diffeomorphism fJf .

3. On stable arcs of diffeomorphisms

Consider a 1-parametric family of diffeomorphisms (an arc) ϕt : M →M , t ∈ [0, 1]. An arc ϕt
is called smooth if the map F : M × [0, 1]→M defined by the formula F (x, t) = ϕt(x) is smooth.

The smooth arc ϕt is called a smooth product of the smooth arcs ϕ1
t and ϕ2

t such that

ϕ1
1 = ϕ2

0, if ϕt =

⎧⎪⎨⎪⎩
ϕ1
2τ(t), 0 � t � 1

2
,

ϕ2
2τ(t)−1,

1
2
� t � 1,

where τ : [0, 1] → [0, 1] is a smooth monotone map such

that τ(t) = 0 for 0 � t � 1
3

and τ(t) = 1 for 2
3
� t � 1. We will write ϕt = ϕ1

t ∗ ϕ2
t .

Following [16], an arc ϕt is called stable if it is an inner point of the equivalence class with
respect to the following relation: two arcs ϕt, ϕ′

t are called conjugate if there are homeomorphisms
h : [0, 1] → [0, 1], Ht : M → M such that Htϕt = ϕ′

h(t)Ht, t ∈ [0, 1] and Ht continuously
depend on t.

In [16] it is also established that the arc {ϕt}, consisting of diffeomorphisms with a finite
limit set, is stable iff all its points are structurally stable diffeomorphisms with the exception of
a finite number of bifurcation points, ϕbi , i = 1, . . . , q such that ϕbi :

1) has no cycles;
2) has a unique nonhyperbolic periodic orbit which is a noncritical saddle-node or flip;
3) the invariant manifolds of all periodic points of the diffeomorphismϕbi intersect transver-

sally;
4) the transition through ϕbi is a generically unfolded saddle-node or period-doubling bifur-

cation, with the saddle-node point being noncritical.
Recall the definition of the generically unfolding arc ϕt through the saddle-node or flip.

We give the definition for a fixed nonhyperbolic point in the case where it has a period k > 1.
A similar definition is given for the arc ϕkt .
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An arc {ϕt} ∈ Q unfolds generically through a saddle-node bifurcation ϕbi (Fig. 4) if in
some neighborhood of the nonhyperbolic point (p, bi) the arc ϕt is conjugate to

ϕ̃
˜t(x1, x2, . . . , x1+nu , x2+nu , . . . , xn) =

(
x1 +

x21
2

+ t̃,±2x2, . . . ,±2x1+nu ,
±x2+nu

2
, . . . ,

±xn
2

)
,

where (x1, . . . , xn) ∈ Rn, |xi| < 1/2, |t̃| < 1/10.

Fig. 4. Saddle-node bifurcation.

In the local coordinates (x1, . . . , xn, t̃) the bifurcation occurs at time t̃ = 0 and the origin
O ∈ Rn is a saddle-node point. The axis Ox1 is called a central manifold W c

O, the half-space
{(x1, x2, . . . , xn) ∈ Rn : x1 � 0, x2+nu = . . . = xn = 0} is the unstable manifold W u

O, and the
half-space {(x1, x2, . . . , xn) ∈ Rn : x1 � 0, x2 = . . . = x1+nu = 0} is the stable manifold W s

O of
the point O.

If p is a saddle-node point of the diffeomorphism ϕbi , then there exists a unique ϕbi- invariant
foliation F ssp with smooth leaves such that ∂W s

p is a leave of this foliation [11]. F ssp is called
a strongly stable foliation (Fig. 5). A similar strongly unstable foliation is denoted by F uup . A point
p is called s-critical if there exists some hyperbolic periodic point q such that W u

q nontransversally
intersect some leaf of the foliation F ssp ; u-criticality is defined similarly. Point p is called

– semicritical if it is either s- or u-critical;
– bicritical if it is s- and u-critical;
– noncritical if it is not semicritical1.

Fig. 5. Strongly stable and unstable foliations.

1For the first time, the effect of arc instability in a neighborhood of a critical saddle was discovered
in 1974 by V. Afraimovich and L. Shilnikov [1, 2]. The existence of invariant foliations F ss

p , Fuu
p was also

proved earlier in the work of V. Lukyanov and L. Shilnikov[12].
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Stable Arcs Connecting Polar Cascades on a Torus 29

In particular, for M2, the noncriticality of the saddle-node point means that the saddle-node
separatrix does not intersect with the one-dimensional manifold of the saddle-node point. The
two-dimensional manifold of a saddle-node point must intersect the transversally invariant layer
(Fig. 6).

Fig. 6. p1 — s-critical saddle-node point, p2 — u-critical saddle-node point, p3 — noncritical saddle-node
point.

4. Construction of a stable arc between model torus
diffeomorphisms

4.1. Construction of auxiliary functions

In this section, we construct model functions that will later be used to construct a stable
arc. The construction is based on the principle of gluing infinitely smooth functions by means
of the following sigmoid function.

Let a < b and δa;b : R→ [0, 1] be a sigmoid function defined by the formula (Fig. 7)

δa;b(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, x � a,

1

1 + exp

(
(a+ b)/2− x

(x− a)2(x− b)2

) , a < x < b,

1, x � b.

Fig. 7. Graph of the sigmoid function.
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Define the function φ1 : R→ R by the formula (Fig. 8)

φ1(x) = x− 1

12π
sin

(
6π

(
x− 1

4

))
.

Define the function g1 : R→ R by the formula (Fig. 9)

g1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ0(x), 0 � x � 0.26,

(1− δ0.26;0.27(x))φ0(x) + δ0.26;0.27(x)φ1(x), 0.26 < x < 0.27,

φ1(x), 0.27 � x � 0.76,

(1− δ0.76;0.77(x))φ1(x) + δ0.76;0.77(x)φ0(x), 0.76 < x < 0.77,

φ0(x), 0.77 � x � 1.

Define the function φ2 : R→ R by the formula (Fig. 10)

φ2(x) = x+
1

4π
sin

(
5

6
π

(
x− 5

12

))
.

Define the function g2 : R→ R by the formula (Fig. 11)

g2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g1(x), 0 � x � 0.42,

(1− δ0.42;0.43(x))g1(x) + δ0.42;0.43(x)φ2(x), 0.42 < x < 0.43,

φ2(x), 0.43 � x � 0.98,

(1− δ0.98;0.99(x))φ2(x) + δ0.98;0.99(x)g1(x), 0.98 < x < 0.99,

g1(x), 0.99 � x � 1.

4.2. Construction of the model arcs

In this section, we will construct arcs which are the main components making up an arc HJ,t.

For n ∈ Z let Jn =

(
1 0

n 1

)
.

Lemma 1. The diffeomorphism f0 is connected with the diffeomorphism fJ1 by a stable
arc H0,1,t with two of generically unfolding noncritical saddle-node bifurcations.

Proof. In this proof, the bar-free mappings are projections on S1 by π of the bar-mappings
given on the line R. The stable arc H0,1,t, connecting the diffeomorphism f0 with the diffeo-
morphism fJ1 is the product of the arcs Γ1

t , Γ
2
t , constructed in step 1 and step 2 below, and the

arc HΓ2
1,t

.
Step 1. First saddle-node bifurcation.
1. The birth of a saddle-node point. We start with the diffeomorphism f0 : T

2 → T 2

defined by the formula
f0(z, w) = (φ0(z), φ0(w)), z, w ∈ S

1.

Let
η1t (x) = (1− t)φ0(x) + tg1(x), x ∈ R, t ∈ [0, 1]

and
η1t,τ (x) = (1− τ)η1t (x) + τφ0(x), x ∈ R, t ∈ [0, 1], τ ∈ [0, 1].
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Fig. 8. Graph of the map φ1(x). Fig. 9. Graph of the map g1(x).

Fig. 10. Graph of the map φ2(x). Fig. 11. Graph of the map g2(x).

Define a smooth arc H1
t : T

2 → T2, t ∈ [0, 1] by the formula

H1
t (z, w) =

⎧⎪⎪⎨⎪⎪⎩
(φ0(z), η

1
t,|8x−2|(w)), z = π(x), x ∈

(
1

8
,
3

8

)
, w ∈ S

1,

f0(z, w), z = π(x), x ∈
(
−5

8
,
1

8

)
, w ∈ S

1.

For t = 3
4
, the diffeomorphism H1

3
4

has a saddle-node point p = (N,π(0)) whose stable

manifold is diffeomorphic to a half-plane whose boundary is arc γp (Fig. 12).
2. Rotation of the separatrix of the saddle σ2.
Consider the fundamental domain K =

[
π(0), π

(
1
4π

)]
× S1, a restriction of the diffeomor-

phism f0 to V =
[
π
(
−1
4

)
, π

(
1
4

)]
× S1. Let V̂ = V/f0. Then V̂ is a torus obtained from K
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32 O.V.Pochinka, E.V.Nozdrinova

Fig. 12. Isotopy H1
t on the torus.

by identifying the boundaries with the map f0. Denote by q : V → V̂ the natural projection. Let
γ̂2 = q(W u

σ2 ∩ V ) and γ̂1 = q(W s
σ1 ∩ V ). Since for all t ∈ [0, 1] the diffeomorphism Ht coincides

with f0 on the annulus
[
π
(
−1
4

)
, π
(
1
8

)]
×S1, it follows that the circle γ̂p = q(γp ∩K) is defined

correctly.
Let W =

[
π
(
−1
4

)
;π
(
1
4

)]
×
[
π
(
−1
4

)
;π
(
1
4

)]
and Ŵ = p(W ). By construction, the circle

γ̂p divides the annulus Ŵ into two annuli, the closures of which are denoted byŴ1, Ŵ2, assuming
that γ̂1 ⊂ Ŵ1 and γ̂2 ⊂ Ŵ2 (Fig. 13).

Choose a circle γ̂ ⊂ int Ŵ1 that is not homotopic to zero, transversal to the projection
of a strongly stable foliation of a saddle-node point. Such a curve always exists, since the
projection of each layer of this foliation is a curve wrapped around a knot γ̂1 (Fig. 13). According
to [3, 14], there exists a diffeomorphism ĥ1 : V̂ → V̂ smoothly isotopic to the identity such
that ĥ1(γ̂2) = γ̂.

For xi ∈
[
−1
4
; 0
]

letKi =
[
π(xi); (π(φ

−1
0 (xi))

]
×S1. Choose an open coverD = {D1, . . . ,Dk1}

of the torus T2 such that the connected component Di of the set q−1(Di) is a subset of Ki for
some xi < φ

−1
0 (xi−1). According to the fragmentation lemma [4], there exist diffeomorphisms

ŵ1, . . . , ŵk1 : T
2 → T2 smoothly isotopic to the identity, with the following properties:

i) for each i ∈ {1, . . . , k1} there exists a smooth isotopy {ŵi,t} which is the identity outsideDi

and which joins the identity and ŵi;
ii) ĥ1 = ŵ1 . . . ŵk1 .
Let wi,t : R2 → R2 be a diffeomorphism that coincides with (q|Ki)

−1ŵi,tq on Ki and coincides
with the identity map outside Ki. Let

ζt = w1,t . . . wk1,tf0, G1
t =

⎧⎪⎨⎪⎩
ζ2t, 0 � t <

1

2
,

ζ1,
1

2
� t � 1.
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Fig. 13. Curve γ̂.

Fig. 14. Application of the fragmentation lemma.

3. Combining isotopies H1
t and G1

t .
Define a smooth arc Γ1

t : T
2 → T2, t ∈ [0, 1] by the formula (Fig. 16)

Γ1
t (z, w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

H1
t (z, w), z = π(x), x ∈

(
1

8
,
3

8

)
, w ∈ S

1,

G1
t (z, w), z = π(x), x ∈

(
−1

4
, 0

)
, w ∈ S

1,

f0(z, w), z = π(x), x ∈
[
−5

8
,−1

4

]
∪
[
0;

1

8

]
, w ∈ S

1.

Step 2. Second saddle-node bifurcation.
1. Merging saddle and node points
For all t ∈ [0; 1] let η2t (x) = tg2(x) + (1− t)g1(x), x ∈ R and

η2t,τ (x) = (1− τ)η2t (x) + τφ0(x), x ∈ R, t ∈ [0, 1], τ ∈ [0, 1].
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34 O.V.Pochinka, E.V.Nozdrinova

Fig. 15. Isotopy G1
t on the torus.

Fig. 16. Isotopy Γ1
t on the torus

Define a smooth arc H2
t : T

2 → T2, t ∈ [0, 1] by the formula

H2
t (z, w) =

⎧⎪⎪⎨⎪⎪⎩
(φ0(z), η

2
t,|8x−2|(z)), z = π(x), x ∈

(
1

8
,
3

8

)
, w ∈ S

1,

Γ1(z, w), z = π(x), x ∈
(
−5

8
,
1

8

)
, w ∈ S

1.

The arc H2
t realizes the merging of the sink ω̃ and the saddle σ1 into the saddle-node

point p̃ and its further disappearance. Denote by βp̃ the boundary of the stable manifold of
a saddle-node p̃.

2. Rotation of the separatrix of the saddle σ2.
Since for all t ∈ [0, 1] the diffeomorphism H2

t coincides with f0 on the annulus K, it follows
that the circles β̂2 = q(W u

σ2 ∩K), β̂1 = q(W s
σ̃ ∩K) and β̂p̃ = q(βp̃ ∩K) are defined correctly.
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Let Ŵ3 be a neighborhood of the curve β̂1, then choose a smooth nonzero homotopic
curve γ̂ ⊂ Ŵ3, transversal to the projection of a strongly stable foliation of a saddle-node point.
Such a curve always exists, since the projection of each layer of this foliation is a curve wrapped
around the knot β̂1 (we construct in the same way as in Step 1). According to [3] and [14],
there exists a diffeomorphism ĥ2 : V̂ → V̂ smoothly isotopic to the identity such that ĥ2(β̂2) = β̂

and ĥ2(β̂1) = β̂1.
Choose an open cover U = {U1, . . . , Uk2} of the torus T2 such that the connected com-

ponent U i of the set q−1(Ui) is a subset of Ki for some xi < φ
−1
0 (xi−1). According to the

fragmentation lemma [4], there exist diffeomorphisms v̂1, . . . , v̂k2 : T2 → T2 smoothly isotopic to
the identity, with the following properties:

i) for each i ∈ {1, . . . , k2} there exists a smooth isotopy {v̂i,t} which is the identity outside Ui
and which joins the identity and v̂i;

ii) ĥ2 = v̂1 . . . v̂k2 .
Let vi,t : R2 → R2 be a diffeomorphism that coincides with (q|Ki)

−1v̂i,tq on Ki and coincides
with the identity map outside Ki. Let

ξt = v1,t . . . vk2,tΓ1, G2
t =

⎧⎪⎨⎪⎩
ξ2t, 0 � t <

1

2
,

ξ1,
1

2
� t � 1.

3. Combining isotopies H2
t and G2

t .
Define a smooth arc Γ2

t : T
2 → T2, t ∈ [0, 1] by the formula (Fig. 17)

Γ2
t (z, w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

H2
t (z, w), z = π(x), x ∈

(
1

8
,
3

8

)
, w ∈ S

1,

G2
t (z, w), z = π(x), x ∈

(
−1

4
, 0

)
, w ∈ S

1,

f0(z, w), z = π(x), x ∈
[
−5

8
,−1

4

]
∪
[
0;

1

8

]
, w ∈ S

1.

According to statement 2.2, the diffeomorphism Γ2
1 can be connected by an arc without

bifurcations HΓ2
1,t

with the diffeomorphism fJ1. �
Denote by Hn,n+1,t the arc with two saddle-node bifurcations connecting the diffeomor-

phisms fJn, fJn+1 and given by the formula

Hn,n+1,t = ĴnH0,1,tĴ
−1
n .

4.3. Arc construction algorithm HJ,t

In this section, using the model arcs constructed above, we will prove the following lemma.

Lemma 2. The diffeomorphism fJ is joined by a stable arc HJ,t with a finite number of
generically unfolding noncritical saddle-node bifurcations with the diffeomorphism f0.

Proof. Let J =

(
μ1 μ2

ν1 ν2

)
be a unimodular matrix such that μ1 � μ2 � 0 and ν1 > ν2

if μ1 = μ2. Consider the following possibilities for the matrix J : 1) μ2 = 0; 2) μ1 = μ2 = 1;
3) μ2 > μ1 > 0. Construct the arc HJ,t in each case separately.
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Fig. 17. Isotopy Γ2
t on the torus.

In case 1) J = Jn. If n > 0, then HJn,t = Hn−1,n,1−t ∗ . . . ∗ H0,1,1−t is the required arc.
If n < 0, then HJn,t = ĴnHJ−n,1−tĴ−1

n is the required arc.
In case 2) HJ,t = ĴHJ−1,1−tĴ−1 ∗HJν2,t

is the required arc.
In case 3) applying Euclid’s algorithm to the pair μ1, μ2 generates a sequence of natu-

ral numbers n1, . . . , nm, k1, . . . , km such that μ1 = n1μ
2 + k1, μ2 = n2k1 + k2, k1 = n3k2 +

+ k3, . . . , km−2 = nmkm−1 + km, where km−1 = 1, km = 0. Let k−1 = μ1, k0 = μ2. Then the
sequence k−1, k0, k1, . . . , km satisfies the recurrence relation

ki+1 = ni+1ki − ki−1, i = 0, . . . ,m− 1.

Let l−1 = ν1, l0 = ν2 and define the sequence l−1, l0, l1, . . . , lm by the recurrent relation

li+1 = ni+1li − li−1, i = 0, . . . ,m− 1.

Let Li =

(
ki−1 ki

li−1 li

)
, i = 0, . . . ,m. Then the arc Fi,t = L̂i−1HJ−ni

,tL̂
−1
i−1, i = 1, . . . ,m joins

diffeomorphisms fLi−1 and fLi and contains 2ni noncritical saddle-node bifurcations. Since
fLm = fJlm−1

, it follows that HJ,t = F1,t ∗ . . . ∗ Fm,t ∗HJlm−1
is the required arc. �
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