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Abstract. In this article, our ultimate goal is to transform a graph’s ad-
jacency matrix into a distance matrix. Because cluster density is not ob-
servable prior to the actual clustering, our goal is to find a distance whose
pairwise minimization will lead to densely connected clusters. Our thesis
is centered on the widely accepted notion that strong clusters are sets of
vertices with high induced subgraph density. We posit that vertices shar-
ing more connections are closer to each other than vertices sharing fewer
connections. This definition of distance differs from the usual shortest-
path distance. At the cluster level, our thesis translates into low mean
intra-cluster distances, which reflect high densities. We compare three
distance measures from the literature. Our benchmark is the accuracy of
each measure’s reflection of intra-cluster density, when aggregated (av-
eraged) at the cluster level. We conduct our tests on synthetic graphs,
where clusters and intra-cluster density are known in advance. In this ar-
ticle, we restrict our attention to unweighted graphs with no self-loops or
multiple edges. We examine the relationship between mean intra-cluster
distances and intra-cluster densities. Our numerical experiments show
that Jaccard and Otsuka-Ochiai offer very accurate measures of density,
when averaged over vertex pairs within clusters.

1 Introduction

When clustering graphs, we seek to group nodes into clusters of nodes that are
similar to each other. We posit that similarity is reflected in the number of shared
connections. Our node-to-node distances are based on this shared connectivity.
Although a formal definition of vertex clusters (communities) remains a topic of
debate, virtually all authors agree a cluster is a subset of vertices that exhibit a
high level of interconnection between themselves and a low level of connection to
vertices in the rest of the graph [21, 7,19, 20] (we quote these authors, but their
definition is very common across the literature). Consequently, clusters, subsets
of strongly inter-connected vertices, also form dense induced subgraphs.
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Unfortunately, cluster density is not observable prior to the actual clustering.
For this reason, we want a quantity that guides the aggregation of vertices into
clusters, so that they form pockets of vertices separated by smaller than average
distances, pockets of highly inter-connected vertices. To this end, we compare
the accuracy of various node-to-node distance measures in reflecting intra-cluster
density.

2 Distance, Intra-Cluster Density and Graph Clustering
(Network Community Detection)

As mentioned previously, clusters are defined as subsets of vertices that are
considered somehow similar. This similarity is captured by the number of shared
connections and translated into distance. In our model, vertices sharing a greater
number of connections are separated by smaller distances than vertices with
which they share fewer connections. It is important to note here that, in our
definition, distance measures similarity, not geodesic (shortest path) distance.
For example, two vertices with high degrees that share an edge but no other
connection have a geodesic distance of one, but are dissimilar on the basis of
their connectivity. At the cluster level, smaller within-cluster distances reflect
subsets of more densely connected vertices.

In this article, our ultimate goal is to transform a graph’s adjacency matrix
into a |V| x |V| distance matrix D = [d;;], where the distance between each
pair of vertices is given by the element d;;(> 0). This transformation allows
us to cluster using distance minimization techniques from the literature. The
quadratic formulation of Fan and Pardalos [6,5] and the K-medoids technique
[2] are examples of such graph clustering techniques. These formulations can
then be further modified into a QUBO formulation [10]. This reformulation can
then be solved using newly available purpose-built hardware which allows us to
circumvent the NP-hardness of the clustering problem [9, 21,7, 14, 1].

Fig. 1. Graph with Two Clusters

To illustrate our definition of distance, we examine the graph shown in Fig-
ure 1. The graph in that figure is arguably composed of two clusters (triangles),
the red cluster containing vertices vi,vs,v3 and the cyan cluster with vertices
v4, V5, V6. We observe that each cluster forms a dense induced subgraph (clique).



Distances on a Graph 3

We also note that the geodesic distance separating vertices v; and wvs is equal
to the geodesic distance separating vs and v4. Nevertheless, in the context of
clustering, we argue that wvs is closer, more similar, to vy than to vy.

3 Distance Measurements Under Study

We compare three different distance measurements from the literature and ex-
amine how faithfully they reflect connectivity patterns. We argue that mean
node-to-node distance within a cluster should offer an accurate reflection of
intra-cluster density, but move in an opposite direction. Densely connected clus-
ters should display low mean node-node distances.

Intra-cluster density is defined as

| Bk

K® :
0.5 x ng X (nk_ — 1)

intra —

In this definition, |Fgk| is the cardinality of the set of edges connecting two
vertices within the same cluster ‘k’ and nj = |Vj| is the number of vertices
in that same cluster. This ratio also represents the empirical estimate of the
probability two nodes within a cluster are connected by an edge.

We then examine the relationship between mean Jaccard [12], Otsuka-Ochiai
[17] and Burt’s distances [3,7], on one hand, and intra-cluster density within
each cluster, on the other. Because these distances are pairwise measures, we
compare their mean value for a given cluster to the cluster’s internal density.

3.1 Embedding, Commute and Amplified Commute Distances

We begin by calling the reader’s attention to the fact this article is not about
graph embedding. Here, we are not interested in a vector representation of nodes.
We are only interested in the distance separating them.

We also call the reader’s attention to the fact the distance measures under
consideration can all be obtained using simple arithmetic. It is precisely for this
reason that we did not consider the popular “commute distance” and its correc-
tions, like “amplified commute distance” [22,23,18], in this work. While these
distances are known to capture cluster structure, they require matrix inversion
and are very costly to compute [4]. Although some authors have found efficient
approximations that circumvent the need for matrix inversion (e.g., [22]), the
distances under consideration in this article are exact quantities. Exactness of
the distances is a desirable feature, given our ultimate goal to use them to es-
timate intra-cluster density. Additionally, unlike some of the approximations in
the literature, our distances have simple and intuitive interpretations.

3.2 Jaccard Distance
The Jaccard distance separating two vertices ‘4’ and ‘j’ is defined as

i ¢
Gy —1—lanal oo g,
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Here, ¢; (c;) represents the set of all vertices with which vertex ‘ (j)’ shares an
edge.

At the cluster level, we compute the mean distance separating all pairs of
vertices within the cluster, which we denote as J. For an arbitrary cluster ‘%K’
with ny vertices, we have

jk 05><nk>< k_]- Z C”

i,j=i+1

3.3 Otsuka-Ochiai Distance

The Otsuka-Ochiai (OtOc) distance separating two vertices ‘4’ and ‘5’ is defined
as
‘Ci N Cj‘

Vel x el

Here too, we obtain a cluster level measure of similarity by taking the mean over
each pair of nodes within a cluster. We denote this mean as O. Again, for an
arbitrary cluster ‘k’ with nj vertices, we have

05 =1— 6[0,1].

Ok E 0;
O5><’I’Lk>< nk— A
zy =1+1

3.4 Burt’s Distance

Burt’s distance between two vertices ‘4’ and ‘j’, denoted as b;;, is computed using
the adjacency matrix (A) as

z]* E 1k*

k#i,j

At the cluster level, we denote the mean Burt distance as B. As with the
other distances, for an arbitrary cluster ‘k’ with ny, vertices, it is computed as

B = 05><nk>< (ng — 1 Z bij
4,j=i+1

4 Numerical Comparisons

To compare the distance measures and assess the accuracy of each measure as
a reflection of intra-cluster density, we generate synthetic graphs with known
cluster membership, using the NetworkX library’s [11] stochastic block model
generator. In our experiments, we generate several graphs with varying graph
and cluster sizes and inter and intra-cluster edge probabilities. To ensure ease of
readability, we only include a subset of our most revealing results.
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For each test graph in the experiments below, we compute our three vertex-to-
vertex distances. We then compute mean distances between nodes in each cluster
and intra-cluster density. To obtain a graph-wide assessment, we then take the
mean of all cluster quantities over the entire graph. Because our clusters vary in
size, we ensure the well-documented “resolution limit” degeneracy [8] does not
affect our conclusions by taking simple unweighted means, regardless of cluster
sizes.

4.1 Test Data: Synthetic Graphs with Known Clusters

We use the stochastic block model to generate two sets of six graphs, as described
in Table 1. In the first set of experiments, we vary the probability of an intra-
cluster edge, an edge with both ends inside the cluster. To generate noise, we
vary the size (ny) and number of clusters (K) and as a result the total number
of nodes (|V]). For added noise, we also set inter-cluster edge probability to 0.15.
Details are shown in Table 1.

Table 1. Synthetic Graphs and their Characteristics

First Set of Experiments
Graph||Intra Pr|Inter Pr|K| nx | |V|
G1 1 0.15 |39][38,77]|3,641
G2 || 08 | 015 |47|[38,77]|4,703
G3 0.6 0.15 |47|[38,77]|4,326
G4 0.4 0.15 |55([38,77]|5,386
G5 0.2 0.15 |56|[38,77]|5,557

G6 0 0.15 |39|[38,77]|3,705
Second Set of Experiments
G7 1 0.15 |60([38,77]|3,400

G8 0.8 | 0.15 |60([38,77](3,400
G9 0.6 | 0.15 |60([38,77](3,400
G10 || 04 | 0.15 |60{[38,77](3,400
G11 || 02 | 015 |60([38,77](3,400
G12 0 0.15 |60([38,77](3,400

In the second set of experiments, in order to isolate the effect of intra-cluter
edge probability, we keep the total number of clusters, nodes in each cluster
and, consequently, total number of nodes fixed across all graphs. Although our
cluster sizes vary within the graph, they are kept constant in each graph. Clusters
c1,...,ck in graphs G7,...,G12 all have nq,...,nk nodes. In this experiment,
we only vary intra-cluster edge probability. Details are also shown in Table 1.
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4.2 Empirical Results

As mentioned earlier, we have conducted several experiments with varying graph
and cluster sizes and inter and intra-cluster edge probabilities. In the interest of
brevity, we only present the most illustrative subset of our results.

In our first set of experiments, we begin by observing that our results confirm
intra-cluster density is a very accurate estimator of intra-cluster edge probability,
under all scenarios. This observation is consistent with prior work linking densi-
ties and clustering [15, 16]. We also note that both Jaccard and OtOc distances
offer a good reflection of intra-cluster density and that their change under varia-
tions in intra-cluster edge probability are in reversed lock-step with intra-cluster
density. Finally, we note Burt’s distance offers a poor reflection of intra-cluster
density. These results are shown in Table 2.

Table 2. First Set of Graph Experiments (G1-G6)

P_intra
0 0.2 0.4 0.6 0.8 1

Jacc
mean| 0.919 0.918 0.912 0.898 0.879 0.841
stdev| 0.000 0.000 0.002 0.005 0.012 0.020

+1 stdev| 0.919 0.919 0.914 0.903 0.891 0.862

-1 stdev| 0.919 0.918 0.910 0.893 0.867 0.821

OtOc
mean| 0.850 0.849 0.838 0.815 0.784 0.727
stdev| 0.001 0.001 0.003 0.008 0.019 0.030

+1 stdev| 0.851 0.849 0.842 0.823 0.803 0.757

-1 stdev| 0.849 0.848 0.835 0.807 0.765 0.697

Burt
mean| 30.325 37.732 37.355 33.499 34.708 30.059
stdev| 0.125 0.062 0.101 0.095 0.055 0.138

+1 stdev| 30.450 37.794 37.455 33.594 34.763 30.197

-1 stdev| 30.200 37.671 37.254 33.404 34.653 29.921

K_intra
mean| 0.000 0.199 0.400 0.601 0.800 1.000
stdev| 0.000 0.005 0.007 0.008 0.006 0.000

+1 stdev| 0.000 0.204 0.407 0.609 0.806 1.000

-1 stdev| 0.000 0.195 0.393 0.593 0.794 1.000

In our second set of experiments, shown in Table 3, we observe the same
relationship between distances and density. However, we also observe a factor
of two reduction in the noise of both Jaccard and OtOc distances, while Burt’s
distance remains roughly at the same level of noise in both sets of experiments.
A more detailed examination of this noise phenomenon is provided in the next
section.
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Table 3. Second Set of Graph Experiments (G7-G12)

P_intra
0 0.2 0.4 0.6 0.8 1

Jacc
mean| 0.919 0.918 0.913 0.903 0.888 0.868
stdev| 0.000 0.001 0.001 0.003 0.006 0.010

+1 stdev| 0.919 0.919 0.914 0.906 0.894 0.878

-1 stdev| 0.919 0.918 0.911 0.899 0.882 0.858

OtOc
mean| 0.850 0.849 0.840 0.823 0.798 0.767
stdev| 0.001 0.001 0.002 0.005 0.010 0.015

+1 stdev| 0.851 0.850 0.842 0.828 0.808 0.783

-1 stdev| 0.849 0.848 0.837 0.817 0.788 0.752

Burt
mean| 29.190 29.496 29.650 29.641 29.485 29.205
stdev| 0.068 0.073 0.071 0.076 0.061 0.103

+1 stdev| 29.258 29.569 29.721 29.717 29.546 29.308

-1 stdev| 29.122 29.422 29.579 29.566 29.423 29.102

K_intra
mean| 0.000 0.200 0.402 0.599 0.800 1.000
stdev| 0.000 0.011 0.015 0.011 0.011 0.000

+1 stdev| 0.000 0.211 0.417 0.610 0.811 1.000

-1 stdev| 0.000 0.189 0.387 0.588 0.788 1.000

4.3 Noise, Sensitivity and Convergence

To better understand the sensitivity of each distance to variations in intra-cluster
edge probability, we examine their asymptotic convergence. Using their defini-
tions, we study their behavior as intra-cluster edge probability approaches 0 or
1, while keeping all else equal.

For each examination below, we define the following variables:

P;: probability of intra-cluster edge

P,: probability of inter-cluster edge

N': total number of nodes on the graph

— ng: number of nodes in an arbitrary cluster k

— ¢, ¢j: the set of connections of two arbitrary vertices 4, j in the same cluster
— A: the graph’s adjacency matrix

Jaccard (and OtOc)

|Ciﬂ0j|

i=1—1"—"

CJ |CZ'UCj|
~1 Pi2x(nk—2)—|—P02><(N—nk)

" Pix (ng—2)+ P, x (N —ny)
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From this definition, we observe that

PgX(N—TLk)
POX(N—nk)
(nkf2)+P02><(N—nk)

(nk—2)+Po><(N—nk)'

PZ—>0:>C”—>].—

P1—>1:><U_>1_

The main observation here is that while the actual Jaccard distance depends
on the number of nodes in each cluster and the total number of nodes on the
graph, its variation remains in step with intra-cluster edge probability and intra-
cluster density. It is this dependence on the number of nodes in each cluster and
the total number of nodes on the graph that is the main source of additional
variance observed in Table 2 and which is mitigated by keeping cluster sizes
constant across graphs in the second set of experiments shown in Table 3. A
similar argument can be made in the case of OtOc.

Burt’s Distance
bij= | > (An— Az)?
k#i,j

~\2x Pi(1—P)x (ng —2)+2x Py(1—=P,) x (N —ny)

From this definition, we observe that

Pi— 0= b — /2x P,(1—P,) x (N —ny)
Pi— 1= b — /2 x P,(1 = P,) x (N —ng).

On the other hand, the asymptotic behavior of Burt’s distance explains why
it is a poor reflection of intra-cluster density. We see that as P; moves toward
either extreme, Burt’s distance moves toward the same quantity. It should also
be noted that it is unbounded and grows with the number of nodes on the graph.
In fact, as the total number of nodes increases in proportion to cluster size, the
intra-cluster portion is minimized, since (ny —2) < (N — ng).

5 Our Chosen Distance

Both Jaccard and OtOc distances are very accurate reflections of intra-cluster
density. Clustering by minimizing either will result in dense clusters. However,
the Jaccard distance displays lower variance, in our experiments. Additionally,
Jaccard similarity and its complement, the Jaccard distance, are used widely in
a variety of different fields, including complex networks [4].

Because of this widespread use, lower variance and availability of pre-built
computational functions, we recommend the Jaccard distance as a vertex-to-
vertex distance measure for graph clustering. For example, the NetworkX library
offers a Jaccard coefficient function, which we use in this work [11].
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6 Metric Space and the Jaccard Distance

A metric space is a set of points that share a distance function. This function
must have the following three properties:

g(r,y) =0 z=y (1)
g(z,y) = g(y, ) (2)
g(x,2) < g(z,y) +9(y, 2) - (3)

In the case of the Jaccard distance, the first two properties are immediately
apparent. They are direct consequences of the definitions of set operations. The
third property, the triangle inequality, was shown to hold by Levandowsky and
Winter [13, 4].

7 Conclusion

We show that Jaccard and Otsuka-Ochiai distances, when averaged over clus-
ters, very accurately follow the evolution of intra-cluster density. They are both
shown to vary in an opposite direction to intra-cluster density. This variation
has been observed to be robust to noise from inter-cluster edge probability and
variations in cluster sizes. Finally, we also show that Jaccard distance displays
lower variance than Otsuka-Ochiai distance.

Our future work will focus on a study of these distances on weighted graphs.
We also intend to conduct empirical comparisons to commute and amplified
commute distances. We are interested in studying the statistical properties of all
these distances when averaged over clusters.
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