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tuned explicitly. The asymptotic properties of these measures are studied in order to
construct intuitive criteria for arm selection. A comprehensive simulation study shows
that using the exact criteria over asymptotic ones or using information measures with
more parameters, namely Renyi and Tsallis entropies, brings no sufficient gain in terms
of the power or proportion of patients allocated to superior treatments. The proposed
designs based on information-theoretical criteria are compared to several alternative
approaches. For example, via tuning of the built-in parameter, one can find designs with
power comparable to the fixed equal randomisation’s but a greater number of patients
responded in the trials.
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1. Introduction

Consider a Phase II clinical trial with two independent treatment arms, A; and A, associated with unknown efficacy
probabilities of a binary response. The goal is to find the superior treatment having the highest probability of the efficacy
response. Assume that a rare disease trial is considered and an investigator would like to assign as many patients as
possible to the superior arm motivated by the ethical reasons (Williamson et al., 2017). Assume that 10 patients were
assigned to each arm and 4 and 6 responses were observed, respectively. Then, a typical question in a sequential trial is:
“Which treatment arm should be assigned to the next patient?”. There are two main strategies to answer this question.
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The first one is the “best intention strategy” which is to choose the arm with the highest probability of success. Assume
that in the example above, the probabilities P; and P, are considered as random variables with Beta distributions B(4, 6)
and B(6, 4), and one uses the mean as the point estimate: p; = 0.4 and p, = 0.6. Then, following this strategy, the next
patient should be assigned to arm A, as it corresponds to the greater success estimate. While this approach is expected
to result in a higher number of responses, it can also lead to a lower number of observations on other arms and an
unacceptably poor performance in terms of the statistical power (Villar et al.,, 2015a).

The second strategy is to use measures of the statistical information and to assign the next patient to the arm about
which an investigator knowns “less” (Cover and Thomas, 2012; Sebastiani and Wynn, 2000, 2001). For instance, applying
the Shannon differential entropy

1
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to Beta distributions fi(p1), f2(p2) as above, one can find that h(f;) = h(f,). This equality means that both arms correspond
to the same amount of uncertainty (Kelbert and Mozgunov, 2015b) and the next patient can be assigned to either of
these arms. The same conclusion can be made with other measures of information, e.g., the Fisher information (Kelbert
and Mozgunov, 2015a; Suhov et al., 2016). This approach is expected to lead to a high statistical power, but a low number
of patients on the superior treatment as it does not account for the fact that one would like to maximise the number of
treated patients. This shortcoming is a consequence of “standard” information measures being context-free meaning that
they do not depend on the nature of outcomes p, but only on their probability density f(p).

Overall, it is desirable to balance these two strategies to achieve a high statistical power and a high average number of
patients that respond to the treatment. This problem is known as an “exploration vs exploitation” (also known as “learn
versus earn” trade-off Azriel et al., 2011). It was recently advocated in Williamson et al. (2017) that designs maximising
the expected number of responses in small populations trials should get more attention. As a result, response-adaptive
methods based on optimal multi-arm Bandit (MAB) approaches are starting to be considered more commonly as an option
for Phase II clinical trials. Although MAB designs outperform other well-established methods of randomisation in terms of
the expected number of responses (e.g. the fixed randomisation), they can suffer from a low statistical power for testing
comparative hypotheses as described above. Thereby, some modifications have been proposed to achieve a better balance
of the two objectives, see, e.g. Berry (1978), Villar et al. (2015a,b), Villar and Rosenberger (2018) and Williamson et al.
(2017).

As an alternative to these MAB approaches, a response-adaptive design based on a novel information-theoretical
criterion for the arm selection in sequential experiments was proposed (Mozgunov and Jaki, 2020). The criterion is
constructed using the so-called context-dependent measure of information accounting for both the uncertainty about
the parameter of interest (e.g. probability of response) and the nature of outcomes. Thus, the criterion can carry the
information that an investigator would like to maximise the number of patients that respond to the treatment.

Specifically, Mozgunov and Jaki (2019, 2020) proposed to use the information-theoretical criterion based on the
weighted Shannon differential entropy (WDE)

1
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where ¢ : R — R is a positive weight function that answers the question “Which outcomes are more desirable?”. Then,
the leading term of the information gain asymptotic expansions

8s = h*(f) — h(f) (3)

was proposed as the selection criterion to be used for the sequential allocation of patients. It was shown that the response-
adaptive methods that use derived information-theoretic criterion to govern the treatment selection allow to achieve
various balances “exploration vs. exploitation” trade-off via tuning of the weight function. It was found that the resulting
designs for tuned values of the parameters can have better operating characteristics in comparison to other competitive
approaches.

In this work, we extend the response-adaptive procedures based on a information-theoretical criteria and investigate
whether other information measures, namely the Renyi, Tsallis and Fisher informations, can provide a better exploration
versus exploitation trade-off compared to the previously studied Shannon’s entropy in the settings of clinical trials with
a binary endpoint. Formally, the weighted Fisher Information (WFI)
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the weighted Renyi Information (WRI)
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and the weighted Tsallis Information (WTI)

1
TI(f) = q% <1 —/ ¢(p)(f(p))"dp> ,qER, (6)
- 0

are considered and response-adaptive designs are constructed based on the corresponding information gains. While the
Fisher information is widely known in statistics, the other two are often used in physics. The use of additional parameters
v and q in the Renyi and Tsallis entropies, respectively, might widen the range of possible outcomes, which can improve
the balance between gaining statistical power while preserving the number of patients getting superior treatment.

While Mozgunov and Jaki (2020) propose both asymptotic and exact maximum gain criteria, their analysis was
primarily focused on the asymptotic one. In this paper, both the asymptotic and exact expressions for the information gain
will be considered and and compared to each other for each entropy measure. Although the leading term of an asymptotic
expression results in a simple and straightforward criterion, it is a “truncated” version of the information gain. Hence, it is
investigated whether the use of asymptotic criteria instead of the exact one leads to any noticeable changes the designs’
properties.

Furthermore, the designs based on information-theoretical criteria are compared to several alternative approaches,
namely the fixed equal randomisation (FR), optimal constrained randomised dynamic programming (CRDP) (Williamson
et al., 2017) and optimal dynamic programming (DP), in a comprehensive simulation study in the setting of a small
population Phase II clinical trial. It will be shown that tuning of the built-in parameters allows to find the designs
comparable to FR performance in terms of power, but a greater number of patients assigned to the superior treatment,
and the designs with comparable or superior to CRDP performance in terms of both of these characteristics.

The rest of the work proceeds as follows. The derivation of the novel criterion, together with the proposed selection
criteria, is given in Section 2. The comparison of the asymptotic and exact criteria using different measures of information
in a comprehensive study is presented in Section 3. The comparison to the recently proposed designs is given in Section 4.
Section 5 concludes with the discussion.

2. Methods
2.1. Derivation of context-dependent information measures

Consider a random variable (r.v.) P which corresponds to the probability of response for an arm. P is assumed to have
a prior Beta distribution, P ~ B(v+ 1,8 —v + 1), v > —1, 8 — v > —1. Suppose that an arm was assigned to n patients
and x responses were observed. Then, the posterior PDF of P takes the following form

n+13>px+U(l _p)n—x+/3—u. (7)
X+v
Let us assume % — o, implying that the posterior density f™(p|x) of r.v. P concentrates in a neighbourhood of a certain
point « as the sample size n grows.

The goal of the experimental design is twofold: (i) to maximise the number of responses in the experimental sample
and (ii) to collect enough information on both treatment arms to make a statistically significant conclusion regarding the
relative efficacy for the treatment arms. In such experiment, the quantitative measure of an information gain is provided
by a weighted information measure (Mozgunov and Jaki, 2019). Let y be the target response probability defined by a
clinician. To emphasise the desirable values of the response probability (a neighbourhood of the target y), the weight
function in a Beta form can be used

fPplx) = (n+ B+ 1)(

¢"(p) = Ay, x,n, v, B,i)p"" (1= p) 7" 8)
where « is the sensitivity parameter and A is a constant satisfying the normalisation condition
[ otrap = 1. (9)
R

The weight function emphasises an interest in a certain area of outcomes, e.g. in this article that is a neighbourhood of
a target efficacy probability y. In other words, a greater “weight” is assigned to the information obtained about the arm
with characteristics close to the desired target. To preserve the asymptotically unbiased estimation of the probability, the
weight function is restricted to satisfy
1
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for the weight function (8). So, the condition of the unbiased estimation holds for 0 < k¥ < 1.
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Following the general theory (MacKay, 2003), the information gain of the experiment is measured by the difference
between the differential entropy and the weighted differential entropy. The difference between the entropies can
also be considered as an average amount of the additional statistical information required when considering the
context-dependent estimation problem instead of the “standard” one.

Following the conventional information gain approach, one would like to make a decision which maximises the
statistical information in the experiment. It was already shown in Mozgunov and Jaki (2019, 2020) that the leading term
in the asymptotic difference between the entropies (as the size of experimental sample n — o0) can be used to govern
the decision-making process during the experiment. Precisely, Mozgunov and Jaki (2020) obtained that the leading term
of the difference between the weighted and standard Shannon differential entropy for a r.v. with density (7) and the
weight function (8) takes the form

(@ —y)?

20(1 — )
Below, we elaborate the same idea using other weighted generalisation of the well-established information measures,
namely the Renyi, Tsallis and Fisher informations.

The following theorem provides an insight on why the difference of the standard and weighted information measures
is a reliable criterion to govern the selection in the considered type of experiments.

(n+/3+2)2'(_1.

Theorem 1. Let ¢(" be the weight function given in (8), 0 < k < 1, and limy_,oc ¥ = a. Consider a r.v. Z\™ with PDF (7).
Then the following limits hold for the difference in the weighted and standard differential entropies of r.v. Z,E") for:

(i) the Renyi entropy
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(ii) the Tsallis entropy
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(iii) the Fisher information
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Proof. The proof is given in Supplementary Materials.

Theorem 1 implies that for any entropy measure the asymptotic information gain is always non-positive and achieves
the maximum value 0 at point « = y. Thus, when maximising the information gain, one tends to collect more information
about the arm corresponding to the response probability « closest to the target y. Therefore, we propose to use them to
govern the selection in the considered type of trials.

2.2. Criteria for the arm selection

Below, two types of designs which are based on the maximum information gain principle are proposed: (i) one is
based on the criteria constructed using only the leading term of the asymptotic expansion, which, following the reasoning
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proposed by Mozgunov and Jaki (2020), can be easily interpreted and communicated to the clinical team, (ii) another uses
the exact expression of the difference between the information measures.

For the first type of designs, using the leading term of the asymptotic expansion for difference between the weighted
and standard Shannon (13) and Fisher (14) informations results in the following “asymptotic” criteria for the treatment
selection

2
5y o n. p) = %(n +B+2*7" kel05,1) (13)
and
2
5y e p) = %(Hﬁ +2)*, k€ (0. 1), (14)

respectively. Since (8 + 2) are the prior observations, the term (n + 8 + 2) plays the role of “total” number of actual
(n) and prior observations. Note that the leading terms for the Renyi and Tsallis entropies are not considered as they are
monotonic transformations of the leading term of the difference for the Shannon entropies (13).

The numerator of the first term in both criteria given number of responses is a squared distance between the unknown
probability o and the target probability y. The denominator in (13) is a variance of Bernoulli r.v., while the denominator
in (14) is a corresponding Wedderburn variance (McCullagh and Nelder, 1989). Therefore, the criteria can be considered as
normalised distances between « and y or, in other words, standardised statistics. Indeed, for known « and « = 0.75, (13)
equals the squared t-statistics for the proportion. Noteworthy, the quantity which is well-established in statistics appeared
independently using the information-theoretical argument. The second term depending on the number of patients n and
the parameter «, reflects the penalty on the number of patients assigned to the arm. To estimate the criteria above, the

mean of posterior Beta distribution & = ’;:ZS is “plugged-in” for «.

Since the asymptotic criteria 85 and 8 represent the amount of information obtained on each of the arms, to maximise
the amount of information from the experiment, the arm with smaller value of § should be chosen. The first term in these
measures, namely, the normalised squared difference of the target and the estimated probability of response, explicitly
represents the interest in “exploitation”. The closer the estimated response probability is to the target one, the smaller
the criterion will be and the design would tend to choose the corresponding arm. The second term, which shows positive
dependence on the number of observations n and the build-in parameter « (that is specified prior to the trial) represents
the interest in “exploration”. In particular, for the AS the range of values of ¥ € [0.5, 1) shows all possible functional
dependences on (n) between nth root to linear relationship, while for the AF the range of values of ¥ € [0, 1) shows
all possible functional dependences on (n) between nth root to quadratic relationship. Hence, the higher the parameter
k the greater the investigator’s interest in the exploration and, consequently, the greater the penalty for each of new
observation on the same arm. The guidance on the selection of the parameter « is given in Section 3.

For the second type of designs, the differences in the weighted and standard Renyi (15), Tsallis (16), Fisher (17) and
Shannon (18) differential entropies are used in order to build up the following “exact” criteria for the decision rules

8y n,x, B.v) = H*(F") — H,(f™), (15)
8y n,x, B.v) = T (M) — T,(FM), (16)
89y n,x, B.v) = 1% (f) — I(FM), (17)
88y n,x, B, v) = W (FM) — h(f™M), (18)
respectively.
2.3. Design

As each of the information-theoretical criterion already carries an information on the uncertainty regarding the
treatment arms, the following “best intention treatment” type of designs is proposed based on the derived information
gain measures.

Consider k alternative treatment arms {Aq, ..., Ax}. Denote by «j, vj, B, nj and &; parameters for the arm A;. For
asymptotic designs the experiment starts with the arm that minimises either the criterion (13) or the criterion (14) based

. . . . - <(k) ~ . A vj+1

on the prior distribution: 1nfjs(1,_._,k}{8i” (v,;,0,8)} i€ (S, F},a = ﬁ
Once the outcomes for the previousln =ny +-- -+ n, patients are observed, the total number of responses is updated,
and the plug-in estimator &; = % and the information gains 61(")()/, &j, nj, Bj) are recomputed. The next patient is

assigned to the treatment arm corresponding to the minimum values of the criterion infje{lwk}{Sl@’()(y, aj, nj, B}

This procedure repeats until the total number of observations N = ny + - - - + ny is attained. For the final treatment
recommendation, in order to eliminate the weight function influence, the parameter « is set on the level that minimises
the leading term in the asymptotic. Namely, « is set to x; = % for the Shannon criterion and «; = 0 for the Fisher

5



K. Kasianova, M. Kelbert and P. Mozgunov Computational Statistics and Data Analysis 158 (2021) 107187

where plug-in estimator &; is computed with x; and n;, the total number of positive responses and observations for the
arm A;, respectively.

The algorithm for the exact criteria mimics the one described above. The experiment starts with the arm that
minimises one of the quantities (15)-(18), depending on the information measure used, based on prior distribution:
infie {8y, 0,0, B, ) i € R, T,S, F).

Once the outcomes for the previous n = n;+- - -+ny patients are observed and the information gain 65”()/, 1, Xj, B, vj)
is recomputed with an updated number of responses, the target arm for the next patient is being chosen by the rule:
of the experiment as for the asymptotic criteria, the target arm is defined with x; which minimises leading term of the
asymptotic: k; = % for the Renyi, Tsallis and Shannon criteria and «; ~ 0 for the Fisher criterion.

The proposed algorithms are myopic in a sense that on each step given the collected information at each step the
decision is made only with regard to the one next subject (Hu and Rosenberger, 2006).

3. Comparison of designs based on different context-dependent measures

Below, we consider how different information measures influence the operating characteristics of the design. First,
the setting of the proposed simulation study is defined. Further, the calibration of design parameters for each criterion is
described. Then it is studied whether the use of asymptotic or exact criteria results in differences in the designs’ properties
and the balance between the trial objectives. Afterwards, a comparison of the designs with different penalty parameters
and different information measures is performed.

3.1. Setting

To study the characteristics of the design, we consider the clinical setting in a rare disease trial with two treatments
arms and binary efficacy responses which was originally proposed in Williamson et al. (2017).

Following the original notations, probabilities of response for arm A and arm B are denoted by 6, and 6, respectively.
The total sample size is fixed to be N = 75. The target response probability is set to be y = 0.999 indicating the interest
in outcomes with high efficacy and that was found to result in good operating characteristics (Mozgunov and Jaki, 2020).

Two main objectives of the experiment are to maximise the number of responses in the experimental sample and to
make a statistically significant conclusion regarding the relative efficacy for the treatment arms. For the second goal, a
comparative hypothesis Hy : 6, = 6, is tested at the end of the experiment against the two-sided alternative. In order to
test Hy, Fisher’s exact test (Upton, 1992) is used. The probability 8, = 0.5 was fixed and 6, obtained each value from the
set ®, = {0.1,0.2,...,0.9}. A combination (6,; 6,) will be referred to as a scenario. Furthermore, in a phase II settings, a
question of correct arm selection could be also of a major interest to investigators. These trials’ objectives are translated
into the following operating characteristics to be studied:

1. Type I error rate. The proportion of times Hy is incorrectly rejected under scenario 6, = 6, = 0.5. The type I error
rate is required to be controlled under 10%.

2. Power. The proportion of times Hy is correctly rejected under scenarios 6, # 6p.

3. Proportion of correctly allocated patients (PCA). The proportion of patients on a superior treatment.

4. Probability of correct selections (PCS). The proportion of times when the truly superior arm was correctly
recommended by the design.

These are the characteristics in terms of which the designs will be evaluated.
3.2. Calibration

In this section, we provide details on the calibration of the parameters of prior distribution and additional parameters
q for the Tsallis and v for the Renyi criteria in an extensive simulations study. Computer simulations for each scenario
involved 10,000 trial replications. The main goal of the calibration procedure is to find the values of the parameters of
prior distribution such that the type I error under the scenario of equally good treatments is controlled at 10% level for all
values of ¥ € {0.1,0.11, ..., 0.9}. After that, among the designs with the calibrated parameters, we search for the values
q and v which allows for an advantage in terms of power or PCA. The main purpose of this part of calibration is to find
the design parameters controlling the type I error for all values of the parameter « that will be later used to balance the
“learn versus earn” trade-off.

To describe the prior distribution, we introduce the quantities E > 0 and n € (0, 1) called the strength of prior
and prior probability, respectively. Interpreting these parameters, the prior distribution has a strength of prior (effective
sample size of) E with prior probability n implying that it takes the form: B(E x n, E — E x n). To satisfy the principle
of clinical equipoise (Djulbegovic, 2009) the same prior probability n = 0.99 and strength of prior E were set for each
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Table 1
Calibrated values of E and § for each entropy criteria, namely the Shannon (S), Fisher (F),
Tsallis (T), Renyi (R).

AS AF S F T R
E 7 6 9 4 9 8
8 0.09 0.085 0.085 0.09 0.09 0.09

A - asymptotic criteria, no letter — exact criteria.

arm. Note that for any E such choice reflects no prior knowledge about which arm is superior, and each treatment is
considered as highly efficacious (with the response probability of 0.99) until data suggests otherwise.

The following effect of E on the operating characteristics can be observed: higher values of E correspond to a better
performance in terms of power, but a worse performance in terms of PCA. For larger values of E, in order to stop mistakenly
considering one arm as highly efficacious, more information supporting the evidence that the arm is inferior is required,
thus, more observations will be made on a less efficacious treatment. Therefore, one would prefer to keep E small. At the
same time, it was found that for small values of E < 10, the type I error was not controlled for all values of the penalty
parameter k. To ensure the control of type I error at the desirable level, the adjusted Fisher test with different cut-off
points § was adopted. This cut-off point for the p-value was included as part of the calibration procedure.

The calibration of E was performed separately for each information measure. For all values of the cut-off parameter
8 € {0.08,0.085,...,0.1}, the smallest value of E € {1, 2, ..., 10} is chosen such that the type I error is controlled for
all values of ¥ € {0.01,0.02, ..., 0.99} on 10% level. After that among the pairs with minimal value of E, the one with
the highest § would be chosen. For all considered information gains, the pairs of the calibrated parameters are given in
Table 1.

Afterwards, for the Tsallis and Renyi criteria, additional parameters q and v were calibrated in a way that each of the
designs yield an advantage in terms of power or PCA, other things being equal. During this step the following values of
the parameters were chosen: g = 0.35 for the Tsallis entropy and v = 0.75 for the Renyi entropy. The illustration of the
effect of E and § on type I error rate, finer details on the calibration procedure of all the parameters and the results for
the Tsallis and Renyi criteria are given in Supplementary Materials.

In further evaluations, we focus on the designs based on Shannon, Fisher, and Tsallis criteria with the calibrated values
of prior parameter E, cut-off parameter § and additional parameter g. The designs based on the Renyi criterion will not
be considered further as no qualitative differences were found between the designs based on Tsallis and Renyi entropy
criteria with calibrated values of g and v.

3.3. The effect of the penalty parameter x on operating characteristics

Now, when the rest of the parameters are chosen such that the type I error is controlled for all values of «, we
investigate how the choice of penalty parameter « (the core component of the proposed information measures allowing
to tackle the Power-PCA trade-off) influences the operating characteristics. For convenience, the following notation will
be used: as before, AF, F, AS, S, T, R refer to the corresponding entropy criteria, and 0.1, 0.2, ..., 0.9 - to the value of «,
e.g. AF0.3 refers to the design based on asymptotic Fisher criterion with x = 0.3.

Fig. 1 illustrates power and PCA under various scenarios for the following values of the penalisation parameter: for
the S and AS « € {0.5, 0.9}, for the F and AF « € {0.1, 0.9} and for the T « € {0.5, 0.9}. Choosing these values of « allows
for an exploration of the designs corresponding to different balances between power and PCA.

It is found that, in general, greater values of x correspond to a higher power. It follows that greater values of x require
an increased level of confidence that the selected arm is superior, which result in more frequent switching between arms
and hence a more even allocation of patients. Conversely, smaller values of x result in less frequent switching between
arms and hence lead to a higher PCA as the designs tend to hone in on the more superior arm. Therefore, when interpreting
the parameter «, it should be noted that under the proposed design, a particular level of exploration is achieved via tuning
of « that is fixed prior to the trial. In fact, this tuning procedure can serve as a communication of the effect of ¥ on the
properties of designs and should be used to inform the value of « to be used in an actual trial.

The effect of x on power and PCA is more prominent for scenarios that are further away from the one with equal
probability of response 6, = 6, = 0.5, e.g. between AF0.1 and AF0.9 in terms of PCA the highest difference of 8.8% is seen
for scenarios with 6, = 0.9, while for 6, = 0.4 the difference of 2.7% is the lowest.

In addition, some designs are “symmetrical” with respect to the scenario 6, = 6, = 0.5 in a way that under scenarios
with 6, € {0.1,...,0.4} and 6, € {0.9, ..., 0.6} the operating characteristics are nearly the same, e.g. for AF0.9 in terms
of power mean difference between the scenarios equally distanced from 8, = 6, = 0.5 is of 1.2%. Conversely, the AS0.5
design is highly “asymmetrical” in terms of power with the highest difference of 55.7% between scenarios with 6, = 0.1
and 6, = 0.9. The difference in terms of PCA for that design is also slightly growing the further the scenarios are from
being equal, with the highest difference of 8.1% between scenarios 6, = 0.1 and 6, = 0.9.

This effect is due to the form of the chosen weight function (8), and specifically, the parameter x. Under scenarios
with 6, > 0.6, the true response probability of arm A becomes closer to y and under lower value of «x, most patients are
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Fig. 1. Power and PCA for the Shannon, Fisher and Tsallis criteria with different values of x: k = 0.1 (red line), x = 0.5 (green line), x = 0.9 (blue
line); the asymptotic criteria AS, AF, and T are denoted by solid lines, and the exact criteria S and F by the dashed line. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

assigned to the superior treatment arm A. For instance, in the AS0.5 design with the scenario 6, = 0.9 with the probability
of 83.7% 5 or less patients were assigned to treatment arm B (see Supplementary Materials for further details). Therefore,
there might not be enough information to obtain statistically significant results. Note, that S0.5 and T0.5 were found to
be highly asymmetrical in terms of power for the same reason.

3.4. Comparison of asymptotic and exact criteria

Further, we investigate whether the designs based on the criteria constructed using the leading term of asymptotic
expression only differ from the exact entropy criteria in terms of the operating characteristics of interest. Consider the
designs with ¥ € {0.5, 0.9} for the AS and S criteria and with ¥ € {0.1, 0.9} for the AF and F criteria. The operating
characteristics for these designs are given in Fig. 1, Panel (i) and Panel (ii), respectively.
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For the Shannon criterion, in terms of PCA, the use of asymptotic criteria leads to an increase around 6.2%-10.8% among
non-null scenarios ®, for k = 0.5, and around 1.6%-6.4% for x = 0.9, in comparison to the exact criteria based designs
with the same value of «x, whereas for the Fisher criterion the increase is around 5.9%-15.9% for k = 0.1, and around
1.6%-6.4% for k = 0.9.

In terms of power, for the Shannon criteria the use of asymptotic criteria leads to a loss around 2.1%-24.2% in
comparison to the exact criteria for k = 0.5. However, for k = 0.9 the asymptotic criteria allows for a minor increase in
terms of power with its maximum value of 5.1% for 6, = 0.4 and 1.6% on average. For the Fisher criteria with « = 0.1,
the use of asymptotic criteria leads to an average loss of around 4.1%-16.2%, whereas for x = 0.9 the exact criteria still
outperforms asymptotic, though the difference is smaller, around 0.1%-2.4%. Considering the analysis for all values of «,
for k > 0.3 the exact criteria still outperforms asymptotic on average, though the difference of <1% is negligible.

This result implies that choosing the asymptotic criteria over the exact one has the similar effect on PCA as lowering
the penalty parameter « as for the asymptotic criteria information gains are smaller than for the exact criteria since only
the leading term is used, while by definition information gains depend positively on «. Overall, under the most scenarios,
the choice of asymptotic criteria results in noticeable increases in the PCA while resulting in marginal losses in power.
If a balance provided by the exact criterion is thought to be more favourable, it could be achieved via increasing « for
asymptotic criterion. Finally, being mindful of the communication of the measures, the asymptotic criteria have a more
intuitive interpretation. Following the rule “the simpler, the better”, for both entropy measures asymptotic criteria are
preferred to the exact criteria.

3.5. Tuning of the penalty parameter k

After the investigation of the effect of the penalty parameter « on operating characteristics within each of the entropy
criteria separately, the number of designs to consider is narrowed down to the AS and T with « € {0.5, ..., 0.9}, and AF
with k¥ € {0.1, ..., 0.9}. Although the direction of effect of « for these designs is the same, the size of this effect varies
depending on which entropy criterion the design is based on. Previously, we focused on a pairwise comparison of the
designs with several values of « in terms of their average performance. Below, we provide the guidance on how to select
among the designs with various values of « such that the desirable trade-off between power and PCA is achieved.

The concept of finding a balance between power and PCA can be subjective and depends on the investigator's
preference on the power and PCA. Besides, the “balance” itself can be considered unethical, i.e. patients are sacrificed
to gain power. Thus, any formal criterion used to select the design with the “best” power-PCA balance should be viewed
purely as a metric which allows for a consistent comparison among the competing approaches with respect to operating
characteristics of interest.

At the first stage of our evaluations, we consider the measures of average performance across non-null scenarios ©,. As
in actual trials the true probabilities of response 6, and 6, are unknown, the averaging across scenarios implies that each
of these scenarios is deemed equally likely a priori. Therefore, one would be looking for the design that under this prior
belief provides a good balance in the operating characteristics. To compare different approaches among each other their
average performances should be standardised. To achieve this we consider an average performance in terms of power and
PCA relative to the conventional fixed randomisation (FR) design, which randomises patients to treatment arms A or B
with the equal fixed probability. In terms of both operating characteristics the FR provides two extremes: high statistical
power, but a low PCA, fixed at 0.5, Vi € ®,. Formally, consider average percentage performance of a design X over the
set of scenarios @, in terms of power relative to the FR

_ 100 Uxi— 1V
X — / Z X, i — WER,i ’ (19)
|@ ico), FR,i

and similarly defined average percentage performance in terms of PCA

— 100 Z¢Xz Orr.i

= — (20)
X ey Drr.i

€Oy

where ¥y i, ¢x,; are power and PCA for design X in a scenario i, respectively. An average performance of any design X
in comparison to the FR in terms of power v is expected to be negative and will be further referred as “an average
percentage loss in power”. Conversely, an average performance in terms of PCA ¢y for any design will be positive relative
to FR, therefore, will be referred as “an average percentage gain in PCA”. It is important to note that such aggregation
metrics might hide some unexpected behaviour under individual scenarios, for example, the asymmetrical performance
of ASO5 discussed in Section 3.3. Therefore, these metrics should not be the single measure to base the conclusion on.
Instead, it is used to provide guidance on the parameter « selection. To uncover such potential behaviour under some
scenarios, once the parameters are chosen, we will consider individual scenarios when comparing the proposed designs
to alternative approaches.

Fig. 2 shows an average performance of all competing approaches relative to the FR design, as defined in (19) and
(20), with each dot representing one design from the set of competing approaches. For each design X the dots to its right
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Fig. 2. An average percentage power loss v; vs an average percentage PCA gain ¢; for design X in comparison to the FR approach for the AS (red
dots), AF (green dots). The size of dots corresponds to the value of «: smallest dot, x = 0.1; largest dot, x = 0.9. Dotted line connects the designs
that cannot be improved in terms of one characteristic while not worsening in another. The designs favouring the power are represented by the
dots which lie above a horizontal dashed line; the designs favouring the PCA — to the right of a vertical dashed line. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

correspond to the designs which outperform X in terms of PCA, while the dots above correspond to the designs which
outperform X in terms of power.

For all entropy criteria, the same effect as found before can be observed — lowering of « leads to an increase of an
average percentage gain in terms of PCA. In terms of power lowering of « results either in an increase of an average loss
of power in comparison to FR (for AS with all values of «, for the AF with « < 0.5, for T with 0.2 < « < 0.9), or no
noticeable difference, as for AF with ¥ > 0.5.

However, in terms of average percentage performance relative to the FR the difference between the designs is
observable with the dots representing AF0.4 and AF0.3 lying higher than the AF with « > 0.5. This is caused by the
fact that, in terms of power, the FR outperforms the AF with « ¢ {0.3, 0.4} for all scenarios 8,, whereas for 6, close to
0.5 the FR is outperformed by both AF0.4 and AF0.3 (e.g. in case of AF0.3, as can be observed in Fig. 4, by 1.6% and 2.0%
for 6, € {0.4, 0.6}, respectively). This advantage in terms of power for scenarios with 6, close to 0.5 is also seen for T0.8,
T0.7, which explains why these dots lie higher than the dot corresponding to T0.9 in Fig. 2.

The designs which cannot be improved in terms of one characteristic while not worsening in another, correspond to the
dots, for which no dots lie on the top right. These designs, namely the AS with all values of ¥ and the AF with ¥ < 0.5, are
represented in Fig. 2 by the dots connected with a dotted line. Note, that this list does not include the designs based on the
Tsallis criterion, as well as the Renyi criterion (see Supplementary Materials). These designs provide a better power-PCA
balance in comparison to the rest of the comparators. However, each of them represents different balances in a way that
AF0.1 corresponds to the design with a balance shifted towards power, while AS0.5 corresponds to the design with a
balance shifted towards PCA. We will treat the designs with mean percentage power loss <20% as favouring the power
and the designs with mean percentage PCA gain >50% as favouring the PCA. The values for these boundaries are calculated
as a rounded mean between the best and the worst performance in terms of each of the operating characteristics among
the designs with better power-PCA balances. Based on the defined intervals the entropy based designs that cannot be
improved upon are divided into three groups:

e AF0.4, AF0.3 and AS0.8 with a balance “shifted” towards power;
e AS0.7 and AF0.1 with an “intermediary” balance;
e AS0.5 and AS0.6 with a balance “shifted” towards PCA.

To choose one design within each group we use a linear trade-off function between an average percentage power loss
and average percentage PCA gain
VUx — Wy
¢x — vy
for neighbouring designs X and Y. Byy shows how many percents of power are given in return for a 1% gain in terms of
PCA on average, B;Yl shows how many percents of PCA are given in return for a 1% gain in terms of power on average.

Between the approaches representing the balance shifted towards power, choosing the AF0.3 over AF0.4 corresponds
to Bl_; = 5.9% of average gain of PCA in return for 1% loss of power, whereas choosing the AS0.8 over AF0.3 corresponds

to B; ; = 0.88% < 1% of average gain of PCA in return for 1% loss of power. Therefore, if power is favoured over PCA,
AF0.3 should be chosen as a design with desired characteristics.

Byy = (21)
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Further, consider the approaches representing the balance shifted towards PCA. Choosing AS0.5 over AS0.6 results in
B; g = 2.7% of average gain of power in return for 1% loss of PCA. However, the analysis of the effect of x on scenario-
by-scenario basis has shown that the significant drawback in power of AS0.5 in comparison to the FR is caused mostly
by scenarios with 6, > 0.7 (see Fig. 1); therefore, if we are favouring PCA over power AS0.5 should be chosen between
these two.

Finally, between the approaches representing the intermediary balance, choosing the AF0.1 over AS0.7 results in
B;é = 3.5% of average gain of PCA in return for 1% loss of power. Note, that the AF0.1 is also preferred over ASO.6,

which represents a design balanced towards PCA, since it results in Bs 7 = 11.6% of average gain of power in return for
1% loss of PCA.

In the next section, the proposed designs with the parameter values that were found to induce the superior power-PCA
balance, namely AF0.1, AF0.3 and ASO0.5, will be compared to two alternative approaches.

4. Comparison to alternative approaches

Below, we investigate whether the proposed design based on the information gain criteria with the weighted
information measures can offer further advantages compared to these response-adaptive designs in a comprehensive
simulation study with the same trial setting as above.

4.1. Alternative approaches

We will consider the fixed equal randomisation design and optimal dynamic programming (DP) approach as two
design options that allow to achieve the highest power and PCA, respectively. We also include the extension of the DP,
optimal constrained randomised dynamic programming (CRDP) (Williamson et al., 2017) for a number of design parameter
choices. The CRDP is selected as a flexible approach that can achieve various power-PCA balances, similarly to the proposed
approach.

The CRDP design based on dynamic programming principles allows to take into account all possible future outcomes in
the selection decisions. In the setting of the CRDP design, the prior information about the unknown parameters is used in
conjunction with observed responses and the number of patients still to be enrolled in the trial to determine the optimal
treatment allocation for every patient.

The CRPD design has built-in parameters, the randomisation parameter p and constraint parameter /, which provides
some variability in choosing different types of power-PCA balances. Constraint parameter [ ensures that each treatment
arm always obtains at least [ observations. Hence, [ = 0.5n corresponds to the fixed equal randomisation. Randomisation
parameter 0.5 < p < 1 assigns a probability to the allocation rule at each stage, so that each of the treatments
has a probability of at least 1 — p of being allocated to each patient. In particular, p = 0.5 correspond to the fixed
equal randomisation, and p = 1 corresponds to the dynamic programming approach (DP), and the values between
result in balances of these two extremes. The choice for randomisation parameter, according to recommendations given
in Williamson et al. (2017), is p = 0.9. Similarly, values 0.10n < | < 0.15n were argued to yield robust design
characteristics.

To specify the values of the CRDP parameters for the comparison to the proposed entropy-based designs, we have
evaluated CRDP using values of p € {0.6,0.7,...,1} and | € {0.05n,0.1n, ..., 0.5n}. The operating characteristics of
the CRDP designs were computed in a simulation study with 10,000 trial replications. Based on additional simulations
(provided in Supplementary Materials), we have focused on the CRDP design with p = 0.9 in line with the original
recommendation, since for all values of | it consistently gave an advantage in terms of PCA in return for an equally good
performance in terms of power between the designs. For convenience, the following notation will be used: CRDP will
refer to the comparator design name and 0.05, 0.1, ..., 0.5 to the value of I/n, e.g. CRDPO.1 refers to the CRDP design
with p =0.9 and [ = 0.1n.

4.2. Numerical results

Fig. 3 presents the average performance of the CRDP and DP approaches relative to the FR, alongside with the three
designs with tuned x parameter representing different balances between power and PCA, namely the AF0.1, AF0.3 and
AS0.5. Values ; and ¢; for the alternatives are also calculated via (19) and (20), respectively.

For the CRDP designs with I/n > 0.25 a balance is shifted towards power, since, relative to the FR, an average
percentage loss of power is below 20%, and an average percentage gain in PCA is below 50%. On the contrary, for the
CRPD with I/n < 0.2, a balance is shifted towards the PCA.

The CRDPO0.35 has the closest to AF0.3 performance in terms of power with around 1% loss in power on average, but
noticeably lower average PCA with a difference of 11.9%. The CRDPO0.1 performs similarly to AS0.5, while corresponding to
a 5.4% gain in PCA and loss of 20.1% in power compared to AF0.1. The AS0.5 in comparison to the DP provides an average
percentage increase in terms of power of 39.3% in exchange for an average percentage PCA loss of 3.5%.

The scenario-by-scenario comparison of these designs in terms of Power and PCA is given in Fig. 4 (Panels (a) and (b)).
As a researcher might be also interested in the objective of making a correct arm selection by the end of the trial, we will
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Fig. 3. An average percentage power loss ¥; vs an average percentage PCA gain ¢; for winning entropy-based designs X and dynamic programming
designs (CRDP and DP, purple dots) in comparison to the FR approach. The size of dots corresponds to the value of «: smallest dot, x = 0.1; largest
dot, k = 0.9. Dotted line connects the designs that cannot be improved in terms of one characteristic while not worsening in another. The designs
favouring the power are represented by the dots which lie above a horizontal dashed line; the designs favouring the PCA — to the right of a vertical
dashed line.

also consider the probability of correct selections (PCS) in our evaluation given in Fig. 4 (Panel (c)). The left-hand side
subplots represent the AF0.3 alongside with the CRDP0.3, since they both provide a power-PCA balance shifted towards
power, and the FR. The right-hand side subplots representing AF0.1 and AS0.5 alongside with the CRDP0.1 and DP, since
these are constructed to achieve higher PCA, and AF0.1 provides an intermediary power-PCA balance. Important to note,
that all the following comparisons were made for the calibrated values of the parameters.

Considering the designs with a balance shifted towards power, AF0.3 correspond to 6% higher PCA, on average,
compared to CRDP0.35 under scenarios 6, ¢ {0.4, 0.6}, while performing similarly under 6, € {0.4, 0.6} and resulting
in nearly the same average power across all scenarios (with differences not exceeding 0.1% in individual scenarios).
Comparing FR and AF0.3, the FR design corresponds to 2.7% higher power, on average, with the maximum difference
across scenarios not exceeding 7.5% and AF0.3 outperforming the FR by 1.6% and 2% under scenarios 8, € {0.4, 0.6}. In
terms of PCA, the average difference between FR and AF0.3 is of 21.4%. All of the designs favouring power result in nearly
the same PCS.

Considering the design with an intermediary balance, AF0.1 outperforms CRDPO0.1 in terms of power for all scenarios
with an average difference of 12.5%. In terms of PCA, for the scenarios with 6, < 0.5 it is outperformed by CRDP0.1 with
an average of 4.7%, performs similarly under 6, € {0.6, 0.7, 0.8} with differences not exceeding 0.9% and corresponds
to a gain of 2.8% for 6, = 0.9. The AF0.1 outperforms CRDPO.1 in terms of PCS for all of the scenarios with an average
difference of 3.8%.

Considering the designs shifted towards PCA, for scenarios with 6, < 0.7 AS0.5 outperforms CRDPO.1 in terms of
power with an average difference of 7.9%, while for scenarios with 6, > 0.7 AS0.5 is outperformed by the CRDP0.1 with
a maximum difference reaching 51.4%. In terms of PCA, for all of the scenarios with 6, < 0.5, AS0.5 is outperformed by
both CRDP0.1 and DP, with the average difference of 2.2% and 4.6%, respectively. For all of the scenarios with 6, > 0.5,
the difference between the DP and AS0.5 is no more than 0.5%. In terms of PCS, AS0.5 is outperformed by both the DP
and CRDPO.1 for the scenarios with 6, < 0.4, and vice versa for 6, > 0.4, with the difference not exceeding 4.2%.

Overall, the proposed information-theoretic approach allows to tackle the problem of finding a desired trade-off
explicitly with the parameter «. If the researcher favours power over PCA, AF0.3 provides good operating characteristics
among the comparators. If the researcher favours PCA over power, bearing in mind the problems with power for scenarios
with 6, > 0.7, the AS0.5 design might be considered among the alternatives. However, if the advantage in power is more
prominent than the drawback in PCA, then AF0.1 should be selected, since this design allows to increase the statistical
power while providing substantial benefits in terms of the patients receiving the superior treatment.

5. Discussion

In this article, the recently proposed response-adaptive designs for Phase II clinical trials based on the context-
dependent information measure (Mozgunov and Jaki, 2020) are extended to various information measures, namely the
Renyi, Tsallis and Fisher informations. The new designs use the maximum information gain principle, which is measured
via the difference between the weighted and standard Renyi, Tsallis, Shannon, and Fisher informations.

The asymptotic behaviour of the information gain is investigated for each information measure in order to construct
an easily interpretable criteria for the arm selection. As a result, the asymptotic Fisher criterion was derived in addition
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Fig. 4. Comparison of the novel designs, namely AF0.1 (green line), AF0.3 (green line) and AS0.5 (red line), to the alternative approaches, namely
CRDP0.35 (orange line), CRDPO0.1 (light blue line), the DP (blue line), the FR (grey dotted line), in terms of power, PCA and PCS. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

to the asymptotic Shannon criterion proposed in Mozgunov and Jaki (2020). It was shown that using exact criteria brings
no sufficient gain in terms of the power or PCA, and has a similar effect on operating characteristics as an increase in the
penalty parameter «. As the results, we recommend the asymptotic criteria for each information measure as these could
be easier communicated compared to the exact formulae.

The designs based on the derived asymptotic information criteria were evaluated in the simulation study. Firstly, an
extensive procedure of the design parameters was performed to ensure the control of the type I error. This consists of a
large number of simulations under various designs parameters. Secondly, via tuning of the penalty parameter «, it was
found that the proposed design can attain various power-PCA balances. Again, the choice of x was driven by extensive
simulations to ensure favourable operating characteristics. At the same time, the calibration process itself could serve as
a communication of the interpretation of « and its influence on the trial design.
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For the calibrated design parameters, in comparison to the alternative designs based on the dynamic programming
approach, the proposed entropy-based approach can provide several design specifications to choose from, while improving
on at least one of the characteristic of interest. The design based on Fisher Information under selected « allows for a
statistical power similar to the FR with noticeably higher PCA under all considered scenarios. Conversely, the design based
on the Shannon criterion allows for an advantage in terms of power and PCS in comparison to the DP while resulting in
a minor drop in the PCA.

While the two-arm setting has been considered only, there is an increasing interest in multi-arm trial and the
performance studied in this work encourages further exploration of the design properties in multi-arm setting, which
is the subject to future research. Furthermore, the fundamental assumptions of the proposed design (together with other
response-adaptive alternatives) is that the patients’ outcomes are quickly observed. However, there are many setting in
which there is a delay in evaluating the efficacy of response (Rosenberger, 1999). Recently, the methodology based on
the approximated binomial likelihood approach (Lin et al., 2020; Lin and Yuan, 2020) was proposed and its application
to the proposed information-theoretical approaches is the scope of the future research.

Finally, the proposed procedure is response-adaptive rather than response-adaptive randomised. However, the designs
studied in this work serve as a cornerstone to investigate the properties of the proposed measures and to construct the
randomised procedure based on them. The response-adaptive randomised information-theoretic procedures that allow to
tackle the PCA-power balance are to be explored further.

Acknowledgements

This report is independent research supported by the National Institute for Health Research, UK (NIHR Advanced
Fellowship, Dr Pavel Mozgunov, NIHR300576). The views expressed in this publication are those of the authors and not
necessarily those of the NHS, the National Institute for Health Research or the Department of Health and Social Care
(DHCS). The work of Mark Kelbert has been funded by the Russian Academic Excellence Project “5-100".

Appendix A. Supplementary data
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2021.107187.

References

Azriel, D., Mandel, M., Rinott, Y., 2011. The treatment versus experimentation dilemma in dose finding studies. ]. Statist. Plann. Inference 141 (8),
2759-2768.

Berry, D.A., 1978. Modified two-armed bandit strategies for certain clinical trials. J. Amer. Statist. Assoc. 73 (362), 339-345.

Cover, T.M., Thomas, J.A., 2012. Elements of Information Theory. John Wiley & Sons.

Djulbegovic, B., 2009. The paradox of equipoise: the principle that drives and limits therapeutic discoveries in clinical research. Cancer Control 16
(4), 342-347.

Hu, F., Rosenberger, W.F., 2006. The Theory of Response-adaptive Randomization in Clinical Trials. John Wiley & Sons.

Kelbert, M., Mozgunov, P., 2015a. Asymptotic behaviour of the weighted renyi, tsallis and Fisher entropies in a Bayesian problem. Eur. Math. J. 6 (2),
6-17.

Kelbert, M., Mozgunov, P., 2015b. Shannon’s differential entropy asymptotic analysis in a Bayesian problem. Math. Commun. 20 (2), 219-228.

Lin, R., Coleman, R.L, Yuan, Y., 2020. Top: time-to-event Bayesian optimal phase II trial design for cancer immunotherapy. JNCI: J. Nat. Cancer Inst.
112 (1), 38-45.

Lin, R, Yuan, Y., 2020. Time-to-event model-assisted designs for dose-finding trials with delayed toxicity. Biostatistics 21 (4), 807-824.

MacKay, D.J., 2003. Information Theory, Inference, and Learning Algorithms. Cambridge University Press.

McCullagh, P., Nelder, J., 1989. Generalized Linear Model, 2nd edn. Chapman and Hall, New York.

Mozgunov, P., Jaki, T., 2019. An information-theoretic phase I-II design for molecularly targeted agents that does not require an assumption of
monotonicity. J. R. Stat. Soc. Ser. C. Appl. Stat. 68 (2), 347-367.

Mozgunov, P., Jaki, T., 2020. An information-theoretic approach for selecting arms in clinical trials. J. R. Stat. Soc. Ser. B 82, 1223-47.

Rosenberger, W.F., 1999. Randomized play-the-winner clinical trials: review and recommendations. Control. Clin. Trials 20 (4), 328-342.

Sebastiani, P., Wynn, H.P., 2000. Maximum entropy sampling and optimal Bayesian experimental design. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 (1),
145-157.

Sebastiani, P., Wynn, H.P., 2001. Experimental design to maximize information. AIP Conf. Proc. 568 (1), 192-203.

Suhov, Y., Stuhl, L, Sekeh, S.Y., Kelbert, M., 2016. Basic inequalities for weighted entropies. Aequationes Math. 90 (4), 817-848.

Upton, G.J., 1992. Fisher’s exact test. ]. R. Stat. Soc. Ser. A 155 (3), 395-402.

Villar, S.S., Bowden, ]J., Wason, J., 2015a. Multi-armed bandit models for the optimal design of clinical trials: benefits and challenges. Stat. Sci. Rev.
J. Inst. Math. Stat. 30 (2), 199.

Villar, S.S., Bowden, J., Wason, J., 2015b. Response-adaptive randomization for multi-arm clinical trials using the forward looking gittins index rule.
Biometrics 71 (4), 969-978.

Villar, S.S., Rosenberger, W.F., 2018. Covariate-adjusted response-adaptive randomization for multi-arm clinical trials using a modified forward looking
gittins index rule. Biometrics 74 (1), 49-57.

Williamson, S.F., Jacko, P., Villar, S.S., Jaki, T., 2017. A Bayesian adaptive design for clinical trials in rare diseases. Comput. Statist. Data Anal. 113,
136-153.

14


https://doi.org/10.1016/j.csda.2021.107187
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb1
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb1
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb1
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb2
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb3
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb4
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb4
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb4
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb5
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb6
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb6
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb6
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb7
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb8
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb8
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb8
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb9
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb10
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb11
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb12
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb12
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb12
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb13
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb14
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb15
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb15
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb15
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb16
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb17
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb18
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb19
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb19
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb19
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb20
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb20
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb20
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb21
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb21
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb21
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb22
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb22
http://refhub.elsevier.com/S0167-9473(21)00021-9/sb22

	Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures
	Introduction
	Methods
	Derivation of context-dependent information measures
	Criteria for the arm selection
	Design

	Comparison of designs based on different context-dependent measures 
	Setting
	Calibration
	The effect of the penalty parameter  on operating characteristics 
	Comparison of asymptotic and exact criteria
	Tuning of the penalty parameter 

	Comparison to alternative approaches
	Alternative approaches
	Numerical results

	Discussion
	Acknowledgements
	Appendix A. Supplementary data
	References


