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ABSTRACT

An analytic reversible Hamiltonian system with two degrees of freedom is studied in a neighborhood of its symmetric heteroclinic connec-
tion made up of a symmetric saddle-center, a symmetric orientable saddle periodic orbit lying in the same level of a Hamiltonian, and two
non-symmetric heteroclinic orbits permuted by the involution. This is a codimension one structure; therefore, it can be met generally in one-
parameter families of reversible Hamiltonian systems. There exist two possible types of such connections depending on how the involution
acts near the equilibrium. We prove a series of theorems that show a chaotic behavior of the system and those in its unfoldings, in particular,
the existence of countable sets of transverse homoclinic orbits to the saddle periodic orbit in the critical level, transverse heteroclinic con-
nections involving a pair of saddle periodic orbits, families of elliptic periodic orbits, homoclinic tangencies, families of homoclinic orbits to
saddle-centers in the unfolding, etc. As a by-product, we get a criterion of the existence of homoclinic orbits to a saddle-center.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0035534

The orbit structure of a non-integrable Hamiltonian system with
two or more degrees of freedom is very complicated, and usu-
ally, it is impossible, except for some specific model situations,
to describe its structure more or less completely. By this rea-
son, a fruitful way to understand the orbit behavior in some
parts of the phase space is to detect some simple invariant sub-
sets (usually containing a finite number of orbits) whose neigh-
borhoods can be understood from the viewpoint of their orbit
structure. When it has been done, we try to find such struc-
tures in general systems and thus to describe partially the behav-
ior of the system under study. This approach goes back to A.
Poincaré. The problem investigated here follows these lines. It was
inspired by the study of stationary waves in a nonlocal Whitham
equation22 that is reduced to the reversible Hamiltonian system
with two degrees of freedom for which homoclinic orbits to dif-
ferent types of equilibria have to be detected. We rely in this
research on earlier results on the behavior near a homoclinic orbit
to a saddle-center equilibrium14,15,19,20,28,43 as well as near homo-
clinic tangencies.8,9,11–13,29,32 The results obtained demonstrate how
much can be understood at this approach.

I. INTRODUCTION

Studying Hamiltonian dynamics is an interesting and hard
problem attracting researchers from many branches of science since
Hamiltonian systems serve as mathematical models in different
problems in physics, chemistry, and engineering. The structure of
such systems is usually rather complicated; therefore, one of a fruit-
ful approach to these types of problems is the study of the given
system near some invariant sets, which can be selected by sim-
ple conditions. Studying systems in neighborhoods of homoclinic
orbits and heteroclinic connections is the problem of such a type.
Investigations of dynamical phenomena near a homoclinic orbit to
a saddle periodic orbit were the first such problem, and its setup
and understanding the complexity of orbit behavior of the system
near such a structure go back to Poincaré.34 The real complex-
ity of orbit behavior was understood due to works by Birkhoff,2

Smale,39 and finally Shilnikov.36 Other problems, where complicated
dynamics was detected, were studied in many papers by Shilnikov
and coauthors; among them, the most influential are Afraimovich
et al.,1 Gavrilov and Silnikov,10 Shilnikov,37 and Shilnikov et al.38

Homoclinic dynamics in Hamiltonian systems began studying in
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Ref. 6 where Shilnikov results about the complicated dynamics near
a saddle-focus homoclinic loop were carried over to the Hamil-
tonian case. The generalization of the Melnikov method onto the
autonomous case for systems close to Hamiltonian integrable25

allowed one to present examples of a complicated behavior both for
Hamiltonian perturbation of an integrable Hamiltonian system with
a saddle-focus skirt and for dissipative perturbations. The compli-
cated dynamics near a bunch of homoclinic orbits to a saddle in a
Hamiltonian system was detected in Ref. 42 (for generalizations and
proofs of these results, see Refs. 16 and 41). A complex dynamics in
a Hamiltonian system near a homoclinic orbit of an equilibrium not
being hyperbolic was detected first in Ref. 23; there, the equilibrium
supposed a saddle-center. The setup for this problem was earlier for-
mulated in Ref. 5, but no essential results were found there. Results
of Ref. 23 were later extended in different directions in Ref. 14, 15,
19, 20, 28, and 43.

In this paper, the dynamics is studied in reversible Hamilto-
nian systems with two degrees of freedom in a neighborhood of
a symmetric heteroclinic connection that consists of a symmetric
saddle-center and a symmetric saddle periodic orbit that is con-
nected by two nonsymmetric heteroclinic orbits being permuted by
the involution (see Fig. 1).

This type of connection is a codimension one phenomenon in
the class of reversible Hamiltonian systems. Thus, such a structure
can unavoidably appear in one-parameter families. Systems with
such structures are met in applications. For instance, they were dis-
covered in Ref. 22 where solitons in a nonlocal Whitham equation27

were studied. Also, this structure can be found in a one parame-
ter family of reversible Hamiltonian systems near a destruction of
a homoclinic orbit to a saddle-center. Results of Refs. 14 and 19 sug-
gest that saddle periodic orbits accumulate to the saddle-center loop
in the singular level of the Hamiltonian, and therefore, after destruc-
tion, unstable separatrix of the symmetric saddle-center can lie on
the stable manifold of a symmetric saddle periodic orbit. Due to
reversibility, there is a pairing stable separatrix of the saddle-center
that lies on the unstable manifold of the same periodic orbit as it is
symmetric.

One more application of results obtained is a criterion of the
existence of saddle-center homoclinic loops in a reversible Hamilto-
nian system (see Theorem 11).

FIG. 1. Scheme of the heteroclinic connection.

Main results of the paper prove the existence of hyperbolic
sets and elliptic periodic orbits near a heteroclinic connection. Exis-
tence of hyperbolic sets is based on the construction of families of
transverse homoclinic orbits and heteroclinic connections involving
two saddle periodic orbits and four transverse heteroclinic orbits for
them. Existence of elliptic periodic orbits is proved by the following
scheme. We look first for homoclinic orbits with quadratic tangen-
cies to saddle periodic orbits in different situations and apply then
results going back to Newhouse32,33 and Gavrilov–Shilnikov10 and
many others later8,9,11–13,29,32 on the existence of cascades of elliptic
periodic orbits.

One should notice that connections involving an equilib-
rium and a saddle periodic orbit were studied earlier in several
papers.4,18,26 However, all these authors considered a situation when
the equilibrium is hyperbolic, for instance, a saddle-focus. There, the
dynamics differs from ours; moreover, the study of non-hyperbolic
Hamiltonian dynamics is more involved.

II. SETTING UP AND MAIN NOTIONS

Let (M, �) be a real analytic four-dimensional symplectic man-
ifold, � be its symplectic two-form, and H be a real analytic function
(a Hamiltonian). Such a function defines a Hamiltonian vector field
XH on M. Henceforth, we assume XH to have an equilibrium p of
the saddle-center type, and without a loss of generality, we assume
H(p) = 0. One more assumption we use is the existence in the same
level of H = 0 a saddle periodic orbit γ . We use below the notation
Vc = {x ∈ M|H(x) = c}.

Recall an equilibrium p of XH on M is called to be a saddle-
center23 if the linearization operator of the vector field at p has a pair
of pure imaginary eigenvalues ±iω, ω ∈ R \ {0}, and a pair nonzero
reals ±λ 6= 0. In a neighborhood of such an equilibrium, the system
has a unique local invariant smooth two-dimensional invariant sym-
plectic submanifold Wc

p filled with closed orbits lc (Lyapunov family
of periodic orbits). For the case of analytic M, H, the submanifold
Wc

p is real analytic. Near the point p in the level H = c periodic orbit
lc is of saddle type and is located each on its own level Vc.

Also, in a neighborhood of p, the system has local
3-dimensional center-stable Wcs and center-unstable manifold Wcu

containing both p. These submanifolds contain orbits being asymp-
totic, as t → ∞ (for Wcs), to periodic orbits lc, or as t → −∞ (for
Wcu); here, Wc = Wcs ∩ Wcu. Submanifold Wcs (respectively, Wcu) is
foliated by levels Vc into local stable (unstable) manifolds of periodic
orbits lc; these submanifolds are diffeomorphic to cylinders I × S1.
Besides, Wcs (respectively, Wcu), being a solid cylinder, contains as
an axis, an analytic curve Ws (Wu), local stable (unstable) manifold
of the equilibrium p; they consist of p and two semi-orbits tending p
as t → ∞ (t → −∞).

As was supposed above, V0 contains a saddle periodic orbit γ .
In the whole M orbit, γ belongs to a one-parameter family of such
periodic orbits γc ⊂ Vc forming an analytic 2-dimensional symplec-
tic cylinder. Recall that in Vc, periodic orbit γc has two local analytic
2-dimensional Lagrangian submanifolds Ws(γ ), Wu(γ ) being its
stable and unstable local submanifolds. All of them are topologically
either cylinders (if the multipliers are positive) or Möbius strips (if
their multipliers are negative).
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Later on, in the paper, the vector field v = XH under consider-
ation is supposed to be reversible as well. This means7 that M acts a
smooth involution L : M → M, L2 = idM, and v obeys the identity
DL(v) = −v ◦ L. For its solutions, this property reads as follows: if
x(t) is a solution to v, then x1(t) = Lx(−t) is also its solution.

Orbit γ of a reversible v is called symmetric if it is invariant with
respect to the action of L. In particular, an equilibrium p, v(p) = 0,
is symmetric if L(p) = p,; i.e., p belongs to the fixed point set of L,
Fix(L) = {x ∈ M|L(x) = x}. The following statement holds true.7

Proposition 1: An orbit of a reversible vector field is symmet-
ric iff it intersects Fix(L). A symmetric periodic orbit intersects Fix(L)

at two points exactly. The inverse statement is also valid: if an orbit of
a reversible vector field intersects Fix(L) at two different points x1, x2,
then this orbit is symmetric periodic one and its period is equal to the
doubled transition time from x1 to x2.

For a Hamiltonian system, the reversibility requires clarifica-
tion since the involution acts on the symplectic form

[L∗�](ξ , η) = �(DL(ξ), DL(η)).

We assume below that an analytic involutive diffeomorphism L is
anti-canonical mapping; i.e., L∗(�) = −� and L is concordant with
H: H ◦ L = H. In this case, the following identities hold:

DL(XH) = −XH ◦ L, è 8t ◦ L = L ◦ 8−t.

We also assume Fix(L) to be an analytic two-dimensional submani-
fold in M (not obligatory connected).

Finally, we assume XH to have a heteroclinic connection con-
sisting of a symmetric saddle-center p, H(p) = 0, a symmetric peri-
odic orbit γ in the same level of H(γ ) = 0 and two heteroclinic
orbits: 01 going, as t increases, from γ to p, and 02 = L(01) going,
as t increases, from p to γ . Our goal is to study the orbit behavior
in a neighborhood of this heteroclinic connection. It is worth men-
tioning that the problem, by its setup, is a bifurcation problem since
the orbit structure varies as values of the Hamiltonian c vary near
a critical value c = 0. For instance, on the levels others than V0, the
equilibrium is absent; thus, the contour is destroyed and bifurcations
are expected.

III. MOSER COORDINATES

To examine the orbit structure of the system near a connection,
we shall use convenient coordinates in a neighborhood of p and in
a neighborhood of γ . Corresponding results in the analytic case are
due to Moser,30,31 and a finite-smooth version for a saddle fixed point
of a symplectic diffeomorphism exists in Ref. 11.

Theorem 1: Let XH be an analytic Hamiltonian vector field
and p its equilibrium of the saddle-center type. Then, there is a
neighborhood U of p, analytic symplectic coordinates (x1, y1, x2, y2),
� = dx1 ∧ dy1 + dx2 ∧ dy2, and a real analytic function h(ξ , η) such
that H casts in the form

H(x1, y1, x2, y2) = h(ξ , η) = λξ + ωη + R(ξ , η),

R(ξ , η) = O(ξ 2 + η2), ξ = x1y1; η =
x2

2 + y2
2

2
.

To get a symplectic change of coordinates in this theorem
except for results of Ref. 30, one needs to use Rüssmann’s paper.35

Remark 1: By a linear scaling of time and, if necessary,
a canonical transformation y1 → x1, x1 → −y1, one can obtain
λ = −1 and ω > 0 (new ω is up to the sign of the ratio |ω/λ|). Later
on, we utilize this normalization.

Denote 8t : m → 8t(m) the flow generated by the vector field
XH. In the coordinates of Theorem 1, the system of differential
equations is written down as

ẋ1 = −hξ x1, ẏ1 = hξ y1, ẋ2 = −hηy2, ẏ2 = hηx2, (1)

and its flow 8t is






x1(t)
y1(t)
x2(t)
y2(t)






=









exp[−t · h0
ξ ] 0 0 0

0 exp[t · h0
ξ ] 0 0

0 0 cos(t · h0
η) − sin(t · h0

η)

0 0 sin(t · h0
η) cos(t · h0

η)









×









x0
1

y0
1

x0
2

y0
2









, (2)

where notations are used,

h0
ξ = hξ (ξ0, η0), h0

η = hη(ξ0, η0), ξ0 = x0
1y

0
1,

η0 = ((x0
2)

2 + (y0
2)

2
)/2.

The Hamiltonian system under consideration is reversible as
well; hence, it is important to understand to which simplest form
both the system and the involution can be reduced in a neighbor-
hood of a saddle-center by means of the same symplectic coordinate
change. This was done in Ref. 14. We recall the needed results.

Theorem 2: Let XH be an analytic Hamiltonian vector field
and p its equilibrium of the saddle-center type. Suppose, in addition,
XH be reversible with respect to the analytic anti-canonical involu-
tion L and p is symmetric. Then, in some neighborhood U of p, there
are analytic coordinates, as in Theorem 1, such that L has one of two
forms,







x1

y1

x2

y2






→







0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 1













x1

y1

x2

y2







or






x1

y1

x2

y2






→







0 −1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 1













x1

y1

x2

y2






.

IV. LOCAL ORBIT STRUCTURE NEAR THE
SADDLE-CENTER

Using Moser coordinates is the easiest way to describe the local
topology of levels Vc and the orbit behavior on each level.24 The
system locally near p takes the form (1). There are two invariant
symplectic disks: x1 = y1 = 0 and x2 = y2 = 0. Quadratic functions
ξ = x1y1, η = (x2

2 + y2
2)/2 are local integrals of the system. Con-

sider the momentum plane (ξ , η) in a neighborhood of the origin
(0, 0). The level Vc of the Hamiltonian corresponds to the analytic
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curve ξ = −c + ωη + O(η2 + c2) = ac(η), 0 ≤ η ≤ η∗. For c small
enough, these curves form an analytic foliation of a neighborhood of
the origin (0, 0). In fact, as η ≥ 0, one needs to consider the rectangle
|ξ | ≤ ξ0, 0 ≤ η ≤ η∗ in the momentum plane.

Consider first the level V0 and then we get the curve
ξ = ωη + O(η2) = a(η) on the momentum plane (ξ , η), 0 ≤ η

≤ η∗. To construct a neighborhood of the origin in R
4 with coordi-

nates (x1, y1, x2, y2), we choose four cross sections |x1| = d, |y1| = d.
In the manifold M, a neighborhood U of the point p in coordi-
nates (x1, y1, x2, y2) can be thought as the direct product of two disks
(x1, y1, 0, 0) and (0, 0, x2, y2).

The local structure of V0 is investigated via its foliation into
invariant levels of integral η. At η = 0 [the origin on the disk
(0, 0, x2, y2)], we have ξ = a(0) = 0; i.e., we get a “cross” on the
disk (x1, y1, 0, 0) (the union of two segments y1 = 0 and x1 = 0). In
U, the cross coincides with the union of local stable and unstable
curves of the saddle-center p. For η > 0, the value ξ = a(η) is posi-
tive, and on the disk (x1, y1, 0, 0), we get two pieces of the hyperbola
x1y1 = a(η), which lie in the first and third quadrants of the plane
(x1, y1, 0, 0), respectively. In U, each piece of the hyperbola is multi-
plied by the circle x2

2 + y2
2 = 2η on the plane (0, 0, x2, y2). Varying η

from zero until η∗, we get in U two solid cylinders that have a unique
common point, the origin, i.e., the saddle-center itself. Each solid
cylinder contains the angle made up of two gluing semi-segments
of the cross (x1 ≥ 0, y1 = 0 and y1 ≥ 0, x1 = 0 for one cylinder and
x1 ≤ 0, y1 = 0 and y1 ≤ 0, x1 = 0 for another cylinder). Each such
angle is the topological limit, as η → +0, of cylinders x1y1 = a(η),
x2

2 + y2
2 = 2η, lying in the same solid cylinder. In particular, each of

two solid cylinders contains one half of the stable curve (a stable sep-
aratrix) and one half of the unstable curve (unstable separtatrix) of
the saddle-center. At the fixed η > 0, each two-dimensional cylinder
is an invariant set and orbits on it go from one of two cross sections
|y1| = d to another of two cross sections |x1| = d (see Fig. 2).

Remark 2: It is worth remarking the property that will be
used below. In Moser coordinates on the level H = 0, the cross sec-
tions for orbits in the solid cylinder, which is projected onto the
first quadrant of the plane x2 = y2 = 0, are y1 = d > 0 (for enter-
ing orbits) and x1 = d (for outgoing orbits), but for the second solid
cylinder, which is projected onto the third quadrant, they are y1 =
−d (for entering orbits) and x1 = −d (for outgoing orbits). This
implies that for the case of an involution of the first type, the sym-
metry permutes the orbit x1 = x2 = y2 = 0, y1 > 0, with that y1 = x2

FIG. 2. Local topology of the level c = 0. The dashed lines mark separatrices of
the saddle-center.

FIG. 3. Local topology of the level c < 0. Dashed lines mark some orbits.

= y2 = 0, x1 > 0, and orbit on y1 < 0, x1 = x2 = y2 = 0 with that on
x1 < 0, y1 = x2 = y2 = 0. Hence, for the involution of the first case,
the symmetry permutes cross sections of the same solid cylinder.

For the case of the involution of the second type, the symme-
try permutes the orbit y1 > 0, x1 = x2 = y2 = 0 with that on x1 < 0,
y1 = x2 = y2 = 0 and orbit on y1 < 0, x1 = x2 = y2 = 0 with that on
x1 > 0, y1 = x2 = y2 = 0. Hence, such symmetry permutes cross sec-
tions from the different solid cylinders. This observation is used below
for the classification of heteroclinic connections.

A level Vc as c < 0 corresponds to the curve ξ = −c + ωη

+ O(η2 + c2) = ac(η) > 0 on the momentum plane (ξ , η) for all
0 ≤ η ≤ η∗. Therefore, the level Vc as c < 0 consists of two dis-
connected solid cylinders, their projections onto the momentum
plane form two curvilinear rectangles in the first and third quad-
rants bounded by related segments |x1| = d, |y1| = d, and pieces
of hyperbolas x1y1 = ac(0) = −c > 0 and x1y1 = ac(η∗). Each two-
dimensional cylinder η = η0 is foliated by flow orbits going from
one cross section |y1| = d to another one |x1| = d (see Fig. 3).

For c > 0, the situation is more complicated since the curve
ξ = ac(η) on the plane (ξ , η) for 0 ≤ η ≤ η∗ corresponds to both
positive and negative values of ξ (we consider |c| small enough).
Denote ηc the unique positive root of the equation ac(η) = 0. Then,
for 0 ≤ η ≤ ηc, pieces of hyperbola x1y1 = ac(η) < 0 belong to
the second and fourth quadrants of the plane (x1, y1, 0, 0), but for
η > ηc, they belong to the first and third quadrants of this plane.
The topological type of the set Vc is a connected sum of two solid
cylinders (i.e., balls). To see this, let us consider the projection of Vc

on the plane (x1, y1, 0, 0), and it lies inside of the quadrate |x1| ≤ d,
|y1| ≤ d. Let us cut this set into two halves by the diagonal y1 = −x1.
Over this diagonal in Vc, a two-dimensional sphere S is situated.
Indeed, at extreme points of the diagonal in the second and fourth
quadrants, two points of Vc correspond (for them η = 0), but for
any point of the diagonal between extreme points in Vc, a circle lies
since η > 0 for such points. In particular, over the point (0, 0) of the
diagonal, the circle x2

2 + y2
2 = 2ηc lies, and it is the Lyapunov peri-

odic orbit lc. Segments x1 = 0 and, respectively, y1 = 0 of the plane
in Vc correspond to stable and unstable manifolds of the periodic
orbits.

Subset V+
c ⊂ Vc lying over the half-plane x1 + y1 > 0 is com-

posed of three parts. One part corresponds to the values ηc ≤ η

≤ η∗. For the strict inequality, we get a set being diffeomorphic
to the direct product of an open annulus and a segment. As
η → ηc + 0, this set has as a topological limit the set being the direct
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FIG. 4. Local topology of the level c > 0: two inner balls cut out, and two bound-
ary spheres glue together. Look at the saddle Lyapunov periodic orbit and its stable
and unstable manifolds.

product of an angle in the plane (x1, y1): 0 ≤ x1 ≤ d, y1 = 0 and
0 ≤ y1 ≤ d, x1 = 0, and a circle x2

2 + y2
2 = 2ηc. Two other parts of

V+
c are two solid cylinders. These are those subsets in V+

c that are
projected into the second and third quadrants of the plane (x1, y1),
and they correspond to ξ < 0. Every such a solid cylinder is foli-
ated into two-dimensional cylinders lying over pieces of hyperbola
ξ = ac(η) < 0, 0 ≤ η < ηc, x1 + y1 > 0, respectively, in the second
and fourth quadrants. One of the bounding circles of this cylinder
lies over the point on the diagonal (for each cylinder, this point is
own), and the second bounding circle lies over the point on the seg-
ment y1 = d or x1 = d. The solid cylinder projecting onto the second
quadrant is glued with its lateral boundary to the set lying over the
first quadrant along the cylinder x1 = 0, y1 > 0, x2

2 + y2
2 = 2ηc, but

the second solid cylinder that is projecting onto the fourth quadrant
is glued by its lateral boundary to the set over the first quadrant along
the cylinder y1 = 0, x1 > 0, x2

2 + y2
2 = 2ηc. Thus, the set is obtained

that is homeomorphic to the solid cylinder from which an inner ball
with the boundary S is cut.

Similarly, the second part V−
c of the set Vc is obtained lying

over half-plane x1 + y1 ≤ 0. The sets V−
c and V+

c are glued along
the sphere S, and the gluing corresponds to the same points on the
diagonal y1 = −x1. Visually, this can be imagined in such a way that
in each half (solid cylinder), we cut out by an inner ball and glue
the halves obtained along the boundary of balls in accordance with
their orientation. This is a particular case of a connected sum of
two manifolds. Topologically, the set obtained is homeomorphic to a
spherical layer S2 × I. Since each level is foliated into invariant cylin-
ders η = const, we get a complete picture of the local orbit behavior
near a saddle-center (see Figs. 2–4).

V. POINCARÉ MAP IN A NEIGHBORHOOD OF γ

To describe the orbit behavior in a neighborhood of a periodic
orbit γ in the level V0, we consider a two-dimensional symplectic
analytic Poincaré map generated by the flow of XH on some analytic
cross section 6 to γ . For the case under consideration, the vector
field is reversible; hence, the cross section can be chosen in such a
way that the reversibility would preserve for the Poincaré map as
well.

A symmetric periodic orbit intersects submanifold Fix(L) at
two points m1, m2. Take one of them, m = m1, and consider a three-
dimensional analytic cross section N for γ containing m. N can be

chosen in such a way that m belongs to N along with some suf-
ficiently small analytic disk from Fix(L) and N is invariant with
respect to the action of L. We assume further such choice of the cross
section.

In a sufficiently small neighborhood of m levels, Vc forms
an analytic foliation into three-dimensional submanifolds since
dHm 6= 0. The level V0 contains the curve γ , but N is transversal
to the curve; hence, V0 and N intersect each other transversely at
the point m; therefore, they intersect in M along an analytic two-
dimensional disk 6 ⊂ N. 6 is a cross section to γ in the level V0,
and we get an analytic Poincaré map S : 6 → 6 with a saddle fixed
point m.

To study orbit behavior of a system in a neighborhood of γ , we
use the Moser theorem31 on the normal form of a two-dimensional
analytic symplectic diffeomorphism near its saddle fixed point. As γ

is orientable by the assumption, its multipliers ν, ν−1 are positive.
Theorem 3 (Moser): In a neighborhood of a saddle fixed point

of a real analytic symplectic diffeomorphism S, there are analytic
symplectic coordinates (u, v) and an analytic function f(ζ ), ζ = uv,
f(0) = ν, such that S takes the following form:

ū = u/f(ζ ), v̄ = vf(ζ ), where f(ζ ) = ν + O(ζ ), 0 < ν < 1. (3)

For our case, S is also reversible with respect to the restriction
of the involution on 6, and involution permutes stable and unstable
manifolds (here—curves) of the fixed point m. As XH(m) 6= 0, then
intersection of Fix(L) and V0 is transverse at m and it is an analytic
curve l ⊂ 6 being the symmetry line containing m. It is not hard
to prove, following Ref. 3 that symplectic coordinates (u, v) in the
Moser theorem can be chosen in such a way that the restriction of
the involution on 6 would act as (u, v) → (v, u). Then, the fixed
point set of the involution near point m coincides with the diagonal
u = v. We assume henceforth this to hold.

The orbit 01 is nonsymmetric and approaches γ as t → −∞;
hence, it intersects 6 at a countable set of points tending to m, but
not lying on l. These points belong to the analytic curve wu being
the trace on the disk 6 of manifold Wu(γ ). Similarly, the orbit 02

intersects 6 at a countable set of points approaching m at positive
iterations of S, and the points do not lie on l. These points belong
to the analytic curve ws being the trace of the manifold Ws(γ ) on
6. In Moser coordinates, a local stable curve coincides with the
axis v (it is given as u = 0) and a local unstable one with the axis
u (v = 0). Therefore, the point ps, the trace of 02, has coordinates
(0, v+), and pu = L(ps) is the trace of 01 and has coordinates (u−, 0).
To be definite, we assume v+ > 0. Then, due to reversibility, one has
u− = v+.

We choose neighborhoods 5s, 5u of point ps, pu defined
by inequalities 5s : |v − v+| < ε, |u| < δ, è 5u : |v| < δ, |u − u−|
< ε, and the quantities δ, ε are small enough. The set of points from
5s that is transformed to 5u by some iteration of the map S, as is
known,36,39 consists of the countable set of strips in 5s accumulating
to the stable curve u = 0. Due to a convenient normal form, these
strips are easily found. The following assertion holds

Lemma 1: Equations u = fk(ζ )(u− ± ε) define functions
u = s±k (v) whose domain is |v − v+| < ε. For them, inequalities
s+k (v) > s−k (v) hold true s−k (v) > s+k+1(v), and s+k (v) uniformly tend
to zero as k → ∞.

Chaos 31, 023113 (2021); doi: 10.1063/5.0035534 31, 023113-5

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Proof. The proof of this lemma is obvious. The lateral bound-
aries of strips σ s

k are segments |v − v+| = ±ε. The curves s+k (v)
provided by the solution of the equation uk = u− + ε serve their
upper boundaries, and their lower boundaries are the curves given
by solutions of the equations uk = u− − ε. To prove the lemma,
we take an arbitrary v, |v − v+| ≤ ε and find the related values
u = s+k (v) and u = s−k (v) from the equations,

u = fk(ζ )(u−+ε), u = fk(ζ )(u−−ε).

Consider, for example, the first equation. Since the value of ζ pre-
serves along the orbit of S, then multiplying both sides of the first
equation at v, we get gk(ζ ) = ζ/fk(ζ ) = v(u− + ε). For k ≥ k0 > 0,
this sequence of complex functions has the inverse one in each, and
all of them are defined in the same disk |ζ | ≤ σ of the complex plane
C. This follows from the complex inverse function theorem since
gk(0) = 0, g′

k(0) = ν−k. Thus, we get s+k (v) = g−1(v(u− + ε))/v and
s+k (v) → 0 as k → ∞ uniformly in v. �

Functions s±k (v) are upper and lower boundaries of the strip σ s
k .

It implies the existence of a countable set of such strips,

k > k0 = E

{

ln((ε + u−)/δ)

ln(ν−1)

}

.

Here, it is assumed ε + u− > δ (this is the first restriction on the
quantities ε, δ).

The restriction of L on 6 acts as L : (u, v) → (v, u); hence, we
get u− = v+ = r. Thus, we have the same condition on k0 for strips
σ u

k ,

k > k0 = E

{

ln((ε + r)/δ)

ln(ν−1)

}

.

One more restriction on these quantities provides the require-
ment that the neighborhood 5s would not intersect with its image
S(5s), 5u with its pre-image S−1(5u), and 5s ∩ 5u = ∅. These
conditions lead to the inequalities,

δ < r
1 − ν

1 + ν
, δ < r − ε.

Now, we can assert, due to construction, that all orbits of the map
S, which pass through the points of the neighborhood 5s and reach
the neighborhood 5u for positive iterations, have to pass through
one of strips σ s

k , k ≥ k0. These strips have, as its topological limit,
the segment u = 0 in 5s. Its points belong to the stable manifold,
and they tend under Sn to the fixed point m as n → ∞.

From the reversibility of S and the same considerations, we get
that images of strips σ s

k in 5u, i.e., strips σ u
k , accumulate as k → ∞ to

the points of the segment v = 0 in 5u. These points under negative
iterations of S tend to m.

Remark 3: It is worth remarking a useful fact. In a neighbor-
hood of the saddle periodic orbit γ for a given small value of |c|,
the level of the Hamiltonian Vc = {H = c} is the analytic invariant
three-dimensional submanifold. In Vc, the only saddle periodic orbit
γc lies being the continuation in c of the orbit γ . The family γc makes
up an analytic two-dimensional local symplectic cylinder containing
the orbit γ0 = γ . Three-dimensional cross section N chosen above,
under intersecting with Vc, gives an analytic two-dimensional sym-
plectic disk 6c being the local cross section for the restriction of the

flow on Vc. The Poincaré map Sc on 6c is symplectic analytic hav-
ing the saddle fixed point mc. For this map, the Moser theorem is also
valid and the map can be transformed to the form (3). Moreover, since
the dependence on c is analytic, the change of variables can be done
for all small enough c at once, and the function f in (3) will depend
on c analytically. This utilizes below to study the dynamics on Vc for
c close to c = 0.

VI. GLOBAL MAPS

Now, we derive the representations of the global maps T1 gen-
erated by the flow near 01 acting as T1 : 5u → D1. It is analytic sym-
plectic diffeomorphism and is written as x2 = f(u, v), y2 = g(u, v);
here, symplecticity is equivalent to the identity fugv − fvgu ≡ 1 (area
preservation).

Linearization of this map at the point (u−, 0) has the
form x2 = α(u − u−) + βv, y2 = γ (u − u−) + δv, where α = fu,
β = fv, γ = gu, δ = gv; all derivatives are calculated at the point
(u−, 0). Thus, a general form of T1 is

x2 = α(u − u−) + βv + · · · , y2 = γ (u − u−) + δv + · · · .

With the system under study being reversible and cross sec-
tions being chosen consistently with the action of involution, then
the global map T2 : D2 → 5s near 02 = L(01) is expressed as
T2 = L ◦ T−1

1 ◦ L or in coordinates,

u1 = γ x̄2 + αȳ2 + · · · ,

v1 − v+= − δx̄2 − β ȳ2 + · · · .

Below, when studying the orbit behavior on the levels Vc for
c 6= 0, we shall need to know the form of the global maps in
these cases. As was mentioned above, without loss of generality,
we can regard as coordinates on the disks D1(c), D2(c) symplectic
coordinates (x2, y2) and (x̄2, ȳ2), respectively, and on the disk 6(c)
symplectic coordinates (u, v). Global maps are analytic symplectic
diffeomorphisms analytically depending on c. Thus, they have the
form

T1(c) : x2 = a(c) + α(c)(u − u−) + β(c)v + · · · ,

y2 = b(c) + γ (c)(u − u−) + δ(c)v + · · · ,

T2(c) : u1 = a1(c) + γ (c)x̄2 + α(c)ȳ2 + · · · ,

v1 − v+ = b1(c) − δ(c)x̄2 − β(c)ȳ2 + · · · ,

(4)

where a1(c) = γ (c)a(c) − α(c)b(c), b1(c) = −δ(c)a(c) + β(c)b(c).

VII. TWO TYPES OF SYMMETRIC CONNECTIONS

The symmetric periodic orbit γ in the level V0 lies outside of a
neighborhood of point p; therefore, one needs to conform the loca-
tion of this orbit and its symmetry with the action of involution in U
relative to coordinates. This concordance is relied on the existence
of connecting orbits 01 and 02 = L(01).

Near the point p involution, L permutes local stable and unsta-
ble curves of p. Recall (see above) that in a neighborhood of point
p, the local topological type of the level V0 is a pair of three-
dimensional solid cylinders with two of their inner points glued
chosen by one in each cylinder (after gluing this is the point p) (see
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FIG. 5. Type one connection. Solid segments are traces of Fix(L).

Fig. 2). The lateral boundary of each solid cylinder is a smooth two-
dimensional invariant cylinder, and two other boundaries are two
disks (“lids”). For each solid cylinder, orbits enter through one lid
and leave the cylinder through the other lid.

By assumption on the connection, we know that 02 = L(01)

globally. Since heteroclinic orbits contain pieces of these curves
adherent to p, two cases are possible here. In the first case, these
two heteroclinic orbits can belong locally near p to the same solid
local cylinder (type one connection); in the second case, they belong
locally to different solid cylinders (type two connection).

Near p in Moser coordinates, disks y1 = ±d and x1 = ±d can
be taken as cross sections (lids) to 01 and 02, where the sign is
determined by the intersection with the related heteroclinic orbits.
We can always assume, as above, that 01 enters to its solid cylin-
der through y1 = d. We denote it as D1. Coordinates on the disk are
(x2, y2) since a coordinate conjugated to y1 is found from the equality
H = 0. For the connection of the first type, the second cross section
(for 02, in particular) is the disk D2 = {x1 = d}. For the connection
of the second type, the second cross section (for 02, in particular) is
the disk x1 = −d.

In Moser coordinates, the type one connection corresponds to
the local action L : (x1, y1, x2, y2) → (y1, x1, −x2, y2), but the type two
does to the action L : (x1, y1, x2, y2) → (−y1, −x1, −x2, y2). The type
one means the invariance of the related cylinder with respect to the
involution and the type two means their permutability (one cylinder
transforms to another one). In case if L preserves the cylinder, the
intersection of Fix(L) with the cylinder is a curve, but if L permutes
cylinders, this intersection is the only point p (see Figs. 5 and 6).

FIG. 6. Type two connection. Solid segments are traces of Fix(L).

Now, consider those orbits of the vector field that enter through
D1 near 01 but distinct from 01. As t increases, they enter into the
related solid cylinder, pass it, and leave the cylinder (the semi-orbit
01 itself tends to p and stays in the cylinder). These orbits either
intersect D2 (case 1) or leave the cylinder without intersecting D2

(case 2). In case 2, the Poincaré map is not defined in a neighbor-
hood of the connection for c ≤ 0 since orbits close to 01 do not
return on D2 and if a system under consideration does not fulfill
some additional global conditions (of the type the existence of a
homoclinic orbit joining two remaining lids).

Remark 4: For c > 0 small enough for case 2, the Poincaré
map on the related disk D1(c) becomes defined only inside some small
disk centered at (0, 0) whose boundary circle is the trace of stable man-
ifold Ws(lc) of the Lyapunov periodic orbit lc. Then, for some sequence
of positive cn → 0, the trace on the disk D1(cn) of Ws(γcn) is tangent
to the trace of Wu(γcn), which is accompanied with the appearance of
elliptic periodic orbits. This will be considered below.

VIII. IN THE SINGULAR LEVEL V0

The study of the orbit behavior in V0 is performed by us mainly
in case 1 since for the case two all nearby orbits to 01 leave this level.
In the neighborhood U of p, we have in Moser coordinates the repre-
sentation h = −ξ + ωη + R(ξ , η); hence, the manifold Wcs is given
as x1 = 0, Wcu as y1 = 0, Ws by the equalities x1 = x2 = y2 = 0, and
Wu by y1 = x2 = y2 = 0. Suppose, to be definite, that in U hetero-
clinic orbit 01 approaches to p for values y1 > 0; i.e., in the level V0,
disk D1 is defined by the equality y1 = d and disk D2 by the equality
x1 = d. In U, signs of variables x1 and y1 preserve by the flow and
three-dimensional cross section Ns : y1 = d > 0, |x1| ≤ δ, η ≤ η0, is
transverse to 01 and to all orbits close to 01 due to the inequality
hξ = −1 + · · · 6= 0 in U. Similar assertions are valid for the cross
section Nu = L(Ns) : x1 = d, |y1| ≤ δ, η ≤ η0. Each cross section is
foliated by levels H = c into disks, one of which is D1 = V0 ∩ Ns and,
respectively, D2 = V0 ∩ Nu.

Denote as a(η) the solution of the equation h(ξ , η) = 0 with
respect to ξ , ξ = a(η) = ωη + O(η2). One may regard that when
variables (x, y) vary in U ∩ V0, corresponding solutions of the
equation h(ξ , η) = 0 lie on the graph of function a. Then, two-disk
D1 in Ns is the graph of the function x1 = a(η)/d, and two-disk D2

in Nu is the graph of function y1 = a(η)/d. Both D1, D2 are analytic
disks being symplectic with respect to the restriction of 2-form � on
D1 and D2, respectively, and the local map T : D1 → D2 generated
by the flow 8t is symplectic.

Remark 5: For type 2 of the involution, the cross sections
are y1 = d (for Ns) and x2 = −d (for Nu). Therefore, orbits from
D1 = Ns ∩ V0 hit D2 = Nu ∩ V0 only if a(η) < 0.

Let us find an explicit representation of the map T in coor-
dinates (x2, y2). The passage time τ for orbits from Ns to Nu is
found from (1), where x1(τ ) = d, y1(0) = d: τ = −(hξ )

−1 ln(d/x1),
x1 = a(η)/d. From (1), it follows that T has the form

x̄2 = x2 cos 1(η) − y2 sin 1(η), ȳ2 = x2 sin 1(η) + y2 cos 1(η),
(5)
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with

1(η) = −
hη

hξ

ln(d/x1) = a′(η) ln(d2/a(η))

= (ω + O(η)) ln(d2/a(η)). (6)

Remark 6: For type 2 of the involution, the formula is modified
as 1(η) = a′(η) ln(−d2/a(η)).

Our first result is the following theorem.
Theorem 4: If an analytic reversible Hamiltonian system has

a heteroclinic connection of type 1, then the saddle periodic orbit γ has
a countable set of one-round transverse homoclinic orbits. In the case
of type 2 connection, no other orbits exist in a sufficiently small neigh-
borhood of the connection in V0 except for orbits of the connection
itself.

To be precise, let us make more exact the notion of a one-round
homoclinic orbit for γ . To this end, consider in V0 a sufficiently
small tubular neighborhood of the orbit γ . Since V0 is orientable,
this neighborhood is homeomorphic to a solid torus D2 × S1. The
union of points of the orbit 01, point p and points of the orbit 02

gives a simple non-closed curve without self-intersections in V0.
One may regard that this infinite curve consists of three connected
pieces, one of which, R, lies outside of the tubular neighborhood of
γ , and two remaining ones are inside of this tubular neighborhood
(recall that orbits 01, 02 tend asymptotically to γ ). Now, consider
a homoclinic orbit to γ , whose global part outside of the tubular
neighborhood of γ belongs to a small neighborhood of the curve R
and is simply connected, but two remaining parts are inside of the
tubular neighborhood. Such a homoclinic orbit for γ will be called a
one-round one.

Proof. To prove the theorem, we will show that a segment of
the unstable separatrix wu ∩ 5u of the saddle fixed point m on 6

is transformed by the map T2 ◦ T ◦ T1 into an analytic curve that
intersects transversely at the countable set of points at the segment
ws ∩ 5s of the stable separatrix ws of the same fixed point. The
scheme of constructing the related Poincaré map is shown in Fig. 7.

Consider in 5u : v = 0, |u − u−| ≤ ε1 < ε, a segment (A, B) of
the curve wu. Its image under the action of T1 is a parameterized
curve on the disk D1: x2(τ ) = ατ + · · · , y2(τ ) = γ τ + · · · , and its
parameter is τ = u − u−. Since T1 is a diffeomorphism, we get a
smooth curve in D1 passing through (0, 0), and its tangent vector

FIG. 7. Poincaré map as c = 0.

at (0, 0) is a nonzero vector (α, γ ). Boundary points of this curve
denote as A1, B1 and the curve obtained as [A1, B1].

The curve [A1, B1] by the map T is transformed to the spiral-
shape curve on the disk D2,

x̄2 = x2(τ ) cos 1(η(τ)) − y2(τ ) sin 1(η(τ)),

ȳ2 = x2(τ ) sin 1(η(τ)) + y2(τ ) cos 1(η(τ)).

In symplectic polar coordinates on D1, D2, respectively,

x2 =
√

2η cos φ, y2 =
√

2η sin φ, x̄2 =
√

2η̄ cos θ ,

ȳ2 =
√

2η̄ sin θ ;

the map T has the form

η̄ = η, θ = φ + 1(η) (mod 2π).

This map is defined for values η > 0. Under the action of T, the
curve [A1, B1] transforms into two infinite spirals corresponding to
τ > 0 and τ < 0,

η = η(τ), θ = φ(τ) + 1(η(τ)),

where for |τ | small enough, we have for α 6= 0,

η(τ) = (x2
2(τ ) + y2

2(τ ))/2 =
α2 + γ 2

2
τ 2 + O(τ 3),

tan φ(τ) =
γ

α
+ O(τ ),

and for α = 0, the angle is defined via cot φ; here, the values φ as
τ → +0 and τ → −0 differ by π . Since φ is bounded as τ → ±0,
but function 1(η(τ)) monotonically increases to ∞, then each of
spirals, as |τ | → 0, tends to (0, 0) on D2, making an infinite num-
ber of rotations in angle: θ(τ ) → ∞. Take a segment on u = 0
symmetric to [A, B] and its T2-pre-image [A2, B2] on D2, it is an
analytic segment through the point (0, 0) symmetric to [A1, B1].
Therefore, it intersects each spiral at the countable set of points
through which orbits pass tending to γ as t → ±∞; that is, they
are Poincaré homoclinic orbits.36 To complete the proof, we need
to show transversality of intersections spirals and [A2, B2]. Alterna-
tively, we shall prove the transversality of T2-images of spirals and
the segment u = 0 on 5s.

Consider, for instance, one of spirals, defined by inequality τ >

0 and apply T2,

u1 = γ x̄2 + αȳ2 + · · · =
√

2η(τ)
√

α2 + γ 2

×
[

sin(ϕ(τ ) + 1(η(τ)) + σ) + O(
√

2η(τ))
]

,

v1 − v+ = −δx̄2 − β ȳ2 + · · · =
√

2η(τ)
√

β2 + δ2

×
[

sin(ϕ(τ ) + 1(η(τ)) + σ1) + O(
√

2η(τ))
]

.

The map T2 transforms the spiral and the point (0, 0) from D2 to
some spiral-shape curve and the point (0, v+) in 5s. We need to
prove that the spiral obtained does not tangent to the segment u = 0
at any common point. To this end, we show that the derivative
u′

1(τ ) does not vanish at the intersection points of the spiral with
the segment u = 0 in 5s. As η(τ) 6= 0, zeros of the function u1(τ )
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are determined by zeros of the function sin(ϕ(τ ) + 1(η(τ)) + σ),
and one needs to check the inequality u′

1(τ ) 6= 0 for those τ where
u1 = 0.

The derivative u′
1(τ ) at points where sin(ϕ(τ ) + 1(η(τ))

+ σ) = 0 is equal up to a nonzero multiplier

cos(ϕ(τ ) + 1(η(τ)) + σ)(ϕ′(τ ) + 1′(η(τ ))η′(τ )).

Thus, the first multiplier is nonzero and the principal term in the
bracket for small enough τ is 1′(η(τ ))η′(τ ), which tends to infinity
as τ → 0. Indeed, in accordance to formula (6) for 1, we have

1′(η) = a′′(η) ln(d2/a(η)) −
a′2(η)

a(η)

=
−a′2(η) + a′′(η)a(η) ln(d2/a(η))

a(η)
;

hence, the numerator is negative and separated from zero for
small η, but the denominator tends to zero as η → +0. The ratio
η′(τ )/a(η(τ )) is of the order 1/τ . Therefore, the existence of a
countable set of transverse homoclinic orbits has been proved.

For case 2 orbits of the system passing on 5u through the points
of an unstable curve v = 0, |u − u−| < ε, as t increases, intersect
disk D1 and after that leave V0 (see Fig. 6). The same holds true,
due to symmetry, as t decreases, for orbits passing on 5s through
the points of a stable curve u = 0, |v − v+| < ε. �

The proven theorem allows one to use results36,39 about
the orbit structure near a transverse homoclinic orbit of a two-
dimensional diffeomorphism. Specifically, near each homoclinic
orbit, there exists its neighborhood such that orbits of a diffeomor-
phism passing through this neighborhood make up an invariant
hyperbolic subset whose dynamics is conjugated with the shift on a
transitive Markov chain (see, for instance, Ref. 17). On 5s, we have
a countable set of different homoclinic orbits accumulating at the
trace of heteroclinic orbit 02. It is clear for a fixed homoclinic point
from the set, the size of a neighborhood, where the description holds,
tends to zero as homoclinic points approach to the trace of 02. If
we consider an only finite number of homoclinic points outside of
a small neighborhood of the trace of 02, then we get a uniformly
hyperbolic set generated by these homoclinic orbits. Therefore, the
entire region where the hyperbolic set for our case exists should be
of a two-horn shape bounded by two parabola-like curves, which are
tangent at the point (0, v+) (see Fig. 8) The strips near homoclinic
orbits (see above) for different homoclinic points interact each other
under iterations of the Poincaré map that lead to a Markov chain
with a countable set of states, but the invariant set obtained in this
way is not uniformly hyperbolic but only non-uniformly hyperbolic.

IX. HYPERBOLICITY AND ELLIPTICITY IN LEVELS c <0

In this section, we consider levels Vc, c < 0, near the connection
for case 1. For case 2 and c < 0, all orbits, entering through D1(c) to
a neighborhood, leave it, and the same is true for the orbits entering
a neighborhood, as t decreasing, through D2(c).

We prove (1) the existence of a hyperbolic set constructed on a
finite number of transverse homoclinic orbits to the saddle periodic
orbit γc and (2) the existence of a countable set of intervals of values
c < 0 accumulating at zero whose values of c correspond to levels

FIG. 8. The shape of the non-uniform hyperbolicity region in 5s.

where in Vc, a one-round elliptic periodic orbit exists. Remind that
for case 1 and negative c small enough, all orbits in a neighborhood
of p passing through one “lid” D1(c) = Ns ∩ Vc of the solid cylinder,
as t increases, intersect its second lid D2(c) = Nu ∩ Vc.

Existence of finitely many transverse homoclinic orbits to a
periodic orbit γc is almost evident and follows from their existence at
c = 0. For any negative c small enough, we consider the solid cylin-
der of the local part of the level Vc near p whose lids are D1(c), D2(c).
Then, global maps transform: a segment wu(c) on 5u(c) (i.e., v = 0)
is mapped by T1(c) onto a curvilinear segment on D1(c) passing
near point (0, 0) at the distance of the order |c|l, l ≥ 1. The same
holds true for a symmetric curve on D2(c) being the pre-image with
respect to T2(c) of the segment of ws(c) (i.e., u = 0). Let us cut out on
D1(c), D2(c) small disks of the radius of an order O(

√
|c|) centered at

points (0, 0). Since the map T(c) preserves η, we cut out thereby by
one interval on each curvilinear segment of each disk. After cutting
out, two remaining segments stay on each disk. Consider the images
of the remaining segments on D2(c) under the map T2(c) ◦ T(c).

Theorem 5: For the type one connection, if |c| is small enough,
the image of each remaining segment is a finite spiral that intersects
transversely at a finite number of points of the curve u = 0 in 5s(c).

Proof. We follow the lines of the case c = 0. The difference
is that we first cut out the disk on D1(c) of the radius O(

√
|c|),

η ≤ η(c), with the center at (0, 0). The image of the segment v = 0
on 5u(c) under the action of the map T1(c) is a smooth curve pass-
ing at the distance of the order cl, l ≥ 1, from the point (0, 0) [the
case when this curve passes through the point (0, 0) is not excluded].
Therefore, the circle of the radius η = η(c) ∼ |c| intersects this curve
at two points; i.e., parts of this curve lying outside of the circle are
two smooth segments and their images with respect to T(c) are two
finite spirals that intersect transversely the T2(c)-pre-image of the
segment u = 0 from 5s(c). Thus, we get a finite number of trans-
verse homoclinic orbits for γc. Obviously, the less |c|, the more
number of transverse homoclinic orbits can be found. �

To prove the existence of elliptic points in some neighborhood
of the connection in the whole M, we first find a countable set of val-
ues cn < 0 for which the system in the level Vcn has a non-transverse
homoclinic orbit with quadratic tangency for periodic orbit γcn . This
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allows one to apply results on the existence of cascades of elliptic
periodic orbits on the levels close to Vcn (see, for instance, Refs. 8
and 11).

Theorem 6: Suppose type 1 connection is considered and
an inequality a′

1(0) 6= 0 holds. There is a sequence cn → −0 such
that in the level Vcn , periodic orbit γcn possesses a homoclinic orbit
along which stable and unstable manifolds Ws(γcn), Wu(γcn) have a
quadratic tangency. For every such cn, there exists a countable set of
c-intervals Inm, Inm → cn as m → ∞, whose values c ∈ Inm represent
levels where the system has a one-round elliptic periodic orbit in this
level of the Hamiltonian.

Proof. The inequality a′
1(0) 6= 0 is of the general position con-

dition. It is the analog of the condition C in Ref. 11. This guarantees
that for |c| small enough, the T2(c)-image of the point (0, 0) in
5s(c) is an analytic curve intersecting transversely stable manifold
u = 0 of the saddle fixed point. To be precise, we remind that we
assume coordinates (u, v) not depending on c but only maps do. As
a corollary of this inequality, by reversibility, there is a c0 < 0 such
that for c ∈ (c0, 0), the T1(c)-image of the segment v = 0 is a smooth
curve that does not pass through the point (0, 0) on D1(c) and the
distance from (0, 0) to this curve is of the order |c|.

To prove the first assertion of the theorem, we consider level Vc

for small negative c and find the image of the segment v = 0 from
5u(c) under the map T(c) ◦ T1(c). This is an analytic curve in D2(c).
One needs to show that this curve for a countable set of c-values
touches the T2(c)-pre-image of the segment u = 0 from 5s(c).

Let us write down the representation of the map T(c). It is
similar to (5), but for c < 0, function 1c(η) is analytic and has the
form

1c(η) = a′
c(η) ln

d2

ac(η)
, ac(η) = −c + ωη + O2(c, η) > 0.

The positivity of the function ac(η) implies the map T(c) be a local
analytic symplectic diffeomorphism in some neighborhood of the
point (x2, y2) = (0, 0) for all sufficiently small in modulus negative c.

The map T1(c) is also analytic; hence, the T1(c)-image of the
segment v = 0, |u − u−| ≤ ε is an analytic curvilinear segment in
D1(c) passing near point (x2, y2) = (0, 0) at the distance of the order
|c|. This follows from the genericity assumption a′

1(0) 6= 0 and sym-
metry of T1(c) and T2(c). By symmetry, the T2(c)-pre-image of the
segment u = 0, |v − v+| ≤ ε is also an analytic curvilinear segment
in D2(c) being symmetric with respect to L to the segment in D1(c)
and passing near the point (x̄2, ȳ2) = (0, 0) at the same distance of
the order |c|.

In polar coordinates on disks D1(c), D2(c), the map Tc has the
form

η = η, θ = ϕ + 1c(η),

with 1c(η) = (ω + · · · ) ln[d2/(−c + ωη + · · · )].
Expanding in formulas for T1(c) coefficients by the Taylor

formula up to the terms of the first order in c, we get a(c) = ac

+ · · · , a 6= 0, b(c) = bc + · · · . Then, one has

1c(η) = −ω ln
d2

−c + ω[(ac + α(u − u−))2 + (bc + γ (u − u−))
2]/2

+ O2(c, η).

On the disk D1(c), the curvilinear segment under consideration is
an analytic smooth curve at the distance of the order |c| from (0, 0);
therefore, there is a circle η = ηc such that this circle and the curve
have a common point and they are tangent at this point. In principle,
this point can be not unique. Other points of this curve are outside
of this circle.

Local map T(c) preserves η; hence, the T(c)-image on D2(c) of
the curve is a spiral-shape curve that lies outside of the circle η = ηc

on D2(c). By symmetry, on the same circle on D2(c), there are other
points of tangency with the curve being T2(c)-pre-image of the seg-
ment u = 0 from 5s(c). An important observation is the following
assertion.

Lemma 2: For c small enough, the only point of tangency is
the circle and the curve on D1(c) exists. The tangency at this point is
quadratic.

Proof. Denote σ s
c , σ u

c circles η = ηc on D1(c), D2(c), respec-
tively. By symmetry, it is sufficient to prove the assertion for the
closed curve T2(c)(σ

u
c ); i.e., this curve is quadratically tangent to

u = 0 at exactly one point as |c| small enough. The circle
σ u

c has the representation in polar coordinates x̄2 =
√

2ηc cos θ ,
ȳ2 =

√
2ηc sin θ , r(c) =

√
2ηc ∼ |c|. Thus, its T2(c)-image is (4),

u1 = a1(c) + r(c)[γ (c) cos θ + α(c) sin θ + O(r)],

v1 − v+ = b1(c) − r(c) [δ(c) cos θ + β(c) sin θ + O(r)].

First we find the points where a tangent to this curve is collinear with
the vector (0, 1); i.e., u′

1(θ) = 0. This gives the equation −γ sin θ

+ α cos θ + O(r) = 0. It has two roots defined up to O(r) as θ1

= ρ, θ2 = ρ + π , where sin ρ = α/
√

α2 + γ 2, cos ρ = γ /
√

α2 + γ 2.
Equating u1(θi) = 0, we come to the relations relative r: r(c)

= ±a1(c)/
√

α2 + γ 2 + O(c2), where the sign is determined by that
θi for which r(c) > 0. Due to assumption a′

1(0) 6= 0, we get a unique
root providing the tangency of an even order.

To prove that the tangency is quadratic, one needs to check that
for c small enough, the derivative u′′

1(v1) 6= 0 at the tangency point.
This derivative in the parametric form is given as (we omit subscript
1 in this calculation)

u′′(v) =
u′′

θv′
θ − u′

θv′′
θ

v′3
θ

=
√

α2 + γ 2
[−(αδ − βγ ) + O(r)]

±r(1 + O(r))

= ±
√

α2 + γ 2r(c)−1(1 + O(r(c))).

Since we saw that r(c) ∼ |c| as |c| → 0, this derivative is as larger
in modulus as smaller |c| is. Thus, we conclude that the tangency is
quadratic. �

Therefore, we have on D2(c) two analytic curves: a spiral and a
curve; both touch the circle η = ηc at only points (generally speak-
ing, different ones). Now, let us follow a mutual position of these
two points on the circle as c → −0. The point on the curve tends
to the point (0, 0) as c → −0 with a definite tangent. However, the
tangency point of the spiral, as we shall prove below, rotates mono-
tonically as c → −0 performing infinitely many full revolutions in
the angle. This implies that the point of tangency for the spiral
infinitely many times cn passes through the point of tangency for
the curve giving quadratic tangency of the spiral and the curve (see
Fig. 9).
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FIG. 9. Case 1: Poincaré map as c < 0, a mechanism of homoclinic tangency.

Let us call the unique point of tangency of the circle and the
spiral on D2(c) a nose of the spiral. Near this point, due to a quadratic
tangency, the spiral is located out of the disk bounded by the circle.
Let us show that the nose of the spiral moves monotonically in θ as
c → −0.

The coordinates of the nose correspond to that point of the
segment v = 0 where the T1(c)-pre-image of the circle η = ηc in
D1(c) touches the segment. The angle θ(c) corresponding to the nose
of the spiral is calculated using the formula θ(c) = ϕ(c) + 1c(ηc)

where the values (ϕ(c), η(c)) have to be inserted. As we saw when
proving Lemma 2, the angle ϕ(c) has a definite limit as c → −0
since the point of tangency of the curvilinear segment and the cir-
cle η = ηc on D1(c) and the point of tangency of the circle η = ηc

and a curvilinear segment on D2(c) are connected by the symme-
try relation L : (x2, y2) → (x̄2, ȳ2) x̄2 = −x2, ȳ2 = y2. We shall show
that the value 1c(ηc) tends monotonically to infinity as c → −0. If
so, this gives a necessary conclusion on the infinite number of full
revolutions in the angle θ .

The value ηc at the tangency point is equal to

ηc =
1

2
(x2

2(c) + y2
2(c)) = r2(c)/2 =

a2
1(c)

2(α2(c) + γ 2(c))
+ O(c3).

(7)
Therefore, we have

1c(ηc) = (ω + O(c2)) ln
d2

−c + ω 1
2(α2+γ 2)

a2
1(c) + O(c3)

∼ − ln(−c).

Thus, θ(c) depends on c monotonically and increases unboundedly
as c → −0. Therefore, the point in D2(c), being the nose of the spi-
ral, infinitely many times cn coincides with the point on the same
circle where the pre-image of the segment u = 0 from 5s(c) touches
the circle.

The second assertion of the theorem follows from the theorem
on the existence of elliptic points near a homoclinic tangency for a
symplectic map (see, for instance, Refs. 8 and 11).

Theorem 7: Let f be a smooth (at least C4) symplectic map
having a saddle fixed point p and a homoclinic orbit fn(q) through the
point q 6= p. Suppose stable and unstable curves of p are quadratically
tangent at q. Then, for any generic smooth one-parametric family of
smooth symplectic maps fµ that coincides as µ = 0 with f on any

segment [−µ0, µ0], there is an integer k0 ∈ Z and infinitely many
open intervals Ik, k ≥ k0, such that Ik → 0, as k → ∞, and the map
fµ, µ ∈ Ik has a one-round elliptic homoclinic orbit (of the period
q + k). �

X. TYPE 1 CONNECTION: HYPERBOLICITY AND
ELLIPTICITY AS c >0

As we know, any level Vc for c > 0 small enough contains a
Lyapunov saddle periodic orbit lc (remind that we assume ω > 0).
Its local stable Ws(lc) and unstable Wu(lc) manifolds belong to Vc

and their extension by the flow occurs near Ws(p) and Wu(p),
respectively. Therefore, they intersect cross sections D1(c) and D2(c)
along the circles σs(c), σu(c).

As was indicated above, all flow orbits cutting D1(c) inside the
circle σs(c) go out from U not intersecting D2(c). That is why, we do
not track for these orbits. However, flow orbits cutting D1(c) out-
side of σs(c), as time increases, do intersect D2(c) and further the
cross section 6c. We construct here a hyperbolic set that is formed
near a heteroclinic connection that involves a pair of saddle periodic
orbits lc, γc and four transverse heteroclinic orbits, of which two go,
as time increases, from lc to γc (near 02) and two others from γc to lc
(near 01). Besides, there is a countable set of transverse homoclinic
orbits for every periodic orbits lc and γc. All of this is the basis for
constructing the hyperbolic set.

Theorem 8: For type 1 connection and c > 0 small enough,
Ws(lc) and Wu(γc) intersect transversely each other along two
heteroclinic orbits 011(c), 012(c), and, by symmetry, Wu(lc) and
Ws(γc) intersect transversely each other along two heteroclinic orbits
021(c) = L(011(c)), 022(c) = L(012(c)), forming thereby a transverse
heteroclinic connection.

The trace of Wu(γc) in 5s(c) [the image of the segment v = 0
under the action of the map T2(c) ◦ T(c) ◦ T1(c)] consists of a pair
of spiral-shape analytic curves that wind both on the closed curve
T2(c)(σu(c)) and intersect transversely the segment u = 0 at a count-
able set of points being traces of transverse Poincaré homoclinic orbits
of the periodic orbit γc.

By Smale’s λ-lemma, for n large enough, the closed curve
T2(c)(σu(c)) contains two of its segments with end points on the
segment u = 0 whose n-iterations under map S(c) give a countable
family of analytic curves smoothly accumulating, as n → ∞, to the
segment v = 0. There is an integer n0(s) such that for n > n0(s), these
curves transversely intersect the closed curve T−1

1 (c)(σs(c)) giving a
countable set of points being traces of transverse homoclinic orbits for
lc (see Fig. 10).

Proof. Consider first the T2(c)-image of the circle σu(c) on the
disk 6c. Recall that the radius of the circle σu(c) is of the order√

c since it is defined by the root of the equation ac(η) = −c + ωη

+ O2(c, η) = 0. Hence, we get η(c) = c/ω + O(c2). On the other
hand, due to an analytic dependence of T2(c) in c, the T2(c)-image
of the center (0, 0) analytically depends on c. Therefore, the distance
from the point (0, 0) to the curve being the T2(c)-pre-image of the
segment u = 0 in 5s(c) has the order cl, l ≥ 1. Moreover, l = 1 if the
inequality a′

1(0) 6= 0 holds (see above). This implies that the curve
T2(c)(σu(c)) intersects, for c small enough, segment u = 0 trans-
versely at two points. Indeed, the curve T2(c)(σu(c)) can be written
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FIG. 10. Poincaré map as c > 0, hyperbolic set and tangency.

in a parametric form with parameter θ as

u = a1(c) + r(c)[γ (c) cos θ + α(c) sin θ + O(r)],

v − v+ = b1(c) − r(c)[δ(c) cos θ + β(c) sin θ + O(r)],

where r(c) =
√

2η(c) =
√

c/ω + O(c2). Equating u1 = 0 to find
intersection points with segment u = 0 and dividing both sides at
r(c)

√

α2 + γ 2, we come to the equation with respect to θ ,

A(c) + cos(θ − ρ) + O(c) = 0, A(c) = a1(c)/r(c) ∼
√

c,

which has two simple roots for c small enough. These simple roots
correspond to two transverse intersection points. The flow orbits
through these points are just 021(c), 022(c). By the reversibility of
the map, the closed curve T−1

1 (c)(σs(c)) intersects transversely at two
points of the segment v = 0 in 5u(c) as well. The flow orbits through
these intersection points are 011(c), 012(c).

Now, consider the curvilinear segment being the T1(c)-image
of v = 0 in D1(c). As was proved, this curve intersects transversely
at two points of the circle σs(c) that divide the curve into three
pieces. The flow orbits, passing through the middle piece, leave
the neighborhood of the connection, but two remaining pieces give
two analytic curves whose T(c)-images are two infinite spirals on
D2(c), which wind up the circle σu(c). Their T2(c)-images give two
countable families of transverse homoclinic orbits for γc.

In order to find transverse homoclinic orbits to lc, we remark
that the segment in 5s(c) given as u = κ > 0 for κ small enough
intersects the closed curve T2(c)(σu(c)) transversely at two points.
The same holds true for all pieces of T2(c)-images of both spirals
winding up at σu(c) in D2(c). Thus, we have two countable fami-
lies of curvilinear segments smoothly accumulating to two segments
of the curve T2(c)(σu(c)). By Smale’s λ-lemma,40 there is an integer
n0 > 0 such that all Sn(c)-images of curves of both countable fam-
ilies intersect transversely the closed curve T−1(c)(σs(c)) in 5u(c).
Thus, we have an invariant hyperbolic set in each level Vc, c > 0
small enough. �

The hyperbolic set, we have constructed, does not exhaust
invariant sets in the level Vc. One can mention the wild hyper-
bolic sets existing near the quadratic homoclinic tangencies.9 Here,
we only prove the existence of elliptic periodic orbits for intervals
of c-values accumulating at c = 0. To that end, we first prove the
following.

Theorem 9: For type 1 connection, there is a sequence of
cn → 0 such that in the level Vcn , the Lyapunov saddle periodic orbit
lcn possesses a homoclinic orbit along which Ws(lcn) and Wu(lcn) have
quadratic tangency.

Proof. As the system is reversible and the related Poincaré map
is also reversible, it is sufficient to prove that there exist cn such
that the trace on 6cn of Wu(lcn) is a convex closed curve being
quadratically tangent to the line of Fix(L)—the diagonal u = v.

As was proved above, for c0 sufficiently small as 0 < c
≤ c0, the trace of Wu(lc) in 5s(c) is a closed curve that intersects
the segment u = 0 at two points. The S(c)-pre-images of the line
u = v are a sequence of analytic curvilinear segments, given as
u = uk(v, c), which tend in 5s(c) to u = 0 in C2-topology uni-
formly with respect to c, as k → ∞. Indeed, the inverse iterations
of S are given as u−n = fn(ζ )u−n+1, v−n = v−n+1/fn(ζ ), ζ = u0v0

= u−1v−1 = · · · = u−nv−n. The function u−n = gn(v−n) is found as
a solution with respect to u of the equation u = vf2n(uv). Multiply-
ing both sides on v, we get the equation ζ = v2f2n(ζ ). Due to the
form of f(ζ ) = ν + O1(ζ ), we have an estimate |f| ≤ (1 + ν)/2 < 1
for sufficiently small |ζ |. Thus, for any fixed v, |v − v+| ≤ δ, we find
the unique solution of the equation ζn(v). This function is analytic
and family tends uniformly to zero as n → ∞. This gives functions
un(v, c) = vf2n(ζn(v)). This family tends to zero as [(1 + ν)/2]2n.
Since they approach to zero in C2-topology (in fact, in any Ck,
k ≥ 2), this implies that for n large enough, the intersection of the
graph of function un(v, c) with the closed curve T2(c)(σu(c)) occurs
in two points similar as for u = 0.

Fix some 0 < c ≤ c0. For c0 is small enough, the closed curve is,
up to third order terms, an ellipse in 5s(c) whose center approach
to the line u = 0 with the order c and its principal axes have lengths
of the order

√
c and their rotation angle depends as c and has a limit

defined by the matrix of the linearized map T2(0) = T2. This implies
this family of closed curve intersects, as c → 0, all graphs of the func-
tions un(v, c), and this intersection for the individual curve is either
transversal or quadratically tangent or no intersection points at all.
Those values of c when the related curve of the family is tangent to a
fixed un(v, c) give the values cn we search for. �

Now, we can again apply Theorem 7 on the existence of the
elliptic periodic point in a generic one-parameter unfolding of two-
dimensional symplectic diffeomorphisms that contain a diffeomor-
phism with a quadratic homoclinic tangency.8,11

XI. TYPE 2 CONNECTION: c >0

As was shown above, for case 2, all orbits in the level V0 passing
through a small neighborhood of the connection, other than those
of the connection itself, leave this neighborhood and no orbits exist,
which stay forever in this neighborhood. Levels Vc, c < 0, contain
no orbits at all, which stay wholly in these levels since orbits entering
the solid cylinder through D1(c) exit from the neighborhood of the
point p without intersecting D2(c). That is why we consider levels
Vc for c > 0, where orbits arise lying wholly in a neighborhood of
the connection. On the corresponding transversal disk D1(c), these
orbits enter the solid cylinder through points lying inside the circle
σs(c) and they exit through D2(c) inside the circle σu(c) from another
solid cylinder (see Remark 6).

Chaos 31, 023113 (2021); doi: 10.1063/5.0035534 31, 023113-12

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 11. Case 2: Poincaré map as c > 0, hyperbolic set and tangency.

Consider the image with respect to the map T2(c) ◦ T(c) ◦ T1(c)
of the trace of the unstable manifold Wu(γc) [i.e., the segment v = 0
from 5u(c)]. As was discussed above, generally, T1(c)-image of this
segment on the disk D1(c) is an analytic curvilinear segment whose
distance from the center of the disk (0, 0) has the order cl, l ≥ 1, due
to the analytic dependence of the map T1(c) in c. If the genericity
assumption above a′

1(0) holds, then l = 1. On the disk D1(c), there
is a circle σs(c) defined as η = η(c) = c/ω + O(c2), being the trace
of the stable manifold Ws(lc). Thus, its radius is of the order ∼

√
c.

This implies, as above, that σs(c) and the curvilinear segment [trace
of Ws(γc)] intersect each other transversely at two points for c small
enough.

Consider now the interval of the curvilinear segment that lies
on D1(c) inside of the circle σs(c). Keeping in mind the modification
of the formula for 1c(η) (see Remark 6), we see that this interval
[without its two extreme points on the circle σs(c)] is transformed
by the map T(c) on D2(c) where it forms an infinite spiraling ana-
lytic curve that winds up by its both ends on the circle σu(c) (see
Fig. 11). On the same disk D2(c), there is an analytic curvilinear seg-
ment being the T2(c)-pre-image of the segment u = 0 from 5s(c).
The curvilinear segment intersects transversely the circle σu(c), and
this follows from its symmetry with the related curve in D1(c). Since
the double spiral winds up by its both ends on the circle σs(c) and the
segment is transverse to the circle, we get, as above, a countable set
of intersection points through which transverse homoclinic orbits of
γc pass.

Here, we also have a countable set of intervals of c on which
elliptic periodic orbits exist in Vc. Their proof is done by exactly the
same manner as for the case 1 and c > 0. The crucial point here is
again to find a sequence of cn → 0 such that in Vcn , a tangent sym-
metric homoclinic orbit of lc exists. We again iterate by the maps
Sn(c) on the disk 6(c) the closed curve T2(c)(σu(c)) and find its tan-
gency with the line u = v of the trace Fix(L). The consideration is
the same as in Sec. X. Thus, we obtain

Theorem 10: For case 2, there exists c0 > 0 small enough such
that on the interval (0, c0), a countable set of intervals exists whose
values of c correspond to levels Vc containing a one-round ellip-
tic periodic orbit in a four-dimensional neighborhood of the initial
heteroclinic connection.

XII. ONE-PARAMETER FAMILY OF REVERSIBLE
HAMILTONIAN SYSTEMS: HOMOCLINICS OF THE
SADDLE-CENTER

We consider in this section a generic 1-parameter family of
reversible Hamiltonian systems XHµ being an unfolding of a system
that has at µ = 0 a heteroclinic connection studied in Secs. I–XI.
The main result here is a theorem on the existence of a countable set
of parameter values µ accumulating to µ = 0 for which the related
system has a homoclinic orbit of the saddle-center. Here, also, it will
be shown that emerging homoclinic orbits of the saddle-center sat-
isfy the general position conditions found in Refs. 20 and 23. These
conditions guarantee the existence of complicated dynamics in the
system and its non-integrability.21 It is worth emphasizing that the
result does not depend on what type of the connection is, the first or
second one.

Recall that in the class of C2-smooth Hamiltonian systems, the
existence of a saddle-center equilibrium is a generic phenomenon.
The existence of a saddle periodic orbit is also a generic phe-
nomenon. However, for general reversible perturbations, hetero-
clinic orbits joining a saddle-center and a saddle-periodic orbit can
be destroyed. We want to prove that generically in such a family,
homoclinic orbits of a perturbed saddle-center emerge. The theorem
we prove can serve as a criterion of the existence of homoclinic
orbits of the saddle-center. It is worth remarking that finding homo-
clinic orbits of a saddle-center is a rather delicate problem generally.
Such a theorem can also be useful in the case when one deals with a
two-parameter family of reversible Hamiltonian systems where for
some specific values of parameters, the related system has a hetero-
clinic connection studied above. Then, we can find a countable set of
curves in the parameter space such that for parameters on this curve,
the system has a homoclinic orbit of the saddle-center.

Theorem 11: Let XHµ be a generic one-parameter family of
reversible analytic Hamiltonian systems, and at µ = 0, the system has
a heteroclinic connection of type 1 or 2. Then, there exists a sequence
of parameter values µn accumulating to µ = 0 such that the related
system of the family has a homoclinic orbit of the general type of a
saddle-center. Related values µn have the same sign.

Proof. Because of the reversibility, it is sufficient to prove the
existence of a sequence µn → 0 for which the Hamiltonian sys-
tem XHµn

has a symmetric unstable separatrix of the saddle-center
intersecting the cross section 6(µn) at a point on the line Fix(L).

For the case of a smooth one-parameter family of reversible
analytic Hamiltonian systems being an unfolding of a system with
a heteroclinic connection, all objects under consideration: a saddle-
center, a periodic orbit in the singular level of the Hamiltonian, their
stable and unstable manifolds smoothly depend on µ. As was indi-
cated above, Moser theorems hold also for systems depending on
parameters; therefore, there is a smooth one depending on a param-
eter change of variables such that in new coordinates (x1, y1, x2, y2) in
a neighborhood of equilibrium pµ, the Hamiltonian has the form of
the analytic functions hµ in variables ξ = x1y1, η = (x2

2 + y2
2)/2. The

difference with the parameterless case is a smooth dependence of
coefficients of the function hµ on the parameter µ. We work further
in these coordinates; thus, cross sections D1 and D2 to separatrices
in the singular level of the Hamiltonian (i.e., containing a saddle-
center) and N to the saddle periodic orbit γ (µ) can be regarded
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fixed and not depending on the parameter. However, in global maps,
zero order terms smoothly depending on µ do appear, as separatri-
ces of the perturbed saddle-center do not lie, generally speaking, on
manifolds of the saddle periodic orbit.

The form of the perturbed maps is as follows:

T1(µ) : x2 = b(µ) + α(µ)(u − u−) + β(µ)v + · · · ,

y2 = a(µ) + γ (µ)(u − u−) + δ(µ)v + · · · ,

T2(µ) : u1 = a(µ) + γ (µ)x̄2 + α(µ)ȳ2 + · · · ,

v1 − v+ = b(µ) − δ(µ)x̄2 − β(µ)ȳ2 + · · · ,

S(µ) : u1 = u/fµ(ζ ), v1 = vfµ(ζ ), ζ = uv, fµ = ν(µ) + O1(ζ ).

In coordinates used, the genericity condition for the family means
the inequality a′(0) 6= 0 to hold. In virtue of the assumptions on
the family, we have a(0) = 0, b(0) = 0, ν(0) = ν < 1. Geometri-
cally, the genericity condition means that for µ 6= 0, the trace of
the unstable separatrix of the saddle-center intersects the trace of
the stable manifold of the saddle periodic orbit transversely, as µ

varies. More spectacularly, this can be seen in the space (u, v, µ),
where the segment (0, 0, µ) represents the one-parameter family of
saddle fixed points of the maps, the rectangular u = 0 represents
the union of traces of stable manifolds for fixed points, and v = 0
corresponds to the union of traces of unstable manifolds for fixed
points. The curve of traces on the cross sections of unstable separa-
trices of the saddle-centers for every small µ intersects transversely
the rectangular u = 0 at that unique point where µ = 0.

Consider now on the disk D2 the point (x2, y2) = (0, 0) being
the trace of the unstable separatrix of the perturbed saddle-center.
This point under the action of the map Sn(µ) ◦ T2(µ) transforms
into un = a(µ)/fnµ(ζ ), vn = (v+ + b(µ))fnµ(ζ ). The condition this
point belongs to Fix(L) gives the equality un = vn; i.e., a(µ)/fnµ(ζ )

= (v+ + b(µ))fnµ(ζ ), ζ = a(µ)(v+ + b(µ)). This equation for search-
ing µ is written down in the form

a(µ)

v++b(µ)
= f2n

µ (a(µ)(v++b(µ))) > 0.

Function r(µ) in the left side is defined on some neighborhood
of µ = 0, r(0) = 0, r′(0) = a′(0)/v+ 6= 0; therefore, this function is
strictly monotone. The smooth functions of the sequence in the right
hand side are defined for any µ in a fixed small neighborhood of
µ = 0, and they tend uniformly to zero, as n → ∞. Thus, for n
large enough, for values of µ, where a(µ) is positive, the equation
for every such n has a unique solution µn → 0 as n → ∞. Asymp-
totics of values µn, for which homoclinic orbits of the saddle-center
exist, is as follows:

µn =
ν2nv+

a′(0)
.

Now, suppose an analytic Hamiltonian system with two
degrees of freedom has a saddle-center with a homoclinic orbit to

it. In Ref. 23, it was proved that if some genericity condition holds
for this homoclinic orbit, any small Lyapunov saddle periodic orbit
on the center manifold of the saddle-center has in the related level
of the Hamiltonian four transverse homoclinic orbits and, therefore,
the system possesses a chaotic behavior. In Ref. 15, the generic-
ity condition was formulated for some particular class of systems
as an inequality on the coefficients of the scattering matrix of an
auxiliary linear scattering problem. Later,19 this genericity condi-
tion was reformulated as some genericity property of a scattering
map derived for the linearized system at the homoclinic solution.
It becomes applicable to any smooth Hamiltonian system, not only
an analytic one. This allowed us20 to extend these results onto mul-
tidimensional Hamiltonian systems with a homoclinic orbit of an
equilibrium with one pair of simple pure imaginary eigenvalues and
any number of pairs of other eigenvalues with nonzero real parts.

Let us show now that for found values µn, corresponding sym-
metric homoclinic orbits of the saddle-center satisfy the genericity
condition from Ref. 23. In Moser coordinates in a neighborhood
of the saddle-center, this condition means that on the singular level
of the Hamiltonian, the linearization matrix of the global map cal-
culated at the trace of the homoclinic orbit differs from a rotation
matrix.

At µ = µn, the global map is defined in a neighborhood of
the related homoclinic orbit. This map is the composition of maps
T1(µ) ◦ S2n(µ) ◦ T2(µ), and it can be written as [T1(µ) ◦ Sn(µ)] ◦
Sn(µ) ◦ T2(µ) and, in view of the reversibility and symmetry of cross
sections, with T1(µ) = L ◦ T−1

2 (µ) ◦ L, Sn(µ) = L ◦ S−n(µ) ◦ L.
Zero order terms when expanding the map T1(µ) ◦ S2n(µ) ◦

T2(µ) in (x̄2, ȳ2) = (0, 0) are equal to zero since we calculate the map
at the trace (0, 0) of a homoclinic orbit. The trace of the homoclinic
orbit on D1 is (x2, y2) = (0, 0). Thus, the global map can be written
as follows:

x2 = Ax̄2 + Bȳ2 + · · · , y2 = Cx̄2 + Dȳ2 + · · · , R =
(

A B
C D

)

.

Entries A, B, C, D of the matrix R depend, of course, on n, but
we omit this in order not to complicate notations. Since maps
T1(µ), S2n(µ), T2(µ) are symplectic, their composition is also a sym-
plectic map. In coordinates we use, the symplecticity means the area
preservation. This implies the equality AD − BC = 1.

Similar to (4), we denote

T2(µ) : u = a(µ) + α(µ)x̄2 + β(µ)ȳ2 + · · · ,

v − v+ = b(µ) + γ (µ)x̄2 + δ(µ)ȳ2 + · · · , (8)

Sn(µ) : un = u/fn(ζ , µ), un = vfn(ζ , µ), f(ζ , µ) = ν(µ) + O(ζ ).
(9)

The involution action on 6(µ) displays as L(u, v) = (v, u) and on

D1, D2 as L(x̄2, ȳ2) = (−x2, y2). Therefore, we get for T1(µ),

T1(µ) :

{

x2 = δ(µ)a(µ) − β(µ)b(µ) + β(µ)(u − u−) − δ(µ)v + · · · ,

y2 = γ (µ)a(µ) − α(µ)b(µ) + α(µ)(u − u−) − γ (µ)v + · · · .
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We have to show that matrix R, being the linearization matrix
for T1(µ) ◦ S2n(µ) ◦ T2(µ) at (0, 0), is not a rotation matrix. The
following assertion has been proved, in fact, in Ref. 20. �

Lemma 3: Let a standard symplectic plane R
2 with coordi-

nates (x, y) and two-form dx ∧ dy be given and R be a symplectic
matrix R∗IR = I, where R∗ is a transpose matrix and

I =
(

0 1
−1 0

)

, R =
(

A B
C D

)

,

(

x
y

)

→
(

Ax + By
Cx + Dy

)

.

Then, R is not a rotation matrix, iff the ellipse, being R-image of the
circle S1 : {x2 + y2 = 1}, intersects S1 at four points.

Proof. Denote X = (A, C)∗ and Y = (B, D)∗ as two vectors
on the plane and set Y⊥ = (D, −B)∗. The R-image of the unit
circle x2 + y2 = 1 in symplectic polar coordinates x =

√
2ρ cos θ ,

y =
√

2ρ sin θ is given as x = A cos θ + B sin θ , x = C cos θ

+ D sin θ . Since R is symplectic (here, it preserves area dx ∧ dy),
these two curves have the same area and common center; thus, these
two curves either have four intersection points or they coincide.
In the former case, their intersection points are defined by simple
zeroes of the equation

1 = (A cos θ + B sin θ)2 + (C cos θ + D sin θ)2

or via X, Y,

2X · Y sin 2θ + (X2 − Y2) cos 2θ = 2 − (X2 + Y2).

This equation has four simple roots if the inequality holds,

4(X · Y)2 + (X2 − Y2)
2
> (2 − (X2 + Y2))

2
.

Because of equality X · Y⊥ = AD − BC = 1, the identity holds
(X · Y)2 − X2Y2 = −1. Thus, we come to the valid inequality if the

equality does not hold,

4(X · Y)2 + (X2 − Y2)
2 = 4[(X · Y)2 − X2Y2] + (X2 + Y2)

2

= (X2 + Y2)
2 − 4 > (X2 + Y2 − 2)

2
.

If the last inequality in this string becomes equality, this is equivalent

to X2 + Y2 − 2 = 0 or X = Y⊥ since Y2 = (Y⊥)
2

and X · Y⊥ = 1.
However, equality X = Y⊥ provides

X2 = (Y⊥)
2 = 1; hence, R =

(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)

. �

It remains to verify if the inequality holds for the matrix R
determined by the global map. As R is a symplectic matrix, it is suf-
ficient to verify inequality A2 + C2 6= 1. Differentiation of the map
T1(µ) ◦ S2n(µ) ◦ T2(µ) with account of (9) for 2n-iteration gives the
following expressions for entries of R:

A = βf−2n

[

α − 2nu
f ′

f
(γ u + αv)

]

− δf2n

[

γ + 2nv
f ′

f
(γ u + αv)

]

,

B = βf−2n

[

β − 2nu
f ′

f
(δu + βv)

]

− δf2n

[

δ + 2nv
f ′

f
(δu + βv)

]

,

C = αf−2n

[

α − 2nu
f ′

f
(γ u + αv)

]

− γ f2n

[

γ + 2nv
f ′

f
(γ u + αv)

]

,

D = αf−2n

[

β − 2nu
f ′

f
(δu + βv)

]

− γ f2n

[

δ + 2nv
f ′

f
(δu + βv)

]

.

Observe the following limits exist, as n → ∞: u → 0, v → v+,
f2n → 0. Therefore, for the value A2 + C2, we get

A2 + C2 = (α2 + β2)f−4n

[

α − 2nu
f ′

f
(γ u + αv)

]2

+ (γ 2 + δ2)f4n

[

γ + 2nv
f ′

f
(γ u + αv)

]2

− 2(αγ + βδ)

[

α − 2nu
f ′

f
(γ u + αv)

] [

γ + 2nv
f ′

f
(γ u + αv)

]

,

and for B2 + D2, respectively,

B2 + D2 = (α2 + β2)f−4n

[

β − 2nu
f ′

f
(δu + βv)

]2

+ (γ 2 + δ2)f4n

[

δ + 2nv
f ′

f
(δu + βv)

]2

− 2(αγ + βδ)

[

β − 2nu
f ′

f
(δu + βv)

] [

δ + 2nv
f ′

f
(δu + βv)

]

.

Expressions for A2 + C2 and B2 + D2 show that their dependence
on n, as n → ∞, is determined by the value of (α2 + β2)f−4nα

or (α2 + β2)f−4nβ . Coefficients α and β depend on µ and they
approach to values α(0), β(0) as µ → 0. Since the matrix of the
linearized map T2 at the point (0, 0) is non-degenerate (it is sym-
plectic), then α2 + β2 6= 0 for n large enough, though separately,
values α(µ), β(µ) can vanish. Recall that the initial point for

acting map S2n is the point (u, v) with u = a(µ), v = v+ + b(µ),

a(0) = b(0) = 0. Due to assumption a′(0) 6= 0 and exponen-

tial decay of the sequence µn, the values in square brackets

α − 2nu
f ′

f
(γ u + αv) or β − 2nu

f ′

f
(δu + βv) do not vanish for n

large enough. This proves the map T1 ◦ S ◦ T2 to have its linear part
different from the rotation matrix.
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XIII. CONCLUSION

In this paper, we study some dynamical phenomena in a one-
parameter unfolding of a reversible Hamiltonian system, which
contains a system with a symmetric heteroclinic connection involv-
ing a symmetric saddle-center, a symmetric saddle periodic orbit in
the same level of the Hamiltonian, and a pair of heteroclinic orbits
joining the saddle-center and periodic orbit and permutable by the
reversible involution. We found hyperbolic sets of several types, cas-
cades of elliptic periodic orbits, and countable sets of the unfolding
parameter for which homoclinic orbits to the saddle-center exist. All
this characterized the chaotic orbit behavior of the related systems.
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