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Abstract
In this paper, we show that the weighted vertex coloring problem can be solved in
polynomial on the sum of vertex weights time for {P5, K2,3, K

+
2,3}-free graphs. As

a corollary, this fact implies polynomial-time solvability of the unweighted vertex
coloring problem for {P5, K2,3, K

+
2,3}-free graphs. As usual, P5 and K2,3 stands,

respectively, for the simple path on 5 vertices and for the biclique with the parts
of 2 and 3 vertices, K+

2,3 denotes the graph, obtained from a K2,3 by joining its degree
3 vertices with an edge.

Keywords Coloring problem · Hereditary class · Computational complexity

1 Introduction

In this paper, we consider only simple graphs, i.e. unlabelled, non-oriented graphs
without loops and multiple edges. An induced subgraph is formed by a subset of
vertices of a graph together with all edges, whose endvertices are both in this subset.

Any subset of pairwise non-adjacent vertices of a graph is called independent. A
clique of a graph is any subset of its pairwise adjacent vertices. A dominating set of a
graph is any subset of its vertices, such that any vertex outside the set has a neighbour
in the set.
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138 D. S. Malyshev et al.

A coloring of a graph G = (V , E) is a mapping c : V −→ N, such that c(u) �=
c(v), for any adjacent vertices u and v ofG. All elements of {c(v)| v ∈ V } are said to be
colors. In other words, a graph coloring is a partition of its vertex set into independent
sets of vertices of the same color. The chromatic number ofG, denoted by χ(G), is the
minimum number k, such that G can be colored in k colors. For a given graph G and
a number k, the coloring problem (the col problem, for short) is to decide whether
χ(G) ≤ k or not.

The weighted coloring problem is a generalization of the coloring problem. For
given a graph G = (V , E) and a functionw : V −→ N∪{0}, a pair (G, w) is called a
weighted graph. A coloring of a weighted graph (G, w) is any function c : V −→ 2N,
where |c(v)| = w(v), for any v ∈ V , and c(v1) ∩ c(v2) = ∅, for any edge v1v2 of G.
All elements of

⋃
v∈V c(v) are also called colors. The weighted coloring problem (the

wcol problem, for short), for a given weighted graph (G, w), is to find the minimum
number k, denoted by χw(G), such that (G, w) admits a coloring in k colors. The
wcol problem becomes the col problem for the all-ones vector of vertex weights.
Notice that none of the colors should be arranged to any zero-weight vertex, and all
these vertices can be removed from any weighted graph with their incident edges.

A class of graphs is called hereditary if it is closed under deletion of vertices. Any
hereditary (and only hereditary) graph class X can be defined by a set of its forbidden
induced subgraphs S, i.e. the minimal under deletion of vertices graphs that do not
belong to X . We write X = Free(S), and the graphs in X are said to be S-free. If
S = {G}, then we write “G-free” instead of “{G}-free”.

The computational complexity of the col problem was intensively studied for
families of hereditary classes, defined by small graphs only or by a small number of
forbidden induced structures.We shouldmention the papers [1–16,18–23] in this field.
We should also mention the interesting papers [17,24–26], concerning graph coloring.
The computational complexity of the col problem was completely determined for all
classes of the form Free({G}) [16]. A study of forbidden pairs was also initiated in
[16]. For all but 3 cases, either NP-completeness or polynomial-time solvability was
shown for the col problem in the family of all hereditary classes, defined by 4-vertex
forbidden induced structures [18].

As usual, On stands for the empty graph on n vertices, Pn stands for the simple path
on n vertices, Kp,q stands for the complete bipartite graph with p vertices in the first
part andq vertices in the secondone.By K+

2,3 wedenote the graph, obtained froma K2,3

by joining its degree 3 vertices with an edge. The graphs K+
2,3, bull, butter f ly,W4

are depicted in Fig. 1.
The computational complexity of the col problem for pairs of connected 5-vertex

forbidden induced fragments was considered in [14,15,19,20,22,23]. At the present
time, the complexity of this problem is still open only for the following pairs of the
mentioned type:

– {K1,3,G}, where G ∈ {bull, butter f ly},
– {P5, H}, where H ∈ {K2,3, K

+
2,3,W4}.

Unfortunately, for none of these 5 open cases, we clarify the complexity status of the
col problem. We consider the intersection of two of them and present a polynomial-
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The computational complexity of weighted vertex coloring… 139

Fig. 1 The graphs K+
2,3, bull, butter f ly, and W4

time algorithm for its graphs. Perhaps, this result will help to design polynomial-time
algorithms for graphs from the initial classes.

In this paper, we show that the wcol problem can be solved in polynomial on the
sum of vertex weights time for {P5, K2,3, K

+
2,3}-free graphs. Hence, the col problem

can be solved in polynomial time on the length of input data for these graphs.

2 Some definitions and notations

For a vertex x of a graph, N (x) is its neighbourhood. Let A and B be non-intersecting
subsets of vertices of a given graph. If all possible edges are present between the sets
A and B, then A is said to be complete to B. If no edges between A and B are present,
then A is said to be anti-complete to B. We assume that A is simultaneously complete
and anti-complete to B, whenever B = ∅.

For a graph G = (V , E) and a subset V ′ ⊂ V , G[V ′] means its subgraph, induced
by V ′, and G \ V ′ means the result of deletion of all vertices in V ′ with their incident
edges.

3 Irreducible graphs and their properties

Let G = (V , E) be a graph. A set M ⊆ V is amodule in G if, for any x ∈ V \ M , x is
adjacent either to all elements of M or to none of them. A module in a graph is trivial
if it contains only one vertex or all vertices of the graph, otherwise, it is non-trivial.
A separating clique in a graph is a clique, whose removal increases the number of
connected components. A graph is called atomic, if it does not contain non-trivial
modules and separating cliques. The following result is well-known, see, for example,
the paper [23].

Lemma 1 For any hereditary class, the wcol problem can be reduced in polynomial
on the length of input data time to its atomic graphs.

The anti-neighbourhood of a vertex v ∈ V is the set V \ N (v), denoted by N (v).

Lemma 2 Let (G, w) be a weighted graph, containing a vertex v, such that N (v) =
{v, v1, . . . , vk} is an independent set. Then, χw(G) = χw′(G \ {v}) + w(v), where
w′(u) = w(u), for any u, not belonging to N (v), and w′(u) = max(w(u)−w(v), 0),
for any u �= v, belonging to N (v).

123

Author's personal copy



140 D. S. Malyshev et al.

Proof As N (v) is independent, then any color, used for v, can also be used for all
other vertices from N (v) \ {v} without changing the feasibility and the total number
of used colors. Therefore, it is sufficient to consider colorings of (G, w), where,
for any u ∈ N (v), some of min(w(v),w(u)) colors of u coincide with some of
min(w(v),w(u)) colors of v. Removing v from G and decreasing w(u), for any
u ∈ N (v) \ {v}, by min(w(v),w(u)) gives the weighted graph (G \ {v}, w′), which
can be colored in χw(G) − w(v) colors. Hence, χw(G) ≥ χw′(G \ {v}) + w(v). On
the other hand, any coloring of (G \ {v}, w′) can be extended to a coloring of (G, w)

by using new w(v) colors to color v and to add any of w(u) − w′(u) new colors to
u, for any u ∈ N (v) \ {v}. Hence, χw(G) ≤ χw′(G \ {v}) + w(v). Therefore, the
statement of this lemma is true. 
�

A graph is irreducible if it is connected, atomic, and the anti-neighbourhood of any
its vertex is not independent. By Lemmas 1 and 2, the following result is true.

Lemma 3 For any hereditary class, the wcol problem can be reduced in polynomial
on the length of input data time to its irreducible graphs.

4 Some complexity results for the weighted coloring problem

The next two Lemmas have been proven in [23].

Lemma 4 The wcol problem for any O3-free weighted graph (G = (V , E), w) can
be solved in O((

∑
v∈V w(v))3) time.

Lemma 5 For each fixed C, the wcol problem can be solved in polynomial time on
the sum of vertex weights in the class of all graphs, having at most C vertices.

LetX be a graph class. ByX ∗ we denote the set of all graphs, obtained from graphs
in X as follows. We take a graph G = (V , E) ∈ X , add vertices v1, v2, u1, u2, add
all edges of the form vvi , where v ∈ V , i ∈ {1, 2}, and the edges v1u1, u1u2, u2v2.
It is easy to check that the new graph contains exactly one induced P4 with degree 2
internal vertices, assuming that G has at least 2 vertices. Hence, for graphs in X ∗, it
is possible to uniquely restore their prefiguration graphs from X in polynomial on the
number of vertices time.

Lemma 6 If X is a hereditary class, then the wcol problem for graphs in X ∗ can be
reduced in polynomial on the sum of vertex weights time to the same problem in X .

Proof Let (H , w) be a weighted graph, where H ∈ X ∗. The prefiguration graph GH

for H can be found in polynomial on the number of its vertices time. By symmetry, one
can assume that w(v1) ≥ w(v2). Let x mean the number of common colors of v1 and
v2 in a considering coloring of (H , w). Hence, there are exactly w(v1) + w(v2) − x
distinct colors for {v1, v2}, each of which cannot be used to color any vertex in GH .
To minimize the number of colors, used for {u1, u2}, all of the remaining w(v1) − x
colors for v1 can be used to color u2. Similarly, all of the remaining w(v2) − x colors
for v2 can be used to color u1. Hence, to color u1 and u2, we need exactly

χ ′
x = max(w(u1) − w(v2) + x, 0) + max(w(u2) − w(v1) + x, 0)
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The computational complexity of weighted vertex coloring… 141

colors. Therefore, χw(H) = minx≤w(v2)(w(v1)+w(v2)− x +max(χw(G), χ ′
x )). So,

this lemma holds. 
�

5 Some properties of irreducible {P5,K2,3,K+
2,3}-free graphs

LetG = (V , E) be an irreducible {P5, K2,3, K
+
2,3}-free graph andC = (v1, v2, v3, v4)

be an arbitrary its induced cycle with 4 vertices. We associate with G and C the
following notations, assuming throughout the paper for indices to be taken modulo 4:

1. for any 1 ≤ i ≤ 4, Vi is the set of all vertices v, such that N (v) ∩ V (C) = {vi }.
2. for any1 ≤ i ≤ 4,V ′

i is the set of all vertices v, such that N (v)∩V (C) = {vi , vi+1}.
3. for any 1 ≤ i ≤ 4, V ′′

i is the set of all vertices v, such that N (v) ∩ V (C) =
{vi , vi+1, vi+2}.

4. WC is the set of all vertices, adjacent to all vertices of C , and SC is the set of all
vertices, not having a neighbour on C .

Further, we will prove several relations between the sets, defined above.

Lemma 7 Any vertex of G, having a neighbour on C, belongs to

V (C) ∪
4⋃

i=1

(Vi ∪ V ′
i ∪ V ′′

i ) ∪ WC .

Any element in
⋃4

i=1(Vi ∪ V ′
i ) has no neighbours in SC .

Proof Assume that there is a vertex v /∈ V (C) ∪ ⋃4
i=1(Vi ∪ V ′

i ∪ V ′′
i ) ∪ WC with

N (v) ∩ V (C) �= ∅. Clearly, v must be adjacent to exactly two non-adjacent vertices
of C . Then, v, v1, v2, v3, v4 induce a K2,3.

Assume that some element of v ∈ Vi ∪ V ′
i has a neighbour u ∈ SC . Then either

u, v, vi , vi+1, vi+2 or u, v, vi+1, vi+2, vi+3 induce a P5. 
�
Lemma 8 For any i , Vi is anti-complete to

Vi−1 ∪ Vi+1 ∪ V ′
i ∪ V ′

i+3 ∪ V ′′
i+1 ∪ V ′′

i+3 ∪ WC

and complete to Vi+2 ∪ V ′
i+1 ∪ V ′

i+2. For any i , V
′
i is complete to V ′

i+1 ∪ V ′
i+3. For

any i , V ′′
i is a clique.

Proof Let v ∈ Vi . If v is adjacent to a vertex u ∈ Vi−1 ∪ Vi+1, then either
u, v, vi , vi+1, vi+2 or u, v, vi , vi+3, vi+2 induce a P5. If v is adjacent to a vertex
u ∈ V ′

i ∪ V ′
i+3, then either v, u, vi+1, vi+2, vi+3 or v, u, vi+3, vi+2, vi+1 induce a P5.

If v is adjacent to a vertex u ∈ V ′′
i+3 ∪ WC , then v, u, vi+3, vi , vi+1 induce a K+

2,3. If
v is adjacent to a vertex u ∈ V ′′

i+1, then v, u, vi , vi+1, vi+3 induce a K2,3.
Let v ∈ Vi and u ∈ Vi+2. If v and u are not adjacent, then v, vi , vi+1, vi+2, u

induce a P5. Now, let v ∈ Vi and u ∈ V ′
i+1 ∪ V ′

i+2. If v and u are not adjacent, then
either u, vi+2, vi+3, vi , v or v, vi , vi+1, vi+2, u induce a P5.
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142 D. S. Malyshev et al.

Let v ∈ V ′
i and u ∈ V ′

i+1 ∪ V ′
i+3. If vu /∈ E , then either v, vi , vi+3, vi+2, u or

v, vi+1, vi+2, vi+3, u induce a P5.
Assume that vertices v ∈ V ′′

i and u ∈ V ′′
i are not adjacent. Then, v, u, vi , vi+2, vi+3

induce a K2,3. 
�
Lemma 9 If Vi �= ∅, then each of the pairs (V ′

i , V
′
i+2) and (V ′

i+1, V
′
i+3) contains the

empty set. If Vi �= ∅ and Vi+1 �= ∅, then Vi+2 = Vi+3 = ∅ and V ′
i+2 �= ∅, V ′

i = ∅.
Proof Let us prove the first statement. By symmetry, it is enough to consider the case,
when a ∈ V ′

i and b ∈ V ′
i+2. By Lemma 8, we have bc ∈ E and ac /∈ E , where c ∈ Vi .

Then, c, b, vi+2, vi+1, a induce a P5, if ba /∈ E , or c, b, a, vi , vi+3 induce a K2,3, if
ba ∈ E .

Assume that Vi �= ∅ and Vi+1 �= ∅. By Lemma 8, Vi is anti-complete to Vi+1.
Additionally, suppose that Vi+2 ∪ Vi+3 �= ∅. If Vi+2 �= ∅, then Vi+2 is complete to Vi
and anti-complete to Vi+1, by Lemma 8. Then, any vertex of Vi+2, any vertex of Vi ,
vi , vi+1, any vertex of Vi+1 induce a P5. Hence, Vi+2 = ∅. Similarly, Vi+3 = ∅.

Now, additionally suppose that V ′
i+2 = ∅. By Lemma 7, the set SC is anti-complete

to Vi ∪ Vi+1. By Lemma 8, Vi is anti-complete to V ′
i ∪ V ′

i+3 ∪ V ′′
i+1 ∪ V ′′

i+3 ∪WC . By
the same reasons, Vi+1 is anti-complete to V ′

i ∪V ′
i+1 ∪V ′′

i ∪V ′′
i+2 ∪WC . The set V ′′

i+2
is anti-complete to Vi , otherwise, any element of Vi , any element of V ′′

i+2, vi+2, vi+1,
and any element of Vi+1 induce a P5. Similarly, V ′′

i+1 is anti-complete to Vi+1.
As {vi , vi+1} is a clique, but not separating, since G is irreducible, then some

element of Vi and some element of Vi+1 must be adjacent to elements in
⋃4

i=1(V
′
i ∪

V ′′
i ). Let x be an arbitrary element of Vi and y be an arbitrary element of Vi+1,

both having neighbours in
⋃4

i=1(V
′
i ∪ V ′′

i ). Suppose that z′ ∈ V ′
i+3. Then, yz

′ ∈ E ,
by Lemma 8. Then, by the first part of this lemma, V ′

i+1 = ∅. Hence, there is a
vertex z′′ ∈ V ′′

i , such that xz′′ ∈ E . If z′z′′ /∈ E , then y, z′, vi+3, vi+2, z′′ induce
a P5, otherwise, x, vi , vi+1, z′, z′′ induce a K+

2,3. Therefore, we will consider that
V ′
i+3 = V ′

i+1 = ∅. If yz1 ∈ E and xz2 ∈ E , where z1 ∈ V ′′
i+3, z2 ∈ V ′′

i , then
z1z2 ∈ E , otherwise, y, z1, vi+3, vi+2, z2 induce a P5. By this fact and as V ′′

i , V ′′
i+3

are both cliques, by Lemma 8, {vi , vi+1} ∪ V 1
i ∪ V 2

i is a separating clique, where

V 1
i = {v ∈ V ′′

i+3| ∃u ∈ Vi+1, vu ∈ E} and V 2
i = {v ∈ V ′′

i | ∃u ∈ Vi , vu ∈ E}.
Hence, V ′

i+2 must be non-empty. By Lemma 8, V ′
i+2 is complete to Vi ∪ Vi+1.

Suppose that V ′
i �= ∅. Then, by Lemma 8, V ′

i is anti-complete to Vi ∪ Vi+1. Hence,
V ′
i is anti-complete to V ′

i+2, as G is K2,3-free. Then, G contains an induced P5. Thus,
V ′
i = ∅. 
�

Lemma 10 For any i , Vi is either empty or independent.

Proof Assume the opposite, i.e. that Vi �= ∅ and it is not independent, for some i . Let
Ṽ be the vertex set of an arbitrary connected component with at least 2 vertices of
G[Vi ]. Notice that Ṽ exists, as Vi is not independent. Let us show that Ṽ is a non-trivial
module in G.

By Lemmas 7, 8, and the choice of Ṽ , Ṽ is anti-complete to

(Vi \ Ṽ ) ∪ SC ∪ Vi+3 ∪ Vi+1 ∪ V ′
i ∪ V ′

i+3 ∪ V ′′
i+1 ∪ V ′′

i+3 ∪ WC
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and complete to Vi+2 ∪ V ′
i+1 ∪ V ′

i+2. Let j ∈ {i, i + 2}. If Ṽ is not complete to V ′′
j ,

then either Ṽ is anti-complete to V ′′
j or there are vertices x, y ∈ Ṽ , z ∈ V ′′

j , such
that xy ∈ E, yz ∈ E, xz /∈ E . Hence, either x, y, z, vi+2, vi+3 or x, y, z, vi+2, vi+1
induce a P5. We have a contradiction. Hence, the assumption was false. 
�
Lemma 11 If C dominates the maximum number of vertices among all induced cycles
with 4 vertices, then SC must be empty.

Proof Assume the opposite. By Ṽ we denote the set of all vertices, each of which
lies outside SC and has a neighbour in SC . This set is not empty. By Lemma 7, we
have that Ṽ ⊆ ⋃4

i=1 V
′′
i ∪ WC . If an element v ∈ ⋃4

i=1 V
′′
i has a neighbour s ∈ SC

and ss′ ∈ E , where s′ ∈ SC and s′v /∈ E , then s′, s, v, and some two vertices of
C induce a P5. If non-adjacent elements v1, v2 ∈ ⋃4

i=1 V
′′
i ∪ WC have neighbours

u1 ∈ SC ∩(N (v1)\N (v2)) and u2 ∈ SC ∩(N (v2)\N (v1)), then u1u2 ∈ E , otherwise,
v1, v2, u1, u2, and somevertex ofC induce a P5.Hence, if v1 or v2 belongs to

⋃4
i=1 V

′′
i ,

then G is not P5-free, by the previous statement.
AsG does not contain separating cliques, then Ṽ is not a clique. Therefore, there are

non-adjacent vertices in Ṽ . Suppose that a ∈ Ṽ and b ∈ Ṽ are arbitrary non-adjacent
vertices.

Suppose that there is a vertex c ∈ SC , simultaneously adjacent to a and b. If
{a, b} ∩ WC �= ∅, then both a and b are simultaneously adjacent to two non-adjacent
vertices of C . Hence, G contains an induced copy of a K2,3. Therefore, a ∈ V ′′

i and
b ∈ V ′′

j . By Lemma 8, j �= i . If j = i + 2, then vi+1, a, c, b, vi+3 induce a P5. Thus,
wemay consider that j = i+1. AsC dominates the maximum number of vertices and
(vi , a, vi+2, vi+3), (vi , vi+1, b, vi+3) are induced cycles, then Vi+1 �= ∅ and Vi+2 �=
∅. Hence, by Lemma 9, there exists a vertex d ∈ V ′

i+3. By Lemma 7, dc /∈ E . To avoid
the induced paths (d, vi , vi+1, b, c) and (d, vi+3, vi+2, a, c), da and db are edges of
G. Then, a, d, c, d, vi+1 induce a K2,3. Therefore, any two non-adjacent elements of Ṽ
have no a common neighbour in S. Hence, a, b ∈ WC and SC ∩ (N (a)\N (b)) is com-
plete to SC ∩(N (b)\N (a)). Let a′ ∈ SC ∩(N (a)\N (b)) and b′ ∈ SC ∩(N (b)\N (a).

Suppose that some vertex x ∈ Ṽ \ {a, b} has a neighbour x ′ ∈ SC . If x ′ ∈ N (a) ∪
N (b), then x ′, two non-adjacent vertices of C , x , and a vertex in {a, b} induce either
a K2,3 or a K

+
2,3. Hence, x has no neighbours in (N (a) ∪ N (b)) ∩ SC . The vertex x is

simultaneously adjacent toa andb, otherwise, x, v j , a, a′, b′ or x, v j , b, b′, a′ induce a
P5, for some j . The vertex x ′ is adjacent to at least one vertex in {a′, b′} (say, a′), other-
wise, x ′, x, a, a′, b′ induce a P5. Hence, b, v1, a, a′, x ′ induce a P5. Thus, Ṽ = {a, b}.

If there is a vertex v′ ∈ ⋃4
i=1 Vi , then av′ /∈ E, bv′ /∈ E, v′a′ /∈ E, v′b′ /∈ E , by

Lemmas 7 and 8. Then, v′, a vertex on C , a, a′, b′ induce a P5. Hence,
⋃4

i=1 Vi = ∅.
If there is a vertex v′′ ∈ V ′

i , non-adjacent to a, then v′′a′ /∈ E, v′′b′ /∈ E , and
v′′, vi , a, a′, b′ induce a P5. Hence, {a, b} is complete to V ′

i . Similarly, {a, b} is com-

plete to
⋃4

i=1 V
′′
i ∪ (WC \ {a, b}). Hence, ⋃4

i=1({vi } ∪ V ′
i ∪ V ′′

i ) ∪ (WC \ {a, b}) is
a non-trivial module in G.

So, our initial assumption was false. 
�
We will assume up to the end of this section that C is an induced cycle with 4

vertices, dominating the maximum number of vertices of G. By Lemma 11, SC = ∅.
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Lemma 12 If Vi �= ∅ and Vi+1 �= ∅, then |V | ≤ 11.

Proof By Lemmas 8 and 9, Vi+2 = Vi+3 = ∅, V ′
i+2 �= ∅, V ′

i = ∅, and Vi ∪ Vi+1 is
complete to V ′

i+2. Hence, by Lemma 10, we have Vi = {a}, otherwise, Vi is indepen-
dent and any two its elements, vi , vi+3, any element of V ′

i+2 induce a K2,3. Similarly,
Vi+1 = {b}. By Lemma 8, ab /∈ E and V ′′

i+3 is anti-complete to {a}. By Lemma 8,
V ′
i+2 is complete to V ′

i+1 ∪ V ′
i+3, WC is anti-complete to {a, b}, V ′

i+1 is complete to
{a} and anti-complete to {b}, V ′

i+3 is complete to {b} and anti-complete to {a}.
The set V ′′

i+3 is complete to V ′
i+2, otherwise, vi+2, some vertex of V ′

i+2, a, vi , and
some vertex of V ′′

i+3 induce a P5. Hence, V ′′
i+3 is complete to {b}, otherwise, any

element of V ′′
i+3, b, vi+1, vi+2, any element of V ′

i+2 induce a K2,3. Therefore, V ′′
i+3 is

complete to V ′
i+2∪{b} and anti-complete to {a}. Similarly, V ′′

i is complete to V ′
i+2∪{a}

and anti-complete to {b}. The set V ′
i+2 is complete toWC , otherwise, b, an element of

V ′
i+2, a, vi , an element ofWC induce a P5. Hence, V ′

i+1 is complete toWC , otherwise,
vi+3, an element ofWC , vi+1, an element of V ′

i+1, a induce a P5. Thus,WC is complete
to V ′

i+1 ∪ V ′
i+3. The set V

′′
i+3 is complete to WC , otherwise, any element of V ′

i+2, an
element ofWC , vi , a, an element of V ′′

i+3 induce a K2,3. Hence, V ′′
i+3∪V ′′

i is complete
to WC .

Let us show that V ′′
i+2 = ∅. Suppose the opposite, and let v ∈ V ′′

i+2. By Lemma 8,
bv /∈ E . Then, va /∈ E , otherwise, a, v, vi+2, vi+1, b induce a P5. Thus, {a, b} is
anti-complete to V ′′

i+2. The vertex v is adjacent to all vertices of V ′
i+2, otherwise,

v, vi , a, an element of V ′
i+2, b induce a P5. The vertex v is adjacent to all vertices

of WC , otherwise, v, vi+3, an element of WC , vi+1, b induce a P5. Therefore, V ′′
i+2

is complete to V ′
i+2 ∪ WC . The set V ′′

i+2 is complete to V ′′
i+3, otherwise, a, vi , any

element of V ′
i+2, an element of V ′′

i+2, an element of V ′′
i+3 induce a K2,3. The set V ′′

i+2
is anti-complete to V ′′

i , otherwise, vi+3, some element of V ′′
i+2, some element of V ′′

i ,
vi+1, b induce a P5.

Suppose that u ∈ V ′
i+1∪V ′

i+3∪V ′′
i+1. If u ∈ V ′

i+3, then bu ∈ E . The vertices u and v

must be adjacent, otherwise, v, u, a, vi , an element of V ′
i+2 induce a K2,3. If u ∈ V ′′

i+1,
then au /∈ E . The vertices u and v must be adjacent, otherwise, a, vi , v, vi+2, u
induce a P5. Suppose that u ∈ V ′

i+1. Then, v and u must be non-adjacent, otherwise,
vi+3, v, u, vi+1, b induce a P5. Hence, V ′′

i+2 is complete to V ′
i+3 ∪ V ′′

i+1 and anti-
complete to V ′

i+1. Recall that V
′′
i+2 is a clique, by Lemma 8. Then, V ′′

i+2 ∪ {vi+3} is a
non-trivial module in G. Thus, V ′′

i+2 = ∅. Similarly, V ′′
i+1 = ∅.

Suppose that V ′′
i+3 �= ∅. Suppose that there is a vertex x ∈ V ′

i+1 ∪ V ′′
i . Then, {x} is

complete to V ′
i+2 ∪ {a} and xb /∈ E . To avoid an induced P5, formed by a, b, x , any

vertex of V ′
i+2, and any vertex of V

′′
i+3, {x}must be complete to V ′′

i+3. Then, a, any ver-
tex of V ′′

i+3, x, vi+2, and any vertex of V ′
i+2 induce a K

+
2,3. Hence, V

′
i+1∪V ′′

i = ∅. The
set V ′

i+3 is complete to V ′
i+2∪{b} and anti-complete to {a}. Hence, V ′

i+3 must be com-
plete to V ′′

i+3, otherwise, some element of V ′′
i+3, some element of V ′

i+3, some element
of V ′

i+2, a, vi+3 induce a K2,3. Thus, each of the setsWC , V ′
i+1, V

′
i+2, V

′
i+3, V

′′
i , V ′′

i+3
has at most one element, as it is a module in G. By Lemma 9, at least one of the sets
V ′
i+1 and V

′
i+3 is empty. Hence,G has at most 11 vertices. The same is true, if V ′′

i �= ∅.
Suppose that V ′′

i = V ′′
i+3 = ∅. Each of the sets WC , V ′

i+1, V
′
i+2, V

′
i+3 has at most

one element, as it is a module in G. Therefore, |V ′
i+2| = 1. By Lemma 9, at least one

of the sets V ′
i+1 and V ′

i+3 is empty. So, |V | ≤ 9. 
�
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Lemma 13 If Vi �= ∅ and V ′
i+1 �= ∅, V ′

i+2 �= ∅, then |V | ≤ 12.

Proof By Lemma 8, Vi is complete to V ′
i+1 ∪ V ′

i+2 and V ′
i+1 is complete to V ′

i+2. By
Lemma 9, V ′

i = V ′
i+3 = ∅. By Lemma 12, we may assume that Vi+1 = Vi+3 = ∅.

The set Vi contains only one element (say, a), otherwise, by Lemmas 8 and 10, Vi is
independent and any two its elements, vi , vi+3, any element of V ′

i+2 induce a K2,3.
If |Vi+2| ≥ 2, then Vi+2 is independent, by Lemma 10, Vi+2 is complete to Vi and
anti-complete to V ′

i+1∪V ′
i+2, by Lemma 8. Hence, a, vi+2, any two elements of Vi+2,

any element of V ′
i+2 induce a K2,3. Therefore, |Vi+2| ≤ 1.

Let us show that V ′′
i+3 = ∅ and each of the sets V ′

i+1, V
′
i+2, V

′′
i , V ′′

i+1, V
′′
i+2,WC is a

module in G. By Lemma 8,WC is anti-complete to Vi ∪Vi+2. The setWC is complete
to V ′

i+1 ∪ V ′
i+2, otherwise, vi+3, an element of WC , vi+1, an element of V ′

i+1 ∪ V ′
i+2,

a induce a P5.
If v ∈ V ′′

i+3, then va /∈ E , by Lemma 8. The set {v} is complete to V ′
i+2, otherwise,

v, vi , a, an element of V ′
i+2, vi+2 induce a P5. Similarly, {v} is complete to V ′

i+1.
Hence, v, a, vi+2, any element of V ′

i+1, any element of V ′
i+2 induce a K+

2,3. Hence,
V ′′
i+3 = ∅.
By Lemma 8, V ′′

i+1 is anti-complete to Vi ∪ Vi+2. The set V ′′
i+1 is complete to WC ,

otherwise, an element of V ′′
i+1, vi+2, an element ofWC , vi , a induce a P5. The set V ′′

i+1
is complete to V ′

i+1 ∪ V ′
i+2, otherwise, vi+1, vi+3, a, an element of V ′′

i+1, an element
of V ′

i+1 ∪ V ′
i+2 induce a P5.

Suppose that u is an arbitrary vertex ofV ′′
i . If u is adjacent to a vertex u

′ ∈ V ′
i+2, then

itmust be adjacent to a, otherwise, u, a, vi , vi+3, u′ induce a K2,3. Then, a, vi+1, u′, u,
and any vertex of V ′

i+1 induce either a K2,3 or a K
+
2,3. Therefore, {u} is anti-complete

to V ′
i+2. Then, au /∈ E , otherwise, vi+1, u, a, an element of V ′

i+2, vi+3 induce a P5.
The set {u} is complete to V ′

i+1, otherwise, vi+3, an element of V ′
i+2, any element of

V ′
i+1, vi+1, u induce a P5. The vertex u is not adjacent to the vertex in Vi+2, otherwise,

u, the vertex in Vi+2, a, any vertex in V ′
i+2, vi+3 induce a P5. The set {u} is complete

to WC , otherwise, u, vi+1, some vertex of WC , vi+3, and any element of V ′
i+2 induce

a P5. The set {u} is complete to V ′′
i+1, otherwise, a, vi , u, vi+2, an element of V ′′

i+1
induce a P5.

Hence, V ′′
i is complete to V ′

i+1∪V ′′
i+1∪WC and anti-complete to Vi ∪Vi+2 ∪V ′

i+2.
Similarly, V ′′

i+2 is complete to V ′
i+2∪V ′′

i+1∪WC and anti-complete to Vi ∪Vi+2∪V ′
i+1.

If u is adjacent to u′′ ∈ V ′′
i+2, then vi+1, u, u′′, any vertex in V ′

i+2, a induce a P5. Hence,
V ′′
i is anti-complete to V ′′

i+2.
So, each of the sets V ′

i+1, V
′
i+2, V

′′
i , V ′′

i+1, V
′′
i+2,WC is a module in G. Therefore,

each of them has at most one element and |V | ≤ 12. 
�

Lemma 14 If Vi �= ∅, then either Vi+1 ∪ Vi+2 ∪ Vi+3 �= ∅ or V ′
i+1 �= ∅, V ′

i+2 �= ∅.

Proof Assume the opposite. Then, Vi+1 = Vi+2 = Vi+3 = ∅ and (V ′
i+1 = ∅ or

V ′
i+2 = ∅). By Lemma 10, Vi is an independent set. By Lemma 8, Vi is anti-complete

to V ′
i ∪ V ′

i+3 ∪ V ′′
i+1 ∪ V ′′

i+3 ∪ WC . Let

V 1
i = {v ∈ V ′′

i | ∃u ∈ Vi , vu ∈ E} and V 2
i = {v ∈ V ′′

i+2| ∃u ∈ Vi , vu ∈ E}.
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Let us show that V 1
i ∪ V 2

i is the empty set or a clique. Suppose the opposite.
Then, there are non-adjacent vertices u1 ∈ V 1

i , u2 ∈ V 2
i , such that there are vertices

v1, v2 ∈ Vi , for which we have v1u1 ∈ E and v2u2 ∈ E . By Lemma 8, one may
consider that u1 ∈ V ′′

i , u2 ∈ V ′′
i+2, as, by Lemma 8, V 1

i and V 2
i are cliques. As G is

K+
2,3-free, v2u1 /∈ E, v1u2 /∈ E . Therefore, v1, u1, vi+2, u2, v2 induce a P5. Hence,

V 1
i ∪ V 2

i is the empty set or a clique.
As G is irreducible, {vi } ∪ V 1

i ∪ V 2
i is a clique, but not separating. Therefore, at

least one of the sets V ′
i+1 and V ′

i+2 is not empty. By our assumption, at least one (say,
V ′
i+2) of these sets is empty. Hence, V ′

i+1 �= ∅. Then, V ′
i+3 = ∅, by Lemma 9. By

Lemma 8, Vi is complete to V ′
i+1. By this fact and as G is K2,3-free, we have that

Vi = {a} and V ′
i+1 is a clique.

Let x ∈ WC . Then, xa /∈ E . By Lemma 8, V ′
i+1 is complete to V ′

i . The set {x} is
complete to V ′

i+1, to avoid a P5, induced by vi+3, x, vi+1, an element of V ′
i+1, and

a. The set {x} is complete to V ′
i , to avoid a K2,3, induced by a, x, vi , any element of

V ′
i+1, and an element of V ′

i . Therefore, WC is complete to V ′
i ∪ V ′′

i

As G is irreducible, the set N (vi+1) is not independent. Therefore, V ′′
i+2 �= ∅. Let

v ∈ V ′′
i+2. Then, {v} is anti-complete to {a} ∪ V ′

i+1 or complete to {a} ∪ V ′
i+1. Indeed,

if va ∈ E , then vi+3, v, a, any element of V ′
i+1, non-adjacent to v, vi+1 induce a P5.

If va /∈ E and v is adjacent to an element in V ′
i+1, then this element, a, vi , vi+1, x

induce a K2,3.
Let us show that {v} is complete to V ′′

i+1 ∪ V ′′
i+3. By Lemma 8, {a} is anti-complete

to V ′′
i+1 ∪ V ′′

i+3. Let u ∈ V ′′
i+1 ∪ V ′′

i+3, such that vu /∈ E . Notice that {u} is complete
to V ′

i+1, otherwise, vi+3, u, vi+1, an element of V ′
i+1, a induce a P5. Then, {v} is

complete to {a}∪V ′
i+1, otherwise, u, vi+2, v, vi , a or v, vi+3, u, vi+1, and an element

of V ′
i+1 induce a P5. Then, vi+1, u, vi+3, v, a induce a P5. The set {v} is complete

to WC , otherwise, v, vi+3, an element of WC , vi+1, a induce a P5. Therefore, V ′′
i+2 is

complete to V ′′
i+1 ∪ V ′′

i+3 ∪ WC .
Let us show that {v} is complete to {a} ∪ V ′

i+1. Suppose the opposite. If there is a
vertex u ∈ V ′

i , adjacent to v, then ua /∈ E and vi+3, v, u, vi+1, any element of V ′
i+1

induce a P5. Hence, {v} is anti-complete to V ′
i . If there is a vertex u ∈ V ′′

i , adjacent to
v, then {u} is complete to V ′

i+1, otherwise, vi+3, v, u, vi+1, an element of V ′
i+1 induce

a P5. Similarly, au ∈ E , otherwise, vi+3, v, u, any element of V ′
i+1, and a induce a P5.

Then, a, v, u, vi , vi+1 induce a K+
2,3. Hence, {v} is anti-complete to V ′′

i . Therefore,
V ′′
i+2 is complete to V ′

i+1∪WC and anti-complete to V ′
i . By Lemma 8, V ′′

i+2 is a clique.
Therefore, {v, vi+3} is a module in G. Thus, {v} is really complete to {a} ∪ V ′

i+1.
The set V ′′

i+3 is empty, otherwise, if y ∈ V ′′
i+3, then {y} is complete to V ′

i+1, to avoid
a P5, induced by y, vi+3, vi+2, any element of V ′

i+1, and a. Hence, a, y, v, vi+2, and
any element of V ′

i+1 induce a K+
2,3. The set V

′
i is empty, otherwise, if y ∈ V ′

i , then

ya /∈ E and either a, v, vi+2, vi+1, y induce a P5 or a, v, y, vi , vi+3 induce a K
+
2,3. If

there is a vertex y ∈ V ′′
i , such that vy ∈ E , then ay ∈ E , to avoid the K+

2,3, induced
by a, v, y, vi , vi+3. Hence, any vertex in V ′′

i+2, having a neighbour in V ′′
i , is adjacent

to a. If z ∈ V ′′
i+2, z �= v, then zy ∈ E , to avoid a P5, induced by vi+1, y, a, z, vi+3.

Thus, all vertices of V ′′
i+2 have the same neighbourhoods in V ′′

i .
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Let V̂ ′′
i be the set of all vertices of V ′′

i , each of which does not have a neighbour in

V ′′
i+2. Let us show that V̂ ′′

i = ∅. Suppose the opposite. Recall that V ′
i = ∅, V ′′

i+3 = ∅,
V ′
i+1 �= ∅, V ′′

i+2 �= ∅, and V ′′
i+2 is complete to V ′′

i+1 ∪ WC . The set V̂ ′′
i is complete to

V ′
i+1, otherwise, an element of V̂ ′′

i , vi+1, any element of V ′
i+1, any element of V ′′

i+2,

vi+3 induce a P5. The set V̂ ′′
i is anti-complete to {a}, otherwise, vi+1, an element of

V̂ ′′
i , a, any element of V ′′

i+2, vi+3 induce a P5. The V̂ ′′
i is complete to WC , otherwise,

an element of V̂ ′′
i , vi+1, an element of WC , any element of V ′′

i+2, a induce a P5. If

x ∈ V ′′
i+1, then ax /∈ E and {x} is complete to V ′′

i+2. Then, {x} is complete to V̂ ′′
i ,

otherwise, a, vi , an element of V̂ ′′
i , vi+2, x induce a P5. By Lemma 8, V ′′

i is a clique.

Therefore, V̂ ′′
i is complete to (V ′′

i \ V̂ ′′
i ) ∪ V ′

i+1 ∪ V ′′
i+1 ∪ WC and anti-complete to

{a} ∪ V ′′
i+2. Thus, {vi+1} ∪ V̂ ′′

i is a non-trivial module in G. Hence, V̂ ′′
i = ∅, as G is

irreducible.
Thus, V ′

i = ∅, V ′′
i+3 = ∅, V ′′

i+2 is complete to {a} ∪ V ′
i ∪ V ′′

i ∪ V ′′
i+1 ∪ V ′′

i+3 ∪ WC ,
and V ′′

i+2 is a clique. Hence, for any v ∈ V ′′
i+2, its anti-neighbourhood consists of v

and vi+1. So, G is not irreducible. Our initial assumption was false. 
�
Lemma 15 If Vi and Vi+2 are simultaneously not empty, then either |V | ≤ 12 or
G ∈ (Free({O3}))∗.
Proof By Lemma 9, we have Vi+1 = Vi+3 = ∅. By Lemma 8, Vi is complete to
Vi+2 ∪ V ′

i+1 ∪ V ′
i+2 and anti-complete to V ′

i ∪ V ′
i+3. Similarly, Vi+2 is complete to

V ′
i ∪V ′

i+3 and anti-complete to V ′
i+1∪V ′

i+2. By Lemma 8, V ′′
i+1∪V ′′

i+3 is anti-complete
to Vi ∪ Vi+2. Hence, V ′′

i+1 ∪ V ′′
i+3 = ∅, otherwise, any element of Vi , any element of

Vi+2, any element of V ′′
i+1 ∪ V ′′

i+3, and vi , vi+2 induce a P5. By Lemma 10, Vi and
Vi+2 are both independent. Hence, to avoid an induced K2,3, |Vi | + |Vi+2| ≤ 3. By
Lemma 8, WC is anti-complete to Vi ∪ Vi+2. By Lemma 8, V ′′

i and V ′′
i+2 are cliques.

If V ′
i �= ∅, V ′

i+3 �= ∅ or V ′
i+1 �= ∅, V ′

i+2 �= ∅, then |V | ≤ 12, by Lemma 13.
Suppose that V ′

i �= ∅ and V ′
i+1 �= ∅. Then, by Lemma 8, V ′

i is complete to Vi+2
and anti-complete to Vi , V ′

i+1 is complete to Vi and anti-complete to Vi+2. Then, any
vertex of Vi , any vertex of Vi+2, any vertex of V ′

i , any vertex of V
′
i+1, and vi+2 induce

a K2,3. Therefore, by Lemma 9, at most one of the sets V ′
i , V

′
i+1, V

′
i+2, V

′
i+3 is not

empty. Hence, if
⋃4

i=1 V
′
i �= ∅, then, by symmetry, V ′

i �= ∅. Recall that

Vi+1 = Vi+3 = V ′
i+1 = V ′

i+2 = V ′
i+3 = V ′′

i+1 = V ′′
i+3 = ∅.

Suppose that V ′
i �= ∅. Then, |Vi | = |Vi+2| = 1, otherwise, by Lemmas 8 and

10, G contains an induced K2,3. Similarly, V ′
i is a clique. The set V ′

i is complete to
WC , otherwise, vi+3, an element of WC , vi+1, an element of V ′

i , and the element of
Vi+2 induce a P5. Therefore, WC = ∅, otherwise, the element of Vi , the element of
Vi+2, any element of V ′

i , any element ofWC , and vi+3 induce a P5. If there is a vertex
c ∈ V ′′

i , adjacent to a ∈ V ′
i and non-adjacent to b ∈ V ′

i , then b, a, c, vi+2, vi+3 induce
a P5. Suppose that there is a vertex c ∈ V ′′

i+2, adjacent to a ∈ V ′
i and non-adjacent

to b ∈ V ′
i . Then, c and the element of Vi are not adjacent, otherwise, a, c, vi , vi+3,
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and the element of Vi induce a K+
2,3. Hence, c and the element of Vi+2 are adjacent,

otherwise, vi+3, c, a, the element of Vi+2, and the element of Vi induce a P5. Then,
vi , b, c, the element of Vi , the element of Vi+2 induce a K2,3. Hence, V ′

i contains
exactly one element.

Let us show that if Vi ∪ Vi+2 is not anti-complete to V ′′
i ∪ V ′′

i+2, then |V | ≤ 9.
Suppose that some vertex v ∈ Vi ∪ Vi+2 has a neighbour in V ′′

i ∪ V ′′
i+2. Without loss

of generality, let v ∈ Vi and Ṽi = {u ∈ V ′′
i | uv ∈ E} �= ∅. Denote by Ṽi+2 the set of

all vertices in V ′′
i+2, adjacent to v.

Let us show that Ṽi+2 = V ′′
i+2. Suppose the opposite. The set Ṽi is complete to

Ṽi+2, otherwise, v, vi+1, vi+3, an element of Ṽi , and an element of Ṽi+2 induce a P5.
The set Ṽi is anti-complete to V ′′

i+2 \ Ṽi+2, to avoid a K
+
2,3, induced by v, vi , vi+1, and

adjacent elements of Ṽi and V ′′
i+2 \ Ṽi+2. Similarly, Ṽi+2 is anti-complete to V ′′

i \ Ṽi .

The set V ′′
i \ Ṽi is anti-complete to V ′′

i+2 \ Ṽi+2, otherwise, v, any element of Ṽi , an

element of V ′′
i \ Ṽi , an element of V ′′

i+2 \ Ṽi+2, and vi+3 induce a P5.

To avoid an induced K+
2,3, Ṽi is anti-complete to Vi \ {v}. If Vi has 2 elements, then

Ṽi is complete to Vi+2, otherwise, v, the element of Vi+2, the element of Vi \ {v}, any
element of Ṽi , and vi+1 induce a P5. If Vi+2 has 2 elements, then any element of Ṽi
has a neighbour in Vi+2, otherwise, Vi ∪ Vi+2 ∪ {vi+1} and an element of Ṽi induce
a K2,3. Hence, the set V ′′

i+2 \ Ṽi+2 is anti-complete to Vi ∪ Vi+2. Indeed, otherwise,

either V ′′
i+2 \ Ṽi+2 and Ṽi have a common neighbour in Vi ∪ Vi+2 or one of the sets

Vi and Vi+2 contains vertices u1 and u2, such that u1 has a neighbour in V ′′
i+2 \ Ṽi+2

and u2 has a neighbour in Ṽi . Therefore, G will contain an induced P5.
To avoid a P5, induced by v, vi+1, vi+3, an element of WC , and an element of

Ṽi∪Ṽi+2, the set Ṽi∪Ṽi+2 is complete toWC . To avoid a P5, induced by v, any element
of Ṽi , an element ofWC , vi+3, an element of V ′′

i+2\Ṽi+2, the set V ′′
i+2\Ṽi+2 is complete

toWC . To avoid a K
+
2,3, induced by v, vi , any element of Ṽi , an element of V ′′

i \ Ṽi , an
element of WC , the set V ′′

i \ Ṽi is complete to WC . Therefore, (V ′′
i+2 \ Ṽi+2) ∪ {vi+3}

is a module in G. As G is irreducible, then Ṽi+2 = V ′′
i+2.

So, Ṽi+2 = V ′′
i+2. Thus, if

⋃4
i=1 V

′
i = ∅, then N (w) ⊆ {w, vi+3} ∪ Vi+2 is

independent, for any w ∈ Ṽi . Suppose that V ′
i = {u}. Then, |Vi | = |Vi+2| = |V ′

i | = 1
and WC = ∅. Then, {u} is anti-complete to Ṽi , to avoid a K2,3 or a K+

2,3, induced

by v, u, vi+2, an element of Ṽi , and any element of Vi+2. If V ′′
i+2 �= ∅, then either

u, vi+1, vi+3, a vertex in Ṽi , a vertex in Ṽi+2 = V ′′
i+2 induce a P5 or v, u, vi+1, vi+3,

a vertex in Ṽi+2 induce a K+
2,3. If there is a vertex w ∈ V ′′

i , adjacent to the vertex in

Vi+2, then N (w) is independent. If Vi+2 is anti-complete to V ′′
i , then Ṽi and V ′′

i \ Ṽi
are modules in G. Hence, |V ′′

i | ≤ 2 and |V | ≤ 9. So, we will assume that Vi ∪ Vi+2
is anti-complete to V ′′

i ∪ V ′′
i+2.

Suppose that V ′
i = {v}. Let us show that |V | = 7. Recall that

Vi+1 = Vi+3 = V ′
i+1 = V ′

i+2 = V ′
i+3 = V ′′

i+1 = V ′′
i+3 = WC = ∅,
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and |Vi | = |Vi+2| = 1. Let u ∈ V ′′
i ∪ V ′′

i+2. If u ∈ V ′′
i , then vu ∈ E , otherwise,

u, vi+1, v, the vertex in Vi+2, and the vertex in Vi induce a P5. If u ∈ V ′′
i+2, then

vu /∈ E , otherwise, vi+3, u, v, the vertex in Vi+2, and the vertex in Vi induce a P5.
Hence, if there are adjacent vertices u ∈ V ′′

i and u′ ∈ V ′′
i+2, then uv ∈ E and u′v /∈ E .

Then, vi+3, u′, u, v, and the vertex in Vi+2 induce a P5. Hence, V ′′
i ∪ {vi+1} and

V ′′
i+2 ∪ {vi+3} are modules in G. Then, V ′′

i = V ′′
i+2 = ∅, as G is irreducible, and

|V | = 7.
Suppose that

⋃4
i=1 V

′
i = ∅. Recall that Vi+1 = Vi+3 = V ′′

i+1 = V ′′
i+3 = ∅.

The sets Vi and Vi+2 are modules in G, and, hence, |Vi | = |Vi+2| = 1. The graph
G \ (Vi ∪ Vi+2 ∪ {vi , vi+2}) is the prefiguration graph for G. Let us check that the
graph H = G \ (Vi ∪ Vi+2) is O3-free. Indeed,

V (H) = V ′′
i ∪ V ′′

i+2 ∪ WC ∪ {v1, v2, v3, v4}.

Let x, y, z be pairwise non-adjacent vertices of H . As V ′′
i and V ′′

i+2 are cliques, by
Lemma 8, then {x, y, z} ∩ {v1, v2, v3, v4} = ∅, |V ′′

i ∩ {x, y, z}| ≤ 1, and |V ′′
i+2 ∩

{x, y, z}| ≤ 1. If each of the sets V ′′
i , V ′′

i+2,WC contains exactly one element of
{x, y, z}, then H has an induced P5. Otherwise, H contains an induced K+

2,3. Thus,
G ∈ (Free({O3}))∗. 
�
Lemma 16 If

⋃4
i=1 Vi = ∅, then G is O3-free.

Proof Firstly, we will prove the following observations: 1) for any i , V ′
i is complete

to V ′′
i ∪ V ′′

i+3, 2) for any i , V
′
i is a clique.

Let us prove the first observation. Suppose that vertices a ∈ V ′
i and b ∈ V ′′

i are not
adjacent. If there is a vertex x ∈ V ′

i+3, then ax ∈ E , by Lemma 8, and xb ∈ E , to
avoid a P5, induced by vi+3, x, a, vi+1, b. Then, a, b, vi , x, vi+3 induce a K

+
2,3. Thus,

V ′
i+3 = ∅. If there is a vertex x ∈ V ′

i+2, then either xa /∈ E or xa ∈ E . In the first
case, bx ∈ E , to avoid a P5, induced by a, vi , b, vi+2, x . Then, a, vi+1, b, x, vi+3
induce a P5. In the second case, bx ∈ E , to avoid a P5, induced by vi+3, x, a, vi+1, b.
Then, a, b, x, vi+3, vi induce a K2,3. Therefore, V ′

i+2 = ∅. The set N (vi+1) is not
independent, as G is irreducible. Hence, there is a vertex c ∈ V ′′

i+2. We will show that
{c, vi+3} is a non-trivial module in G.

The vertex c is simultaneously non-adjacent to a and b. Indeed, if ac ∈ E, bc ∈ E ,
then a, b, c, vi , vi+3 induce a K

+
2,3. If ac ∈ E, bc /∈ E , then vi+3, c, a, vi+1, b induce

a P5. If bc ∈ E, ac /∈ E , then vi+3, c, b, vi+1, a induce a P5. By Lemma 8, {c, vi+3}
is complete to V ′′

i+2 \ {c}. Let v be a vertex in V ′′
i+1, non-adjacent to c. To avoid a P5,

induced by c, vi+3, v, vi+1, a or b, we have va ∈ E and vb ∈ E . Then, a, b, v, vi , vi+3
induce a K2,3. Hence, {c, vi+3} is complete to V ′′

i+1. Similarly, {c, vi+3} is complete
to V ′′

i+3. Let v �= b be a vertex in V ′′
i , adjacent to c. Then, vb ∈ E , by Lemma 8. To

avoid a P5, induced by vi+3, c, v, vi+1, a, we have va ∈ E . Then, a, b, c, v, vi induce
a K+

2,3. Therefore, {c, vi+3} is anti-complete to V ′′
i .

Let u �= a be a vertex in V ′
i , adjacent to c. To avoid a P5, induced by vi+3, c, u, vi+1,

a or b, we have ua ∈ E and ub ∈ E . Then, a, b, c, u, vi induce a K+
2,3. Therefore,

{c, vi+3} is anti-complete to V ′
i . Let u be a vertex in V

′
i+1, adjacent to c. Then, ua ∈ E ,

by Lemma 8. To avoid a P5, induced by vi+3, c, u, vi+1, b, we have ub ∈ E . Then,
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a, b, c, u, vi induce a K2,3. Therefore, {c, vi+3} is anti-complete to V ′
i+1. If there is a

vertex u ∈ WC , non-adjacent to c, then ua ∈ E, ub ∈ E , to avoid a P5, induced by
c, vi+3, u, vi+1, a or b. Then, vi , u, vi+3, a, b induce a K+

2,3. Therefore, {c, vi+3} is
complete to WC . So, {c, vi+3} is a non-trivial module in G. Hence, for any i , V ′

i is
complete to V ′′

i ∪ V ′′
i+3.

Let us prove the second statement. Suppose that V ′
i is not a clique. Then, V

′′
i ∪V ′′

i+3
is empty. Indeed, if an element belongs to this set, then it must be adjacent to all
elements of V ′

i , by the first observation, and G contains an induced K+
2,3. Similarly,

V ′
i+1 ∪ V ′

i+3 = ∅. Let M ⊆ V ′
i be a minimal module among modules in G[V ′

i ],
containing non-adjacent vertices. Hence, for any vertex x ∈ M , {x} is not complete
to M \ {x}.

If there is a vertex v ∈ V ′′
i+1 ∪ V ′′

i+2, adjacent to a vertex x ∈ M , then there is a
vertex y ∈ M , such that xy /∈ E . To avoid a P5, induced by x, y, v, vi+1, vi+3 or
x, y, v, vi , vi+2, we have yv ∈ E . Then, x, y, v, vi+3, vi or x, y, v, vi+1, vi+2 induce
a K+

2,3. Therefore, M is anti-complete to V ′′
i+1 ∪ V ′′

i+2. If there is a vertex v′ ∈ V ′
i+2,

adjacent to x ′ ∈ M , then there is a vertex y′ ∈ M , such that x ′y′ /∈ E . To avoid a P5,
induced by vi+3, v

′, x ′, vi+1, y′, we have v′y′ ∈ E . Then, x ′, y′, v′, vi , vi+3 induce a
K2,3. Therefore, M is anti-complete to V ′

i+2.
Suppose that WC �= ∅. As G is K+

2,3-free, any vertex of WC has a neighbour in M ,
as M is not a clique. Let v′′ ∈ WC , x and y be any non-adjacent vertices of M . As G
is K+

2,3-free, V
′
i ∩ N (v′′) and V ′

i \ N (v′′) are cliques. Hence, xv′′ ∈ E, yv′′ /∈ E or
vice versa. The vertex v′′ is adjacent to all vertices of V ′

i \M , otherwise, x, y, vi+2, an
element of V ′

i \M , and an element ofWC induce a P5. Additionally, V ′
i \M is a clique.

As G is K+
2,3-free, if there are non-adjacent vertices v′

1, v
′
2 ∈ WC , then any vertex of

V ′
i has a neighbour in {v′

1, v
′
2}. Hence, one may assume that xv′

1 ∈ E, yv′
1 /∈ E or

yv′
2 ∈ E, xv′

2 /∈ E . Then, x, v′
1, vi+2, v

′
2, y induce a P5. Therefore, WC is a clique.

Moreover,WC ∪{vi , vi+1}∪ (V ′
i \M) is a clique, which is separating. Thus,WC = ∅.

So, M is a non-trivial module in G. Hence, V ′
i is a clique, for any i .

Now, let us prove that G is O3-free. Suppose the opposite. Let x, y, z be pairwise
non-adjacent vertices of G. Clearly, {x, y, z} ∩ {v1, v2, v3, v4} has at most one vertex.
If this set contains one vertex (say, x), then, by Lemma 8, either y ∈ V ′

i ∪V ′
i+1, z ∈ V ′′

i
(or vice versa) or y, z ∈ V ′

i , for some i . It contradicts to the observations. Suppose
that {x, y, z} ∩ {v1, v2, v3, v4} = ∅. By the second observation and Lemma 8, the set⋃4

i=1 V
′
i ∩ {x, y, z} contains at most two elements.

Suppose that |⋃4
i=1 V

′
i ∩{x, y, z}| = 2.Wemay consider that x ∈ V ′

i and y ∈ V ′
i+2,

by the second observation and Lemma 8. By the first observation, z ∈ WC . Hence, G
contains a P5, induced by x, vi+1, z, vi+3, y.

Suppose that
⋃4

i=1 V
′
i ∩ {x, y, z} = {x}, where x ∈ V ′

i . Then, by the first obser-
vation, we may assume that y, z ∈ WC ∪ V ′′

i+1 ∪ V ′′
i+2. If WC ∩ {y, z} = ∅, then,

by Lemma 8 and the first observation, y ∈ V ′′
i+1, z ∈ V ′′

i+2 or vice versa. Then,
x, vi+1, y, vi+3, z induce a P5. If y, z ∈ WC , then x, y, z, vi , vi+1 induce a K+

2,3.
If only one of y, z belongs to WC , then, by the first observation, we have that
y ∈ WC , z ∈ V ′′

i+1 up to symmetry. Then, z, vi+2, y, vi , x induce a P5.
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Suppose that
⋃4

i=1 V
′
i ∩ {x, y, z} = ∅. If at least two of the vertices x, y, z belong

toWC , then G contains an induced K+
2,3. In all other cases, G contains an induced P5.

So, our assumption about the existence of three pairwise non-adjacent vertices of
G was false. 
�

6 Main result

Theorem 1 The wcol problem can be solved in polynomial on the sum of vertex
weights time for {P5, K2,3, K

+
2,3}-free graphs.

Proof ByLemma3and the reasonings from theprevious section, thewcolproblem for
{P5, K2,3, K

+
2,3}-free graphs can be reduced in polynomial on the number of vertices

time to the same problem for graphs in

(Free({O3}))∗ ∪ Free({P5, K2,2})

and graphs on at most 12 vertices. Thewcol problem can be solved in polynomial on
the length of input data time for {P5, K2,2}-free graphs [14]. Hence, by the mentioned
facts and Lemmas 4–6, this theorem is true. 
�

As a corollary, Theorem 1 implies that the col problem can be solved in polynomial
on the number of vertices time for {P5, K2,3, K

+
2,3}-free graphs.

7 Conclusions and future work

In the present paper, we considered the weighted coloring problem for hereditary
graph classes that are defined by a pair of forbidden induced connected subgraphs,
each on 5 vertices. The computational status of the unweighted version of this problem
has been resolved for all such pairs, except for 5 of them. We proved here that the
weighted coloring problem is polynomial-time solvable for the class of graphs, which
is defined by a triple of forbidden such subgraphs. This class is the intersection of some
of the unresolved cases, mentioned above. We hope that our result will be helpful in
resolving the computational complexity of the (un)weighted coloring problem for the
open cases. Clarifying its complexity status for them is a challenging research problem
for future work.
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