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COHERENT IC-SHEAVES ON TYPE A, AFFINE
GRASSMANNIANS AND DUAL CANONICAL BASIS
OF AFFINE TYPE A,

MICHAEL FINKELBERG AND RYO FUJITA

ABSTRACT. The convolution ring K GLn(O)xC* (Grgr,, ) was identified with
a quantum unipotent cell of the loop group LSL2 in Cautis and Williams [J.
Amer. Math. Soc. 32 (2019), pp. 709-778]. We identify the basis formed by
the classes of irreducible equivariant perverse coherent sheaves with the dual
canonical basis of the quantum unipotent cell.

1. INTRODUCTION

1.1. The affine Grassmannian Grgy, = GL,(K)/GL,(O) (where K = C((t)), O =
C[t]) is a basic object of the geometric Langlands program. The convolution ring
KGLn(O)9C (Grgyp, ) (where C* acts by loop rotations) is a simplest example of
the quantized K-theoretic Coulomb branch of a quiver gauge theory (for A;-quiver).
The corresponding non-quantized K-theoretic Coulomb branch K&(©)(Grgr,)

is a commutative ring, whose spectrum is the trigonometric zastava space TZ;L[2 of
type A1 and degree n (alias moduli space of periodic SU(2)-monopoles of topological
charge n). This space was thoroughly studied in yet another disguise in [GSV1I],
where its coordinate ring was equipped with a cluster structure.

It is expected by physicists that all the K-theoretic Coulomb branches of gauge
theories should carry a (generalized) cluster structure (for trigonometric zastava
see [FKRI18]). Moreover, it is expected that the quantized K-theoretic Coulomb
branches should carry a quantum cluster structure. In the simplest example of
KGLn(O)9C (Grgy ) such a structure was exhibited in [CWT9]. It was identified
with a well known cluster structure on a quantum unipotent cell of the loop group
LS Ly (in the non-quantized case, general trigonometric zastava spaces are identified
with appropriate affine Richardson varieties in [FKR1S]).

Furthermore, all the cluster monomials of this cluster structure have a nice geo-
metric meaning as classes in K¢En(O*C* (Grgy, ) of certain irreducible G L, (O) x

C*-equivariant perverse coherent sheaves on the affine Grassmannian Grgyr,. The
. . GLn(O)xCX
abelian monoidal category P, (©)~ (Grgyr, ) of perverse coherent sheaves was

introduced in [BEMO5]. Its K-ring coincides with KGEn(@*C* (Grgy, ), and it
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is equipped with a distinguished basis formed by the classes of IC-sheaves: irre-
ducible equivariant perverse coherent sheaves. The problem of algebraic computa-
tion of this distinguished basis was standing ever since the appearance of [BEMO05],
and the cluster monomials description of certain IC-classes given in [CW19] was
a breakthrough in this direction. However, the IC-classes representable as cluster
monomials only form a tip of the iceberg of all the IC-classes; namely, they are
IC-extensions of certain equivariant line bundles on GL, (O)-orbits in Grgyr, (so
this is similar to the lowest KL-cell in an affine Hecke algebra).

Now the cluster monomials in a quantum unipotent cell of LSLs form a part
of the dual canonical basis of the quantum group U; (;[2) (more precisely, of a
certain localization of a subalgebra of its restricted dual) thanks to [KKKOIS|.
So it is natural to expect that this dual canonical basis corresponds to the above
distinguished basis formed by the IC-classes. This is indeed proved in the present
paper.

The dual canonical basis is characterized by two properties: (1) invariance with
respect to a certain bar-involution; (2) the fact that the transformation matrix to
the dual canonical basis from the dual PBW basis is identity modulo ¢~ (where
Zl¢*'] = Kex(pt)). The corresponding bar-involution on KGLn(@*C* (Grgy )
(fixing IC-classes) was introduced in [CW19]. The dual PBW basis corresponds
to certain convolutions of line bundles on the first minuscule orbit in Grgy,,. The
analogue of property (2) for the usual constructible IC-sheaves is very deep (it boils
down to the Riemann-Weil conjecture proved by Deligne). In the coherent setting of
equivariant sheaves on nilpotent cone PCGO;(CX (Ng) a similar property was proved by
Bezrukavnikov in [B06] by making use of his coherent-constructible correspondence
and reducing to the above result of Deligne. In this setting the role of dual PBW
basis is played by the classes of Andersen-Jantzen sheaves (pushforwards of the
dominant line bundles from the Springer resolution of the nilpotent cone).

We are able to check the property (2) by reducing it to Bezrukavnikov’s theory

for Pfoﬁdxcx (Ngi,)- Namely, we consider a closed subvariety Gl C Grgy, formed

by all the sublattices of codimension d in the standard lattice O™ C K™. Then we
have a natural smooth morphism of stacks

1 [(GLn(0) % C)\Gry] = [(GLa x C)\WN, ],

and ¥* takes coherent IC-sheaves to IC-sheaves, and the Andersen-Jantzen sheaves
to the appropriate d-fold convolutions of line bundles on Gr,ll.

The appearance of the dual canonical basis is natural from yet another point of
view. According to [FTT9], KGEn(@*C™ (Grgy, ) is the homomorphic image of a
certain integral form (i.e. a Q[¢*!]-subalgebra) of a shifted quantum affine algebra of
type A;1. This integral form is spanned by the dual Poincaré-Birkhoff-Witt-Drinfeld
basis.

Finally, we should note that the problem of algebraic characterization of the
IC-basis of KC(O)xC” (Grg) makes sense for arbitrary reductive group G, and we
have no clue how to approach it for G # GL,,.

1.2. Overall convention. A variety always means a complex algebraic variety.
Let X be a variety equipped with an action of a complex algebraic group G.
For a (closed) point € X, we denote by Stabg x the stabilizer of z in G. We
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denote by DS, (X) (resp. choh(X )) the derived category of bounded (resp. un-
bounded) G-equivariant complexes of sheaves on X whose cohomologies are coher-
ent (resp. quasi-coherent). We denote by D := R (—,wx) the Grothendieck-
Serre duality functor on DS, (X), where wy is a G-equivariant dualizing complex
on X. For a group automorphism p of G, we denote by X* the same variety X
with a new G-action obtained by twisting the original G-action by p. For an object
F € DY, (X), we denote by F” the sheaf obtained by twisting the G-equivariant

coh

structure of F by p. Then F? is an object of DS, (X*).

coh
For an abelian category A, we denote by Irr A the set of isomorphism classes

of simple objects of A. We abbreviate Irr G := lrr Rep(G), where Rep(G) is the
category of finite-dimensional algebraic representations of G over C.

2. QUANTUM UNIPOTENT CELL OF LSLs

2.1. Quantum algebras of type Agl). Let ( @00 do1 ) = ( 2 2 ) be

aip an -2 2
the generalized Cartan matrix of type Agl) and Q := Zagy ® Zay be the root lattice
(ag, a1 are the simple roots). We define a symmetric bilinear form (—, —) on Q by

(ai, ) = a; for 4,7 € {0,1}. We set Q" := Noyg + Nay C Q.
Let UT = U} (sl2) be the Q(g)-algebra generated by the two generators {eq, e}
satisfying the quantum Serre relation

ejej — (@ + a7 %)efejei + (@° + a7 )eiejef —ejef =0
for {i,j} = {0,1}. The algebra U* is the positive (or the upper triangular) part
of the quantized enveloping algebra U, (5A[2) We define the weight grading U+ =
Dseq+ U; by setting dege; := .
We equip the tensor square Ut ®q(q) UT with a Q(g)-algebra structure by

(21 @ 22) - (11 @ y2) = ¢ a1y @ oy,
where z; € U/g;,yi €Ut Let r: Ut = UT ®q(q Ut be a Q(g)-algebra homomor-
phism given by
rle) =1+ 1®e;
for i = 0,1. Let A = Pseq+ 45 = Bpeq+ HomQ(q)(UE,Q(q)) be the restricted
dual of UT with a Q(g)-algebra structure given by the dual of 7.

Following Lusztig [L93, Proposition 1.2.3], we define a nondegenerate symmetric

Q(g)-bilinear form (—, =), on UT by
(171)L = 17 (ei7ej)L = (1_q_2)_15ij7 (:I;uyz)L = (T(ff)ay@)z)h

where (z ® y,z @ w), := (x,2)r - (y,w)r. The bilinear form (—,—); induces a
Q(q)-algebra isomorphism : Ut = A defined by (¢ (z),y) = (z,y)r, where
(—,—): Ax U" — Q(q) is the natural pairing.

We define an algebra involution b of UT by

b(q) =g~ !, ble;) =ei
Let b* denote the Q-linear involution of A defined as the dual of b, i.e. for 0 €
A,x € UT, we define
(b*(0),z) := (0,b(x)),

where f(q) := f(¢g7!) for f(¢) € Q(q). Then for 6, € Ag, (i = 1,2), we have
b*(9192) = q_(ﬁl’ﬂ2)b*(92)b*(91).
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2.2. Quantum unipotent subgroup. We fix n € N throughout this paper. Let
Wy, = Sy * -~ Siy, = (S051)™ be an element of the Weyl group of type Agl) of length
2n, where s; is the simple reflection associated with the index ¢ € {0,1}. For each
1 < k < 2n, we define the positive root S by

B = iy Si_, (g, ) = kaog + (K — 1)og.

The roots 31, . .., B2, are all the positive roots a such that w; *(«) < 0. Define the
corresponding root vectors by

E(ﬁk) =T; 00 Tik—l(eik)
for 1 < k < 2n, where T; denotes Lusztig’s symmetry (= Ti’,_1 in Lusztig’s notation,
see [L93|, 37.1] for the definition). Let U, C U' be the Q(g)-subalgebra generated
by {E(Bk) | 1 < k < 2n}. The subalgebra A,, := ¢ (U}) of A is called the

quantum unipotent subgroup associated with w,. Both algebras U," and A,, inherit
the Qt-gradings from U™ and A:

Uf= @ U An= P (An)s.
BEQT BEQT
2.3. PBW and dual PBW bases. For an element 5 € QT, we set
KPn(B) = {a = (ala R a2n) € (ZZO)zn | alﬂl R a2nﬂ2n - B}

For each a = (ay,aq,...,as,) € KP,(8), we define the corresponding PBW element
as the product of ¢g-divided powers by
B(a) i= B(8)(") B(8,)(%) -+ B(Ban) >,

where z(9) = xf/(Hle[i]q), [i]lq := ‘f;:qq:ll as usual. Then the set {E(a) | a €
KP, ()} forms a Q(g)-basis of (U,5)g. It is known (cf. [LI3, Proposition 38.2.3])
that we have (E(a), E(b))r, =0 if a # b and

2n  ag
(B(a),B(a))r = [T [T -a)"
k=1j=1
For each a € KP, (), we define the dual PBW element in A4,, by
Yi(E(a))

B (), B,
By construction, the set {E*(a) | a € KP,,(8)} forms a Q(g)-basis of (A4,,)s dual
to the basis {E(a) | a € KP,(3)} of (U,})s.

The dual PBW element E*(a) can be written simply as a product of the dual

root vectors E*(By) = (1 — ¢ 2)Yr(E(Br)):
(21) E*(a) =q Zi’;l ak(akfl)/2E*(51)a1E*(ﬂz)ag . E*(Bgn)(m".

2.4. Dual canonical basis. Let B C U™ be the canonical basis of U™ constructed
in [L93, Part II]. It is characterized up to sign as the set of elements b € U™
satisfying b(b) = b and (b,b);, € 1+ ¢ 'Z[g™']. The dual canonical basis B* is
defined as the basis of A dual to the canonical basis B. By definition, each element
of B* is fixed by the bar involution b*.

Theorem 21] due to Kimura [K12|] claims that the dual canonical basis is com-
patible with the quantum unipotent subgroup A,, and characterized by using the
dual PBW basis.



COHERENT IC-SHEAVES AND DUAL CANONICAL BASIS 71

Theorem 2.1 ([K12, Theorem 4.29]). For each 8 € QF, there exists a unique
Q(q)-basis B, (8) = {B*(a) | a € KP,(8)} of (A,)s characterized by the following
properties:

(1) b*(B*(a)) = B*(a);

(2) B*(a) € E*(a) + Xarekp, (s 1 Lla'E*(@).
Moreover we have %,(8) = B* N (A,)3.

We refer to the basis | |5cq+ #n(8) as the dual canonical basis of A,,. We denote
by A,z the integral form of A,, i.e. the Z[g*!]-subalgebra of A,, spanned by the
dual canonical basis (or the dual PBW basis).

Let P = Zwg ® Zw;, be the weight lattice of type Agl) with w; being the i-th
fundamental weight (¢ € {0,1}). For a dominant weight A € P™ := Nwy + N
and Weyl group elements u and v satisfying u()\) — v(A) € QT, we denote by
Dy (x),0(n) the corresponding quantum unipotent minor (see [GLS13, Section 5.2] for
the definition). This is an element of %, (u(\)—v(A)) (see [GLS13| Proposition 6.3]).
For each 1 < k < 2n, we set w<y := 84,84, - - 54, and wey 1= 84,84, -+ 8;,_,. For
each 1 < b < d < 2n with d — b € 2Z, we define D[b,d] := Dy _ywiy weqws, - BY
[GLS13l Proposition 7.4], we have E*(8;) = D[k, k| for each 1 < k < 2n.

2.5. Quantum cluster structure. Let o7, be the quantum cluster algebra (over
Z[q*1/?]) associated with the initial quantum seed .7 = (X1, ..., Xa,), B, A) de-
fined as follows (see [BZ05] for the generalities of quantum cluster algebras). The
exchange matrix B is the 2n x (2n — 2)-matrix given by

where all blank entries are 0. The skew-symmetric 2n x 2n-matrix A = (Ag) is given
by Age :=2[k/2](|k/2] — |£/2]) for any 1 < k < £ < 2n (cf. [CW19, Lemma 6.4]).
The quantum cluster algebra .7, is a Z[qil/ 2]-subalgebra of the based quantum
torus Z[g /2 (XE (1 < k < 2n) | X3 Xo = ¢ X Xy).

For each 1 < b < d < 2n with d — b € 2Z, we consider the following normalized
element in Q(q'/?) ®q(q) An:

Db, d] := ¢#D /Db, d),
where f = wepw;, — w<qw;, is the weight of D[b,d]. More generally, for any
quantum unipotent minor Dy, (x) v(x), We define Dy x)»(1) = q(ﬁﬁ)/‘lDu(/\))v(/\) with
B=u(N)—v(\) €Qr.

Theorem 2.2 ([GLS13| Theorem 12.3], [KKKOI8| Corollary 11.2.8]). There is a
unique tsomorphism
%n l> Z[qi1/2] ®Z[qi1] An,Z
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under which the initial cluster variable Xy corresponds to

{E[Lk] if k is odd;

DI[2,k] if k is even,

for each 1 < k < 2n. Moreover the quantum unipotent minor 15[6, d] is the image
of a cluster variable for any 1 < b < d < 2n with d — b € 27Z.

Henceforth, we will identify the quantum unipotent subgroup Z[qil/ 2] Qz[q*1]
A, 7 with the quantum cluster algebra 7, via the isomorphism in Theorem

2.6. Berenstein-Zelevinsky’s bar involution. When z, y are g-commuting with
each other, say xy = ¢"yz for some m € Z, we write  ® y := ¢~"™/2xy. Note that
we have © ®y = y © z. Following Berenstein-Zelevinsky [BZ05], let us consider the
algebra anti-involution ¢ of the quantum cluster algebra <7, defined by

Wg) =g uXp) = Xy,
forall 1 < k < 2n. If z,y € 9, are g-commuting with each other and both are

fixed by ¢, the element © ® y = y ® z is also fixed by ¢. In particular, any cluster
variables and hence any cluster monomials are fixed by ¢.

Lemma 2.3 (cf. [KO19, Remark 7.23]). If x € o7, is of weight 8, we have v(x) =
q PP 2*(x). In particular, x is fized by ©* if and only if the rescaled element
q PP /g s fized by ¢.

For any 8 € Q" and a € KP, (), we consider the rescaled elements
B(a) := ¢#P/1B*(a), E(a):=¢PP/1E*(a).
Theorem 2.1] yields the following characterization of the rescaled dual canonical
basis.
Corollary 2.4. The basis {B(a) | a € KP,(8)} of (e7,)p is characterized by the
following properties:
(1) «(B(a)) = Bla); )
(2) B(a) € E(a) + Xwexp, (s 1 Zla ' E(@).
Note that in particular the rescaled dual root vector is
E(B) = ¢"/*E" () = Dlk. k]
for each 1 < k < 2n. In terms of the rescaled elements, the expression ([ZI)) is
rewritten as
(2.2) E(a) = g&r<e " E(B)" E(B5)" -+ E(B2n)">"
for each a € KP,,(8).

2.7. Localization. Note that the frozen variables of the quantum cluster algebra
oy, are the following two elements:

DO = X2n—1 = Dwo,w,,twov Dl = X2n = le,wnwl-

Proposition 2.5 (cf. [KO19, Proposition 4.2]). For each A € PT, the unipotent
quantum minor Dy ., x is q-central in A,,. More precisely, for any homogeneous
element x € (,)g of weight f € Qt, we have Dy 22 = g~ At ABle Dy o
Moreover, for A\, X E~P+, we have Dxw,x © Dx'w,x' = Dagxw, (a4r) @ Sy In
particular, we have Dy 4, » = D((JDZO ® D?ll for X = bowg + 1oy € PT.
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By Proposition 2.5 the set D,, := {qm/QDg“le1 | m € Z,¢; € N} is an Ore set
of the algebra «7,. The localized algebra /!¢ := ,[D;!] is (isomorphic to) the
quantum unipotent cell associated with w, (cf. [KO19, Section 4]).

Proposition 2.6 (cf. [KO19, Proposition 4.5]). The set
A = {B(a) © Dy 0 DY [a e N*", 4, € N}
forms a Z[q*F'/?)-basis of the quantum unipotent cell 7.

Note that each element in éffc is fixed by the bar involution ..

3. PERVERSE COHERENT SHEAVES ON TYPE A AFFINE GRASSMANNIAN

3.1. Affine Grassmannian. Let T,, C GL,(C) be the maximal torus consisting
of diagonal matrices and PV := Hom(C*,T,,) be the coweight lattice. We make the
standard identification PY = Z"™ under which the element v = (vq,...,v,) € Z"
corresponds to the 1-parameter group a +— diag(a**,...,a""). The weight lattice
P = Homg(PV,Z) is also identified with Z" via the standard pairing (—,—) :
Z" x 7" — 7 given by (v,u) = vipy + - + vppu,. We say that an element
v = (v,...,vy) € Z" is dominant if vy > --- > v,. Write P}r/ for the set of
dominant coweights. For each 1 < k < n, we define

k
——
wg:=(1,...,1,0,...,0) € Z™,

which is regarded as the k-th fundamental weight or coweight.
Let K := C((t)) D O := C[t] be the field of formal Laurent series and its subring
of formal power series. We consider the affine Grassmannian of GL,:

Grgr, = GL,(K)/GL,(0O) = (GL,(K) x C*)/(GL,(O) x C*),

where C* denotes the 4-fold cover of the standard loop rotation. More precisely,
we have (1,a) - (9(t),1) = (g(a*t),a) in GL,(0) x C* for g(t) € GL,(O), a € C*.
The affine Grassmannian Grgy, decomposes into the union of GL,(O)-orbits (=
GL,(0O) x C*-orbits):

GI‘GL” = |_| GI‘UGL",
vePY
where Grgp ~denotes the orbit of [tV] € Grgy,,, t¥ := diag(t™,...,t"") € GL,(K).
For each v = (v1,...,v,) € PY, we have dim Grg,, = >0 (n+ 1 — 2k)v;.
The closure @”GL" of the orbit Grgy —is called the Schubert variety. Let us

consider the derived category DGL"(O)NCX(@Z;L") of bounded GL,(O) x C*-

coh
)red with coherent

equivariant complexes of sheaves on the reduced scheme (@6 L,
cohomologies, formally supported in cohomological degrees %dim Grgyr, + 7 by
convention.

The connected components of Grgy, are labeled by Z. For each d € Z, the
d-th connected component Gr(c?%n is the union of G L, (O)-orbits Grgy, ~with d =
vi + -+ + v,. Note that the parity of dim Grg L, 1s constant on each connected
component. Therefore we can define

GL,(0O)xC* . . GL,(O)xC* 7~
Dcoh (@) (GrGLn) = 11Aﬁchoh (@) (GrG n)'
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n(O)xC*

3.2. Convolution product. For any objects F,G € th (Grer, ), we can

define their convolution product F + G € DCGL n(O)xC* (Grgr,) by
FxG:= m*(fﬁg),

where 7 : (G Ly, (K)xC*) x(GLn(O*C) Gryp  — Grgy, is the multiplication map.
Here the sheaf FX G is defined by the property ¢*(FXG) = p*(F X G), where p
and g are the natural projections:

Grar, xGrar, & (GLu(K)xC*)x Grar, % (GLp(K)xC*) xGLn(@7C" Gry

If F (resp. G) is supported on @Z;L" (resp. @gL”), the sheaf F X G is supported
on the finite-dimensional convolution variety

Grtp, xGréy, © GLy(K) xE5(©) Grgy,

and the convolution product F * G is supported on Gr”+”

The convolution product  equips the equivariant K-group K GLn(@)=C* (Grgr,)
with a structure of an associative Z[¢+/2]-algebra, where ¢™/2 € KGLn(O)xC™ (1)
denotes the class of the pull-back of the 1-dimensional C*-module C,,, of weight m
along the natural projection GL,(0) x C* — C*.

We use the notation {m/2} to denote the C*-equivariant twist — ® C_,,. Thus,

for an object F € DCGOi"(O)NCX(GrGLn), we have [F{m/2}] = ¢~™/?[F]. On the
other hand, we denote by [m/2] the cohomological degree shift by m/2 € 17Z. It
will be convenient to use the notation (m/2) := [m/2]{—m/2} for the simultaneous

shift and twist by m/2 € $Z. This is the same notation as in [CW19].

3.3. Perverse coherent sheaves.

Definition 3.1. A GL,(0O) x C*-equivariant perverse coherent sheaf on Grgy, is

an object F € Dcoh (O)xC* (Grgr,, ) such that for every orbit i, : Grgp < Grgr,

(1) it F e choh( JxC (Grgyp,) is supported in degrees < —1 dim Gr¢, ;

(2) i, F € choh( yue* (Grgyp. ) is supported in degrees > —1 dim Gr{, .

We denote by PCGL n(O)xC (Grgr,) C Dgﬁ”l(o)xc (Grgy,, ) the full subcategory of
perverse coherent sheaves.

L, (O)xC*

The category PCG (Grgr, ) can be obtained as the core of a finite-length

coh B (O)0C* (GrGLn)

(cf. [AB10Q]). The convolution product * preserves the category PGL n(O)xC (Grgr,)

co

and the operation (F,G) — F % G is bi-exact (cf. [BEMO5]). Thus the equivari-
ant K-group KGLn(OXC* (Grgy ) = K(PGL"(O)N(CX (Grgr,)) becomes an algebra

coh
with a canonical Z-basis formed by the classes of simple perverse coherent sheaves.
We say that (v, ) € PV x P is a dominant pair if v € PV is a dominant coweight
and p € P is dominant with respect to the Levi quotient of the stabilizer subgroup

Stabgr, (0)[t"]. More explicitly, the set D,, of dominant pairs is given by

_ vV (Vlw- ) N_(Mlv"wlj‘ﬂ)?
D., {(V p) € PLx P ,Uk>,ulc+1 Whenever Vi = Vkt1 }

t-structure (called the perverse t-structure) of the category D¢



COHERENT IC-SHEAVES AND DUAL CANONICAL BASIS 75

To each dominant pair (v, u) € D,,, we associate a simple perverse coherent sheaf
P, in the following way. Note that the group

Stabgr, (o) [t'] == {9 € GLu(C) | g -t = 1" g} 2 ] GLy, (C)

is a Levi subgroup of Stabgyr, (0)[t"], where my is the multiplicity of & in the
sequence v € Z". Then the group

Stabit. (o) [t7] x C* = Stabgif oy [t"] x C*
is a Levi subgroup of Stabgr, (0)xcx [t”]. Thus we can identify
Irr Stabar, (0)yxex [t7] = Irr(Stabggn(o) [t7] x C*) D lrr Stabgign(@) [t"],

where the set Irr Stabgeg"(o) [t”] is regarded as a subset of Irr(Staeregn(O)[t”] x C*)
consisting of representations with the trivial C*-actions. Let V,, denote the simple
G L, (0) x C*-equivariant vector bundle on Grgy, ~whose fiber at [t”] is isomorphic
to V), as a representation of Stabgy, (0)yxcx[t”]. We define the simple perverse
coherent sheaf P, , as the following (coherent) IC-extension (cf. [ABI0, Theorem
4.2])

Py = (0 )1V (dim Grgy, /2{—=(v, )},

where i, : Grgyp, < Griy s the inclusion.

Since each simple perverse coherent sheaf is isomorphic to an IC-extension of a
simple vector bundle on some GL,(O) x C*-orbit (cf. [AB10, Proposition 4.11]),
we have a bijection

D, x Z <% 1rr pCEn(O)xC (Grer,);  ((v,p),m) «— Py {m/2}.

coh
In particular, the set
P =A{[Puul | (v, ) € Dn}

forms a Z[q*!/?]-basis of the convolution ring K&En(O)*C™ (Grgy, ).

3.4. Lattice description. Recall that the affine Grassmannian Grgy, can be in-
terpreted as the moduli space of O-lattices L in K". Let Lo := O™ C K™ be the
standard O-lattice. A coset [g(t)] € Grgr, = GL,(K)/GL,(O) corresponds to a
lattice L = g(t)Lo. Then for each v € P} with v, > 0, we have

Grgr, ={L C Lo | |1,/ is nilpotent of type v}.
In particular, when v = wy, we get

Grk, =G ={L & Lo |ty C L}
GL, ° GL, 0 0 )

where L é Ly indicates that dim(Lo/L) = k. In particular, Gr’g;L” = Grgyp, is
isomorphic to the usual Grassmannian Gr(k,n) of k-dimensional subspaces in C™.

For each 1 <k <n and ¢ € Z, we put Py := Py, ¢, for simplicity. Using the
above description of Gr¥, L, We see

Pis = e (Ocug, ® det(Lo/L)") (k(n — k) /2){-kt},

where we denote by Lo/L the vector bundle on Grg 1, whose fiber at L is equal to
Ly/L by an abuse of notation.
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3.5. Cautis-Williams’ monoidal categorification theorem. In [CWI9],
Cautis and Williams proved that, for a general complex reductive group G, the
category of G(O) x C*-equivariant perverse coherent sheaves is a rigid monoidal
category, i.e. every object F has its left and right duals. Moreover, they also proved
the existence of a system of renormalized r-matrices (originated in the settings of
the quiver Hecke algebras and the quantum affine algebras, see [KKKOI§| for in-
stance), which informally encodes some information about how the category fails

to be a braided tensor category. Using these facts, it was successfully proved in the

case G = G L, that the monoidal category Pciﬁ"(o)*'(cx

quantum unipotent cell <7!°¢. More precisely, we have:

(Grgpr, ) categorifies the

Theorem 3.2 (Cautis-Williams [CW19]). There exists an isomorphism of Z[q*'/?]-
algebras

O oloc = KOO (Grgy, ),

which sends each cluster monomial to the class of a simple perverse coherent sheaf.

Moreover, for each 1 < b < d < 2n with d —b € 2Z, we have ®(D[b,d]) = [Pk.e]
with
1 1
k:1—|—5(d—b), €:n+1—§(b+d).
In particular, we have
(3.1) ®(E(Br)) = DIk, k]) = [PLns1-4]
for each 1 < k < 2n.

The bar involution ¢ of 7!°¢ was also categorified in [CW19, Section 6.2]. Let
o1 be the group involution of GL,,(O) x C* given by (g(t),a) — (Tg(t)~!,a), where
T(—) denotes the transpose of matrices. Then the morphism

n: Grar, — GLy(K)xS(©)(Grgr )7 = (GLy, (K)xCX) x (GEn(@XC ) (Grep o1

defined by 7([g(t)]) := [g(t), ["g(t)]] becomes GL,,(O) x C*-equivariant. We define

. . . G L, (0)xCx
an involutive auto-equivalence ¢ on D_ (Grgr, ) by

(F):=DolLo n*(OGran g]:gl),

where D is the Grothendieck-Serre duality functor and IL is an auto-equivalence on
DOLn(0)xC*

coh

(Grgy, ) which, on the d-th component Grgzn, acts by tensoring with

Otrgy, (—n) ® det(Lo/tLo){d(n — d)}.

Theorem 3.3 ([CW19, Corollary 6.24 & 6.25]). The involution ¢ is contravari-
ant with respect to both convolution product x and Hom, preserves the category
of perverse coherent sheaves and satisfies (P, ,{m/2}) = P, {—m/2} for any
(v,p) € D, and m/2 € %Z. Therefore, for any & € /°¢, we have ®(1£) = 1®(€).

Note that the basis 2, of KGIn(O)¥C (Grq ) is nothing but the subset formed
by the classes of t-selfdual simple perverse coherent sheaves.
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4. COMPARISON WITH NILPOTENT CONES OF TYPE A
4.1. Main result. The main theorem of this paper is the following.

Theorem 4.1. Under Cautis- Williams’ isomorphism
o Méoc o g GLn(O)xC* (Grar, )

i Theorem B2, the dual canonical basis @ﬁloc of A'°¢ bijectively corresponds to the

basis 2, ofKC"L”(O)”(CX (Grgr, ) formed by the classes of t-selfdual simple perverse
coherent sheaves.

By Theorem B2l we have ®(Dgy) = [Py 1] and ®(D1) = [Pn]. Since both P,
and P, 1 are invertible objects of the monoidal category ng"(a)xcx (Grgyr, ), the

operations — ® [P, o]*! and — ® [P, ;]** induce the self-bijections of the set &2,,.
Therefore, to verify Theorem 1] it suffices to prove the following simpler assertion:

Theorem 4.2. We have ®(B(a)) € £, for any a € N*".
A proof will be given in the end of Section 3]

Remark 4.3. When n = 2, Theorem [4.] can be verified directly by using an explicit
computation of the dual canonical basis of the quantum unipotent group A, due
to Lampe |L14].

4.2. Perverse coherent sheaves on the nilpotent cone. Fix d € N. Let
N®:= {z € End(C%) | z? = 0}

be the nilpotent cone of gl,;(C). A left action of the group GL4(C) x C* on N4 is

given by (g,a) - 2 = a~*Ad(g)z. The equivariant K-group KGLa(©xC*(N\d) ig

module over Z[q'/?], where ¢™/? € KGLa(€)xC* (pt) denotes the class of the pull-

back of the 1-dimensional C*-module C,,, of weight m along the natural projection

GL4(C) x C* — C*.

Recall that the nilpotent cone N'¢ has a finite number of GL4(C)-orbits (=
GL4(C) x C*-orbits) which are parametrized by the set P(d) of partitions of d.
The orbit O, labelled by a partition v = (v; > ve > ---) € P(d) consists of
nilpotent matrices of Jordan type v, i.e. whose Jordan normal form is
0
1 0
Jpi=Jdy, ®Jy, ®---, where Jp, := L0 € gl (C).

1 0
We can easily compute dimQ,, = d? — Ei21(2i —1)v; and codimQ, = dim N —
dim O, = 3,5, (2i — 1)v; — d, both of which are even numbers.

We can consider the GL4(C) x C*-equivariant perverse coherent sheaves on the
nilpotent cone N¢.

Definition 4.4. A GL4(C) x C*-equivariant perverse coherent sheaf on N'¢ is an
object F € pELal©)xC” (N?) such that for every orbit j,: Q, < N

coh
(1) j*F € chi;i(c)xcx (N?) is supported in degrees < 1 codim O ;
(2) jLF € pELa©xc”

geoh (NV?) is supported in degrees > 1 codim Q).
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We denote by P pCLa©x=c” (N C DELa(©xC (Nd) the full subcategory of perverse

coh coh
coherent sheaves.

The simple perverse coherent sheaves are parametrized by the set
Oy = {(U, V) | Ve P(d), Vel StabGLd((C)(JV)}

up to isomorphism and C*-equivariant twist in the following way (cf. [AH19, Sec-
tion 3]). For each partition v = (v1,19,...) € P(d), we define a homomorphism
¢,: C* = GL4(C) b

pu(a) == ¢u,(a) ® du,(a) - -,

where ¢,,(a) = diag(a?-™+V) @243 q2(m=1) ¢ GL,,(C). The homomor-
phism ¢, is a cocharacter associated to the nilpotent element J, in the sense of
[704, Section 5.3]. In particular, we have Ad(¢,(a))J, = a*J,, and the group

Stabrcegd(m( v) = {g € Stabgr, ) () | 99 (a) = ¢u(a)g, Ya € C*}
is a Levi subgroup of Stabgr,(c)(J,). Then the image of the group embedding

Stab’&fgd(c)( y) X C* Staber,(c)xcx (J.); (g,a) = (g9¢.(a),a)
is a Levi subgroup. Via this embedding, we make an identification

Irr(Stabgp, (c)xex (Jv)) = Irr(StabEf}fd( y(Ju) x C*) D lrr Stabggd(c)(J,,),

where the set Irr(Stabggd(C) (J,)) is regarded as a subset of Irr(Stabggd(C) (J,)xC*)
consisting of representations with the trivial C*-actions. For a pair (v,V) € Oy,
let V be the simple GL4(C) x C*-equivariant vector bundle on O, whose fiber at .J,,
is isomorphic to V' as a representation of Stabgr,, (cyxcx (/). We define the simple
perverse coherent sheaf C,, - as the following (coherent) IC-extension

Cov = (ju)1V{codimQ,/2),

where j, : @, — O, is the inclusion.
Under the above notation, we have a bijection

04 x Z &5 1y POECXCT (\rdy. (1, V), m) +— Cyv {m/2}.

Thus the set {[C,.v] | (v, V) € Og4} forms a Z[gF'/?]-basis of KGLa(©)*C*(Afd),

Next we introduce another basis of KGLa(©XC*(Nd) " Let By € GLg(C) be
the Borel subgroup consisting of invertible lower triangular matrices and By :=
GL4(C)/By be the flag variety. The cotangent bundle T*B, is naturally identified
with the space GLg(C) xB4 ny, where ng C gl,;(C) is the Lie algebra of strictly
lower triangular matrices (= the nilpotent radical of Lie(By)). Let m: T*By — By
denote the natural projection [g, x] + [g] and Sp: T*By — N denote the Springer
resolution [g, z] — Ad(g)z. A natural left GL4(C) x C*-action on T*B, is given by
(h,a)-lg, ] := [hg,a *x]. Both morphisms 7 and Sp are GL4(C) x C*-equivariant.

Let Ty C By be the maximal torus consisting of diagonal matrices. As before,
the weight lattice X := Hom(T,;, C*) = Hom(Bg, C*) is identified with Z?. For any
A € X, we denote by Og,()) the corresponding line bundle G Ly4(C) x5 X\ on By,
which is regarded as a GL4(C) x C*-equivariant bundle with the trivial C*-action.
We define the corresponding Andersen-Jantzen sheaf AJ(A) b

AJ(N) :=8p, 7" O0p, ().
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More precisely, Sp, denotes the derived push forward and the Andersen-Jantzen

sheaf AJ()) is an object of Diﬁd(c)xcx (N'?) (which may or may not be a genuine
sheaf).

As a convention, we regard the weights of n; as the negative roots. Then the set
of dominant weights is X = {A = ({1,...,45) € X | b1 > -+ > {3}

For each dominant weight A € X, we define

Ay = AJ(woA){dr}, V= AJ(A){—0xr},

where wy is the longest element of the Weyl group &4 of GLy(C) and 6y :=
min{l(w) | w € &4, wh € —X;}. Explicitly we have

(4.1) Oy = %(d(d —1) = mp(m — 1)),
k

where my, is the multiplicity of k € Z in the sequence \ € Z9.
It is known that both objects Ay and V, are perverse coherent sheaves. In-
deed the family {V) | A € X} forms a quasi-exceptional set of the category

Dgﬁd(c)xcx (N?) with {Ay | A € X} being its dual, which yields the above per-
verse t-structure (cf. [B0O3]). In particular, there is a canonical morphism Ay — V
for each A € X . We denote the image of this canonical morphism by €y, which is a
simple perverse coherent sheaf. The following result due to Achar-Hardesty [AH19]
is the graded (or C*-equivariant) version of the Lusztig- Vogan bijection. The non-
graded version was originally established by [A0QI] (for GL4) and [B03] (for a general

reductive group instead of GL).

Theorem 4.5 ([AHI9, Theorem 4.5]). There is a bijection
LV: X; = Oy

such that we have €\ = Cry(y) for any A € X

We define the modified Grothendieck-Serre duality functor Dxa on N'¢ by
D_N’d = R%ﬂ?ﬂ(_, ONd).

Remark 4.6. The usual Grothendieck-Serre duality is defined by using the dualizing
complex. The dualizing complex wyra of the nilpotent cone N'¢ is Opra(d(d — 1))
(see [AH19, Proposition 2.4]).

Let o be an involution of the group GL4(C) x C* given by (h,a) = (Th™!,a).
Then the transpose map = + = induces a GLg(C) x C*-equivariant isomorphism
7: N4 = (N2, We define an involutive auto-equivalence ¢ of Pgﬁd(c)xcx (N9
by

L(]:) = DNd ] T*(]:J).
Then we have «(q'/?) = ¢~'/2 at the level of Grothendieck group. The following
theorem was originally conjectured by Ostrik [O00] and proved by Bezrukavnikov

(see [BO3, Introduction]).

Theorem 4.7 (Bezrukavnikov). The Z[gt'/?]-basis {[€\] | A € Xy} of
KGLa(@)xC” (N is characterized by the following properties:

(1) &) = [€];

(2) (€] € [Val + Swex, 0 Zlg V-
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4.3. Comparison with the nilpotent cone. Towards a proof of Theorem [£.2] let
GL4(C)xC*

us compare Pcﬁ”(o)xcx (Grgr,,) with P} (N?). Fix two positive integers
n,d € N and consider the Schubert variety
Gry = Grg ={L C Lo | dim(Lo/L) = d}.
This is a finite union of G L, (0O)-orbits Grgy, ~where v runs over the set
P,(d)={v=1,...;0n) €Z" |11 > 21, >0, 1+ -+ v, =d}
of partitions of d of length < n, regarded as dominant coweights of GL,, in the same
way as before. Let D,, 4 be the set of dominant pairs (v, ) € D,, with v € P, (d).

Then the set {[P,,] | (v, 1) € Dy, 4} forms a Z[g='/?]-basis of KGLn(O)xC* (Grd).
We define the modified Grothendieck-Serre duality functor Dg,qa on Gr? by

DGrfL = R%ﬂ?ﬂ(_7 OGrg)<d(ﬂ - 1)>
Remark 4.8. The dualizing complex of the Schubert variety Grz is isomorphic to

OGrey, (—n) @ det(Lo/tLo)*{d(n — d)}{d(n — 1))
(see [CW19l Lemma 6.20]). Therefore we have

(4.2) Dgya (F) =D o L(F)
for any F € Dgﬁ"(o)xcx (Gr) (see Section B8] for the definition of LL).

Under the above notation, we have the following morphism of quotient stacks:
V: [(GL,(0) x C)\Gre] = [(GL4(C) x CN\NT; (L C Lo) — tlre/L-
Lemma 4.9. The morphism v is formally smooth.

Proof. For a fixed d and N > 0, Gr? = {L: Ly > L D tN Ly}. We have an evident
morphism [(G L, (O/tN 0) x«C*)\Gre] — [(GL, (0)xC*)\Gr?], and by an abuse of
notation we will denote by ¥ : [(GL,(O/tN O) x C*)\Grl] = [(GL4(T) x C*)\N]
the composition of the former v with the above evident morphism. It suffices to
prove that the new % is smooth. Moreover, we will keep the same notation v for
the similar morphism [G L, (O/tN O)\Gr?] — [GL4(C)\N] (disregarding the extra
C*-equivariance). It suffices to prove that the latter ¢ is smooth.

Given an affine test scheme S = Spec A along with its nilpotent extension S =
Spec A, A = A/I, and a morphism p: S — [GL,(O/tNO)\Gr?] along with an

extension
$: 8 = [GLy(C)\W of p:=1op: S — [GLy(C)\NY

we have to find an extension ¢: S = [GL,(O/tNO)\Grd].

We may and will assume that A and A are local, hence the projective modules
are free. Then an S-point ¢ is a free A-module M of rank d with a nilpotent
endomorphism t € End 4 (M). Sumlarly7 an S- point @ is a free A-module M of

rank d with a nilpotent endomorphism t € End 3(M ) An S-point ¢ is a free A-
module M of rank nN with a nilpotent endomorphlsm t “of Jordan type N™” and
a t-invariant (locally) free A-submodule M’ C M such that the quotient M /M’

is free of rank d. Finally, an S- point ¢ is a free A-module M of rank nN with
a nilpotent endomorphlsm t “of Jordan type N™” and a t-invariant (locally) free
A-submodule M’ C M such that the quotient M / M’ is free of rank d.
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We have to prove that given (M t) and (M’ C M,t) as above giving rise to the
same (M /I,T (mod 1) =(M,t)= (M/M’',t (mod M'")), there exists (M’ C M, 1)
as above such that (M’ (mod I) C M (mod I),t (mod I)) = (M’ C M,t), while
(M/M',% (mod M')) = (M,%). If we disregard the nilpotent operators, then the
existence of the desired extension ﬂ " C ﬂ follows from the smoothness of the
evident morphism GL,N\Gr(d,nN) — GLg\ pt (and is evident by itself).

So it remains to prove that the sequence

End ;(M' € M) — End (M) @ Enda (M’ € M) — End (M)
(see the diagram below) is exact in the middle term:

End (M) +—— End;(M' C M)

l !

Ends(M) «—— Ends(M' Cc M).
This is clear since all our modules are free, and moreover, we can find a comple-
mentary free submodule M" € M such that M = M" & M’'. ]

Corollary 4.10. The morphism v : [(GL,(O) xC*)\Gr?] = [(GL4(C) x C*)\NY]
is flat.

Proof. This is [EGA TV], Théoréme 17.5.1]. O
Therefore the pull-back along ¥* induces a triangulated functor

v*: DoR O (W) = DGO (G,

coh
In what follows, we restrict ourselves to the open subvariety
N = |_| 0, c N4
VEP,(d)

Let O, q be the set of pairs (v,V) € Oq with v € P,(d). Then the set {[C, v] |
(v,V) € 0,4} forms a Z[g='/?]-basis of KGLa(©*C(N4) We will keep the same
notation AJ()\), Ay, Vy for their restrictions to N2

By construction, the morphism 1 has its image in the open substack [(GL4(C) x
C*)\WI]. More precisely, for each v € P, (d), the morphism 1 sends the G L, (O)-

orbit Grgy, —to the GL4(C)-orbit @,. Thus we have obtained the triangulated

functor: §
b pELa(@)xC (Nd) _, pGLn 2 (O)xC* (Grd).

coh coh n

Definition 4.11. We define the triangulated functor
s DO (W) = DGO (Grd) by W(=) = 7 (<) (d(n - 1)/2).

coh coh
Proposition 4.12. The functor U satisfies the following properties:
(1) W is t-ezact with respect to the perverse t-structures of both sides. Therefore
it induces an exact functor between abelian categories:

N PGLd((C)X(C (Nd) GL,L(O)NCX (Grd);

coh coh n

(2) W is compatible with the IC-extensions, i.e. for any v € P,(d), we have
¥o (ju)!* =~ (iu)!* o,
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(3) U is compatible with the duality functors, i.e. we have
v O]D)Ng ~ DGrd oW,

Proof. Note that the cohomological degree shift [d(n — 1)/2] in the definition of ¥
arises from the fact that d(n — 1) = codim O, + dim Grg;, for any v € P,(d).

For (), we apply [AB10, Lemma 3.4]. To do so, we have to check that the
morphism ) is faithfully flat and Gorenstein. For the faithful flatness, thanks to
Lemma [£9] it suffices to show that given a local C-algebra A the morphism 1
yields a surjective map [(GL,(O) x C*)\Gr?](A) — [(GL4(CT) x C*)\NI|(A) of
the sets of A-points. (Or instead, we may show that the morphism 1)5: M9 — N
defined below is surjective as a morphism between the schemes associated with the
varieties.) This can be proved easily by the definition of M. For the Gorenstein
property, it suffices to show that 1)'Oxsa is a cohomological degree shift of an in-
vertible sheaf (see [H66, Exercise V.9.5]). Since the dualizing complex of N is
isomorphic to Opra(d(d — 1)) (see Remark [A.6]), the sheaf 1)'(Oxa) is isomorphic to
the dualizing complex of Grr;iI up to cohomological degree shift and C*-equivariant
twist, which is also known to be a cohomological degree shift of an invertible sheaf
(see Remark [A.g]).

Now (2]) can be proved in a similar way by the definition of the minimal extension
functors. See [ABT0, Theorem 4.2].

The remaining assertion (B)) follows from Remarks 0] & .8 and the fact

(=) = 9* (=) ©@ wepa e = (Lo ™) (=)(d(d = n)).
See [H66L Remark on pp. 143-144] for the first equality. |

For a technical reason, we will introduce an auxiliary space. Let MZ be the
variety of pairs (L, ) such that:

(i) L is a O-lattice of K™ such that dim Lo/L = d;
(ii) 7 is a C-linear isomorphism C¢ = Lg/L.
We equip the space M? with a left action of the group GLg(C) x GL,(O) x C* by

(hyg(t),a) - (L,v) == ((9(t),a)L, (g(t),a) oy o h_l)a
where h € GL4(C), g(t) € GL,(0), a € C* and in the 2nd entry of the right hand
side the element (g(¢),a) € GL,(O) x C* is regarded as a C-linear isomorphism
Lo/L = Lo/(g(t),a)L. Then we can consider the following diagram:
Grd &L pmd 22y A,
Here the morphism ¢, is the first projection (L,v) — L and the morphism s is
given by
1/}2([17'7) = 771 o t|L0/L o.
The morphisms v, and s are equivariant with respect to the actions of the
group GL4(C) x GL,(0) x C*. Here we understand that the group GL4(C)
(resp. GL,,(0)) acts trivially on Gr? (resp. N'%). Since v, is a principal GLg(C)-
bundle, the pull-back functor gives an equivalence of triangulated categories:

e Dgid(C)XGLn(O)xCX(MZ) o~ DGLn(O)x(CX(GI_i).

coh

We fix a quasi-inverse of 17 and denote it by (7).

Lemma 4.13. There is an isomorphism of functors ¥* ~ ()~ o 43.
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Proof. This is obvious from the construction. |

For each v = (v1,...,v,) € P,(d), we define a C-linear isomorphism
Yot (Cd —N—> Lo/(tVLo) by Uj — ti(ler."Jruk_l)Jrjiluk mod tVLO

foreachl <k <nandwvy+---+vgp_1 <j<vi+-- -+, where {v; € cil1<j<
d} is the standard C-basis of C? and {us, € K" | 1 < k < n} is the standard K-basis
of K. The point p, := (t*Lo,7,) € M% satisfies ¥1(p,) = [t¥] and (p,) = J,..
Then the natural projections

GL,(0) 1 C* + GL4(C) x GL,(0) x C* — GLy4(C) x C*
induce the homomorphisms of stabilizers

Stabgr,,, (0)xcx [t7] <= Stabg L, ©)xGL. (0)xcx (Pv) = Stabar,)xcx (Ju),

where the left one is an isomorphism because 1 is a GL4(C)-bundle. Let

p: StabGLn((’))xCX [ty] — StabGLd(C)XCX (.],,)

be the group homomorphism obtained by composing the above two homomor-
phisms. This homomorphism p induces an isomorphism between the subgroups

pP1: Sta,ereLdn(o) [ty] :—> Stabggd (C) (Jl,)

In particular, the assignment (v,p) — (v,V,,) defines a bijection D, 4 — O, 4.
Henceforth we identify O,, 4 with D,, 4 via this bijection and we write C, ,, instead
of CV,VM .

Lemma 4.14. For any (v, u) € Dy, 4, we have an isomorphism

U (Copf—(wn, ) }) = Py

In particular, the functor ¥ induces an isomorphism of K-groups

[\I/] . KG’Ld((C)x(CX (N;li) o~ KG’L"(O)NCX (Grd),

n

which gives a bijective correspondence between the classes of simple perverse coher-
ent sheaves.

Proof. By Proposition AI2([2), it suffices to show that the fiber at [t”] of ¥ (C, )
is isomorphic to V,{—(v — wn,u) — dimGrgy /2} as a representation of
Stabgr,, (0)xcx [t7], disregarding cohomological degree shift. By construction, we

observe that the restriction of p to the Levi subgroup Stabggn(o) [t"] x C* C
Stabgr,, (0)xcx [t7] is given by (g,a) — (p1(ga®?=“"))¢,(a),a). Therefore the fiber
at [t”] of ¥* (C,,,) is isomorphic to the pull-back of the representation V,,{codim O,
/2} along the group homomorphism Stabgign(@) [t'] x C* — Stabggd(c)(Jy) x C*
given by (g,a) — (p1(ga®¥=n), a). After the C*-equivariant twist {—d(n—1)/2},
we obtain the desired representation. O

Lemma 4.15. Let A = (¢1,...,44) € X = Z% be a weight of GL4(C). Then we
have an isomorphism

U(AT (A {—(wa, A)}) = Py * Py * - %P1y,
where wq = (1,...,1) € Z* and hence (W, \) = 1 + -+ £q.
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Proof. Let (fi}fl be the variety of flags of O-lattices Ly = (Lq C -+- C L1 C Lyg)
satisfying dim L, _1/L; = 1 for 1 < ¢ < d. This is nothing but the convolution
variety GréLn X oo ;GrbLn (d factors). The multiplication morphism 7: (A}}fll —
Gr? is given simply by Le = (Lgy C --- C Ly C Lg) ~ (L4 C Lg). Then we have

d

P, # Pray * -+ % Pry, = m, (@(Lkl/Lk)W’“) (d(n —1)/2){—(wa, N},

k=1

where we denote by L;_1/L; the line bundle on (A}}‘fb whose fiber at L, is equal to
L;—1/L; by an abuse of notation.

On the other hand, we put N¢ := Sp~!(N?), which is an open subvariety of
the cotangent bundle T*B,;. We identify the variety /\Nf,‘f with the variety of pairs
(Ve, ) consisting of a complete flag Vo = ({0} =V C - C Vi C Vo =C% and a
nilpotent endomorphism z € N¢ satisfying z(V;—;) C V; for all 1 < i < d. Then
we have

d
708, ()| g = ®(Vk—1/Vk)®zk7
k=1

where we denote by V;_;/V; the line bundle on N¢ whose fiber at (Vs, ) is equal
to V;_1/V; by an abuse of notation.

Let M be the variety of pairs (Ls,~) such that:

(i) Le = (Lg C -+- C Ly C Lyg) is a flag of O-lattices with dim L;_;/L; = 1 for
1 <i<d;
(ii) 7 is a C-linear isomorphism C? =5 Lo/ L.

This space vall fits into the following commutative diagram

o1

(4.3) Grd Md 2 N

lm lm’ lSp
Grd B Mé &Nﬁ,

where the morphism {/JH is the projection (Le,7) — Lo and the morphism {/;2 is
given by

(Le,7) — ({0} €y M(La—1/La) C -+ €y M (L1/La) € CHy " ot|y 1, 07)-

All arrows in the diagram 3] are GL4(C) x GL,(0O) x C*-equivariant. Moreover,

both the left and the right squares are Cartesian. The morphism 1 is a principal
G L4(C)-bundle.
Since there is a GL4(C) x GL,,(O) x C*-equivariant isomorphism of line bundles

d d
i3 <®(Vk—1/Vk)®e’“> = (@(Lk—l/Lk)w’“) :

k=1 k=1
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we have

d d
V" Sp, (®(Vk1/vk>®‘k> = (¢f) s <®<vk1/vk>®“>

k=1 k=1

IR

d
(517 <®<vk1/vk>®“>

k=1

d
T <®(Lk1/Lk)®ék> ;

k=1

I

where we applied the smooth base change formula (cf. [CG97, Proposition 5.3.15])
to the two Cartesian squares in the diagram ([{3]). After the shift and twist (d(n —
1)/2){—{wa, A) }, we obtain the conclusion. O

We fix an element 8 = dopag + dia; € QT (of the root system of type Agl))
such that dg — dy = d. For each a = (ay,...,a2,) € KP,(8), we define an object

E(a) POLn(O)xC (Gr) as the following convolution product:

coh

E(a) == (Prn)™ ™ * - % (Prg1—#)"" %% (Pra—n) " {—= 2 cpana}
Then we have ®(E(a)) = [£(a)] (see (ZZ) and &)

To each a € KP,(8), we attach the unique dominant weight A\, € X, which
contains the integer n + 1 — k with multiplicity aj for each 1 < k < 2n.

Corollary 4.16. For ecach a € KP,(53), we have
U(Va{—(wa, Aa)}) = E(a).

Proof. This is a consequence of Lemma [T and the fact dy, = >, <0 agag, which
follows from ({I). O

Let w denote an automorphism of the group GL4(C) x C* given by (h,a) —
(ha?,a). Since N4 = (N4)¥ the operation F ~ F* defines an auto-equivalence of

DELa(©)xC™ (N4). Then we have

coh
CV,#{_<wnnu>}’ V)\*VA{ <wdv >}

for (v,u) € Dy g and A € X respectively. Thus, Lemma F.14] and Corollary A.16]
are rewritten as:

(4.4) U(Cr L) = Pups
(4.5) U(Vy) ~&(a)
for any (v, 1) € Dy, 4 and a € KP,, () respectively.
Corollary 4.17. For any ¢ € KGL+«(©*xC(N4) e have
—2
JUI(E) = []e(€” ).
In particular, [U](€) is fized by ¢ if and only if f‘*’_l is fized v.

Proof. It is enough to consider the case £ = [C,,,] for some (v, ) € Dy, 4. In this
case, the assertion is obvious from (Z4]). O

The following assertion implies Theorem
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Theorem 4.18. For each a € KP,, (), we have LV(A,) € D,, g and

®(B(a)) = [PLV(Aa)L
where LV is the Lusztig- Vogan bijection (see Theorem [LH]).

Proof. Let L := ®(V7H)€Dn,d Zlq/?][C,..] be a Z]q~/?]-lattice of K GLa(©)xC* (A/d),
Since the elements [C,, ,,] are fixed by ¢ (cf. Theorem and Theorem (7)), we have
LNuUL) =B pep, , LCuul.

By Corollary 24 and (£3]), we have

([P 'e(B(@)* —[Vade . ¢ 'Z[g7Y[Va,l.
a’eKP,(B)

Combining this with Theorem 7] we obtain
()" 8(B(@)* "~ [Cxlay] € a7/2L.

By Corollary ELI7 the element ([U]~'®(B(a)))* " is w-invariant. Thus we have

~ —1
([¥]"'2(B(@)))” = [€x,]nal-
Note that €, |xa = CLy(x,) if LV(Aa) € Dy, g, and €y [pra = 0 otherwise. How-

ever the latter case can not happen because we know that [¥]~1®(B(a)) is nonzero.

Therefore we have ®(B(a)) = [¥(Ciyx,))] = [P O

4.4. Comparison of the bar involutions. In this complementary subsection, we
prove the following categorical version of Corollary E.17]

Proposition 4.19. For any F € pELa(@)xC (N9), we have

coh
LoU(F)=Uo L(]-"”_Q).

For a proof, we need to introduce some new notation.
We define an automorphism oy of the group GL4(C) x GL,(O) x C* by

o1(h,g(t),a) == ("W "'a™*, Tg(t) ™", a),

where T(—) denotes the transpose of matrices. We will use the same notation oy for
its restrictions to the subgroups GL,,(O) x C* or GL4(C) x C*. For the subgroup
GL,(0O) x C*, this notation is consistent with o1 defined in Section For the
subgroup GL4(C) x C*, we have a relation 0y = cow 2 =w 2o00.

Now we consider a morphism

0t M = GL,(K) x5O (M) = (GLn(K) » C*) x (GEn(@2E) (pqdyon

given by

0 (L) = [g(t), (g(t) Lo, (g(t)t™ ") 0 Ty ™).
Here g(t) € GL,(K) is an element such that L = g(t)Lo, and the C-linear iso-
morphism Ty: (t'g(t)"*Lg)/tLo — C? is determined so that the following diagram
commutes

(Lo/g(t)Lo)* —L— (C)*

C

(t"g(t)"'Lo) /tLy —— C%,
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where the isomorphism (Lo/g(t)Lo)* = (gt~ 110)/tLy is given by the residue
pairing

(=, =) K" x K" = C;  (v(t), w(t)) := Res To(t) - w(t) g,

=0 t ’
and the isomorphism (C¢)* = C? is given by the standard pairing (v, w) := Tv-
We can easily check that the resulting coset [g(t), (Tg(t)Lo, (Tg(t)t71) o Ty~ 1)) is

independent of the choice of g(t) € GL,,(K) such that L = g(t)Lo.
Lemma 4.20. The morphism 1’ is GL4(C) x GL,(O) x C* -equivariant.

Proof. This is proved by the following straightforward computation. For (g(t)Lo, ")
€ M2 and (h, g1(t),a) € GL4(C) x GL,(O) x C*, we compute:

= t)g(a4t)Lo7(gl(t),a) oyoh™)
= [g1(®)g(a't), ("(g1(t)g(a’t) Lo, ((gr(t)g(a’t))t ™) o ((g1(t), a) ovoh‘l)‘l]
= [g(®)g(a"t), ("g(a*t)"g1(t) Lo, (Tg(a’t) g (1)t ™) 0 ("ga ()" a) 0 Ty~ 0 Th)]
= [9:()g(a’t), ("g(a*t) Lo, (("g(a*t)t ™ a) o Ty~ o Th)]
= [g1(t)g(a"t), ((1.a)"g(t) Lo, ((1,a)Tg(t)t " a") o Ty ™" o Th)]
= [g1(t)g(a’t), (1) g(t) Lo, ((1,a)Tg(t)t 1) 0 Tyt o (Tha'))]
= [91()g(a't), (h,1,a) - ("g(t) Lo, (Tg(t)t ™) 0 Ty~ 1)]
= (hgi(t),a) - [g(t), (g(t) Lo, Tg(t)t o Ty 1)),
Therefore we have ' ((h, g1(t),a) - (g(t)Lo, 7)) = (h,g1(t),a) - 0’ (g(t) Lo, 7). O

Let ¢4: GL,(K) xGLn(©) (M2)71 — (N4)?1 be a morphism defined by the
assignment [g(t), (L,7)] = v~ ' ot|r,/ 0 7. We can easily check that this is well-
defined and GL4(C) x GL,,(O) x C*-equivariant. On the other hand, the transpose
map z — 'z induces a GLy(C) x C*-equivariant morphism 7: N4 — (N4)°1.

Lemma 4.21. The following diagram commutes:

P1 P2

(4.6) crd M N
K | I
GL, () xG4n(©) (Grdyo LV G (1) xGEa(O) (peyer 25 (N

where all arrows are GLq(C) x GLy,(O) x C* -equivariant.

Proof. The commutativity of the left square is obvious from the definitions. The
commutativity of the right square follows from the relation

Ty otlLy /gy ©7) = Y o tlitgy-1Lo/L0 ©

which holds for any (g(t)Lo,~) € MZ. O
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Proof of Proposition 419, Using the commutative diagram (.6]), we have
0" (Ogua RY* (F)7) = (7)™ () (O s B3 (F7))
= (1)~ ( (W) F
W) s (F)T
o~ *7_* (]_-wfz)a,

and hence n* ((’)Grzglll(]-")‘”) ~ Vor* (.7-"“’_2)‘7. Applying the duality functor Dg,q,
we have

L0 W(F) =Dy 0 (O MU (F)) 2 W o Dypg 0 7 (F¥ )7 = Wou(F ),
where we used Proposition [LI2IB]) and the relation (Z.2]). O
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