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a b s t r a c t 

As communications are progressing, transport networks need to be monitored, more specifically, camera 

surveillance of violations is needed. Standards are being developed on how to install cameras, and the 

question of efficiently distributing surveillance devices across the road network ensue. This task is ad- 

dressed in this paper by using the methods of the cooperative game theory. The vertex cover game is 

introduced, and its properties are studied. Since surveillance cameras are to cover all areas of the net- 

work, the characteristic function depends on the vertex covers of the graph. The Shapley–Shubik index 

is used as the measure of centrality. The Shapley–Shubik index is shown to be efficient in a vertex cover 

game for the allocation of cameras in a transport network. Proceeding from the Shapley–Shubik indices 

calculated in this study, recommendations were given for the allocation of surveillance cameras in a spe- 

cific transport network in a district of the City of Petrozavodsk, Russia. 

© 2019 Elsevier Ltd. All rights reserved. 

1

 

i

{  

t  

S  

v

 

t

 

b  

r  

i  

a  

[

 

p  

a  

b  

p  

[

 

w  

e  

t  

a  

d  

t

 

g  

t  

r  

f  

t  

r  

c  

h

 

i  

i

 

s  

f  

h

0

. Introduction 

There is a concept of the vertex cover of an undirected graph

n the graph theory [34] . A vertex cover of a graph G = 〈 N, E〉 , E ⊆
{ a, b}| a, b ∈ N} is any subset S of the set of graph vertices N such

hat any edge of this graph is incident to least one vertex in the set

 . We are interested in the vertex cover with a minimal number of

ertices, i.e. so-called minimum vertex cover of a graph. 

Let us list some of the applications for the problem of finding

he minimum vertex cover. 

Vertex cover in transport networks. Let the undirected graph G

e a transport network. Each vertex is a crossroad, an edge is a

oad. If surveillance cameras are deployed at vertices of the min-

mum vertex cover, then every road portion will be monitored by

 camera and the costs of purchasing cameras will be minimized

1,61] . 

Vertex cover in a society. Let each vertex of the graph G be a

erson. If there is a conflict between two people, then there exists

n edge between the vertices representing these people. Denote

y S the minimum vertex cover. There are no conflicts between

eople in the set N �S , and the dimensionality of this set is maximal

14,40] . 
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Vertex cover in computer networks. Let the graph G be a net-

ork of servers. Each vertex of the graph G is a server. There is an

dge between two vertices if their corresponding servers are in-

erconnected. It is demonstrated in [22] that worm propagation on

 network depends on the topology of the graph G . Timely han-

ling of the servers in the minimum vertex cover can mitigate or

erminate worm propagation [12,59,60] . 

Vertex cover in business processes [9] . Let each vertex of the

raph G be a state of a certain process. If transition from one state

o another is possible, then there exists an edge between the cor-

esponding vertices. Some work is performed during the transition

rom one state of the process to another. Errors may arise while

he work is being implemented. Checks are required to control er-

ors. If such checks are made at vertices in the minimum vertex

over, the number of checks will be minimized. Also, if a process

as been in two states, at least one check will be performed. 

Potential applications of the vertex cover of a graph are related

n more detail in [53] . The question arises of which vertex in the

dentified cover is the most significant. 

Depending on the sphere of application, the questions to be an-

wered are following. How many surveillance cameras are required

or a crossroads depending on the road layout? Which individual

n a community is the most conflictive and why? Which server re-

uires higher defense than other servers? How should checks be

istributed among states of a process? This paper will give the an-

wer to the first question for the transport network of one Petroza-

odsk city district. One must note here that for some practical rea-

https://doi.org/10.1016/j.omega.2019.08.009
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0 , otherwise . 
sons the minimum vertex cover may be inferior in its properties

to non-minimum vertex cover. Minimum vertex cover can change

if some edges are added to or removed from the graph. That is

why the focus when considering the mathematical model in which

the topology of the graph will be variable should rather be placed

on a cover that is not minimal. Such a cover would very likely

remain a cover if the graphs topology is transformed. In trans-

port networks however, major roads emerge or disappear rarely,

so decision-making based on vertex centrality in a minimum ver-

tex cover is acceptable. 

To determine the power of vertices in the vertex cover, we use

the methods of the cooperative game theory. In the terms of the

game theory, each vertex can be regarded as an individual player.

We consider the terms vertex and player to be synonyms. The ver-

tex cover is a coalition of players. If a group of vertices contains

at least one vertex cover, the payoff of this group of vertices is

unity; otherwise it is zero. The characteristic function of the coop-

erative game shall take only two values: 0 & 1 [11] . Shapley sug-

gested using the cooperative game theory for measuring the in-

fluence of parties. The application of Shapley values and coopera-

tive games to allocate resources can be found in [5,15,33,36] . An

application of the Shapley value to transport and computer net-

works is described in [30,39,52] . The Shapley–Shubik index is also

used in benefit allocation in games on electricity networks [66] ,

and for the analysis of hierarchical structures [27] , and human be-

havior [45,46,50,64] . In this study, the Shapley–Shubik index is ap-

plied to estimate the power of graph vertices with regard to vertex

covers. Methods of decision-making on networks can be found in

[17,65,67] . For more information about network games, see [7,44] .

The problems of resource allocation on the network are studied in

[8,54] . 

For voting games with quota q , where each player has some

weight w i , i ∈ N , methods based on generating functions have been

worked out for calculating the Shapley–Shubik index [4,16,51] .

In reference [16] , the Public Good Index is calculated and in

[51] an extension of the Shapley value. The computation of the

Shapley–Shubik index in simple games with restrictions on the set

of minimal winning coalitions is studied in [3,13] . However, not

any game with a simple monotone characteristic function would

have weights w i and quota q . Some algorithms for calculating the

Shapley–Shubik index can be found in [10,42] . 

Structure of the article. The section Preliminaries gives the key

concepts and definitions. Section 3 introduces a definition of the

vertex cover game and studies its properties. Section 4 deals with

calculating the Shapley–Shubik index in the vertex cover game. In

Section 5 specific transport network was considered. Recommen-

dations are given on how to distribute resources in a specific trans-

port network. The Appendix provides proof of the results of the

paper. 

2. Preliminaries 

Let N = { 1 , 2 , . . . , n } be the set of players. Denote by 2 N the set

of all kinds of subsets of the set N . 

Consider a cooperative game 〈 N, v 〉 , where v is a characteris-

tic function, v : 2 N → R , v (∅ ) = 0 . Characteristic function v is mono-

tone if ∀ S, T ⊆N : S ⊆T ⇒ v ( S ) ≤ v ( T ). A game 〈 N, v 〉 is a simple game

when 1. ∀ S ⊆ N : v (S) = 0 or v (S) = 1 ; 2. v (N) = 1 ; 3. Monotone is

true [62] . 

A coalition S is winning if v (S) = 1 and losing otherwise. The set

of winning coalitions is denoted by W = W (v ) . K is called a mini-

mal winning coalition if v (K) = 1 and ∀ i ∈ K : v (K \ { i } ) = 0 . The set

of minimal winning coalitions is denoted by W 

m = W 

m (v ) . 
Player i ∈ N is critical in a coalition S if and only if i ∈ S ∈ W and

S �{ i } �∈ W . Critical player and pivotal player are synonyms [62] . 
Let S ⊆N and S � = ∅ . A pair 〈 N, v S 〉 is an unanimity game [57] ,

here 

 S (K) = 

{
1 , if S ⊆ K;
0 , otherwise . 

Any simple monotone characteristic function can be defined

hrough the set of minimal winning coalitions as follows: 

 (K) = 

{
1 , if ∃ A ∈ W 

m : A ⊆ K;
0 , otherwise . 

The union ( intersection ) of the simple games 〈 N, v 〉 and 〈 N, w 〉
s the game 〈 N , ( v ∨ w ) 〉 (resp. 〈 N , ( v ∧ w ) 〉 ) in which the set of win-

ing coalitions is the union (intersection) of the sets of winning

oalitions for 〈 N, v 〉 and 〈 N, w 〉 [26,63] . 

Let 〈 N, v 〉 is simple game. The Shapley–Shubik index for the

layer i ∈ N is determined by the formula 

i (v ) = 

∑ 

K∈ W (v ): 
K\{ i } / ∈ W (v ) 

(| K| − 1)!(| N| − | K| )! 

| N| ! 

18,20,43] . 

A simple game 〈 N, v 〉 is a weighted majority game if it ad-

its a representation by means of n + 1 nonnegative real numbers

 q ; w 1 , . . . , w n ] such that 

 (K) = 

{
1 , 

∑ 

i ∈ K w i ≥ q 
0 , 

∑ 

i ∈ K w i < q 
, ∀ K ⊆ N 

24,26] . 

Weighted majority games is a subclass of simple monotonic

ames. Simple game can be represented by union [62] and inter-

ection [25] of weighted majority games. 

. Cooperative vertex cover game 

This section investigates vertex cover game properties.

ection 3.1 gives a definition of the vertex cover game.

ection 3.2 proves the graph decomposition theorem, finds

he necessary and sufficient conditions for a simple game to be

 vertex cover game. Section 3.3 studies the dimensionality of a

ertex cover game. 

.1. Definition of the vertex cover game 

Let us introduce several concepts to define the cooperative ver-

ex cover game. A vertex cover S of an undirected graph G = 〈 N, E〉
s a subset of N such that ∀ ( u, v ) ∈ E ⇒ u ∈ S or v ∈ S [22,32] . The min-

mum vertex cover of the graph G = 〈 N, E〉 is the vertex cover con-

isting of the smallest possible number of vertices. A vertex cover

 of the graph G is called least vertex cover if for ∀ i ∈ S the set S �{ i }

s not a vertex cover. Denote by M ( G ) the set of least vertex covers

f the graph G . 

The set of least vertex covers for the graph shown in

ig. 1 equals M(G ) = {{ 1 , 3 , 5 } , { 2 , 3 , 6 } , { 1 , 2 , 4 , 5 } , { 2 , 4 , 5 , 6 }} . Any

ther vertex cover for the graph in question contains at least one

lement of the set M ( G ). 

efinition 1. Let G = 〈 N, E〉 , E � = ∅ an undirected graph, M ( G ) is the

et of least vertex covers of the graph G . A simple game 〈 N, v 〉 is a
ertex cover game of G if W 

m (v ) = M(G ) , that is 

 (K) = 

{
1 , if ∃ A ∈ M(G ) : A ⊆ K; ∀ K ⊆ N. 
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Fig. 1. Graph G with 6 vertices. 

Fig. 2. Decomposition of the graph G from Fig. 1 . Graph G 1 on the left, G 2 on the 

right. 
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.2. Decomposition theorem 

Theorem 1 shows how the characteristic function of the vertex

over game can be represented in the form of an intersection of

imple monotone characteristic functions. 

heorem 1. Let Y = { 1 , 2 , . . . , r} , G = 〈 N, E〉 , G j = 〈 N, E j 〉 , j ∈ Y be

ndirected graphs, where E = 

⋃ 

j∈ Y E j . Then, ∀ K ⊆N we have 

 (K) = ( v 1 ∧ v 2 ∧ . . . ∧ v r ) ( K) , ( 1) 

where ∀ j ∈ Y 〈 N, v 〉 , 〈 N, v j 〉 are vertex cover game with 

W 

m (v ) = M(G ) , W 

m (v j ) = M(G j ) . 

The proof is in Appendix. 

Theorem 1 is based on the properties of vertex covers of a

raph. No papers have been found that analyze simple games in

hich the set of minimal winning coalitions is the set of least ver-

ex covers of a graph. Applications for the union and intersection

f simple functions can be found in the papers [2,23,47] . 

xample 1. Let us demonstrate the application of Theorem 1 . Con-

ider the graph G = 〈 N, E〉 in Fig. 1 . The graph G can be decom-

osed into the graphs G 1 = 〈 N, E 1 〉 , G 2 = 〈 N, E 2 〉 , where G 1 , G 2 are

hown in Fig. 2 . 

We get W 

m (v 1 ) = {{ 1 , 5 } , { 2 , 6 }} , W 

m (v 2 ) = {{ 3 } , { 2 , 4 , 5 }} . Since

 1 ∪ E 2 =E, then, according to Theorem 1 , v (K) = ( v 1 ∧ v 2 ) (K) ,

 

m (v ) = M(G ) . 

Consider two simple games 〈 N, v 〉 , 〈 N, w 〉 , such that

 W 

m (v ) | = | W 

m (w ) | = a and ∀ A ∈ W 

m (v ) ∀ B ∈ W 

m (w ) : A �⊆ B and

 �⊆ A. Then, 

 

m (v ∨ w ) = { A | A ∈ W 

m (v ) or A ∈ W 

m (w ) } , 

 

m (v ∧ w ) = { A ∪ B | A ∈ W 

m (v ) and B ∈ W 

m (w ) } . 
ence, | W 

m (v ∧ w ) | = a 2 , and | W 

m (v ∨ w ) | = 2 a. Since the equal-

ty (v ∧ w )(K) = v (K) + w (K) − (v ∨ w )(K) , holds for simple

ames, then instead of considering the characteristic function with

 

2 minimal winning coalitions we can simultaneously consider

hree games, the total number of minimal winning coalitions in

he three games being 4 a . Knowing the representation of the

haracteristic function in the form of a conjunction of simple

ames, one can consider games with a smaller number of minimal

inning coalitions. 

Value φ has linearity property if φ(αv + βw ) = αφ(v ) +
φ(w ) , α, β ∈ R ; v , w are characteristic functions. If the character-

stic function of a cooperative vertex cover game can be repre-

ented in the form of a linear combination of characteristic func-

ions, then the linearity property can be used to calculate the

hapley–Shubik index. The original graph can be decomposed into

ubgraphs so as to fulfill the conditions of Theorem 1 . Then, using
(v ∧ w )(K) = v (K) + w (K) − (v ∨ w )(K) , the characteristic function

f the vertex cover game can be represented in the form of a linear

ombination of other functions. It is convenient to use the decom-

osition procedure if a graph is large enough, e.g. a network- or

 communication graph. With this approach, it is not necessary to

now the minimal winning coalitions of the original characteristic

unction. The same is true for linear values in games, such as the

anzhaf value, Owen value and others. 

Not any simple game is a vertex cover game. Taking

 = { 1 , 2 , 3 } , consider the connected, undirected graphs

 1 = 〈 N, {{ 1 , 2 } , { 2 , 3 }}〉 and G 2 = 〈 N, {{ 1 , 2 } , { 1 , 3 } , { 2 , 3 }}〉 . Then,

 

m (v 1 ) = {{ 2 } , { 1 , 3 }} , W 

m (v 2 ) = {{ 1 , 2 } , { 1 , 3 } , { 2 , 3 }} , where 〈 N,

 1 〉 and 〈 N, v 2 〉 are vertex cover games on graphs G 1 and G 2 ,

espectively. If we consider disconnected graphs with three ver-

ices, there will be vertices not belonging to any vertex cover of

he graph. Hence, simple games with a set of minimal winning

oalitions W 

m (v ′ ) = {{ 1 } , { 2 } , { 3 }} and W 

m (v ′′ ) = {{ 1 , 2 , 3 }} are

ot vertex cover games. 

heorem 2. A simple game 〈 N, v 〉 , is a vertex cover game on

raph G if and only if there exist simple games 〈 N, v l (K) 〉 , l ∈
 1 , 2 , . . . , r} , W 

m (v l ) = {{ i l } , { k l }} for which the equality 

 (K) = (v 1 ∧ v 2 ∧ . . . ∧ v r )(K) (2) 

olds, and G = 〈 N, E〉 , E = {{ i l , k l }| 1 ≤ l ≤ r} . 
The proof is in Appendix. 

For a given graph G it suffices to find all of its least vertex cov-

rs to compose a simple vertex cover game for the graph. Rewrit-

ng a graph from a set of minimal winning coalitions is a more

hallenging task. Hypothetically, such a problem is NP complete or

P hard, since finding the minimum vertex cover is NP complete

roblem. One of the ways to reconstruct a graph is demonstrated

n Example 2 . 

xample 2. Let 〈 N, v 〉 , N = { 1 , 2 , . . . , 7 } is the simple game, 

 

m (v ) = { { 1 , 3 , 4 , 6 } , { 1 , 3 , 4 , 5 , 7 } , { 2 , 5 , 6 } , { 2 , 5 , 7 } , 
{ 2 , 3 , 4 , 6 } , { 2 , 3 , 4 , 5 , 7 } } . 

In order to determine whether the game 〈 N, v 〉 is a ver-

ex cover game, special-form characteristic functions need to be

elected to fulfill the equality from Theorem 2 . In the papers

37,41] , the vertex and the graph are compared to the Boolean

ariable and Boolean function, respectively. Consider the function

f (W 

m (v ) , x ) = ∨ 

A ∈ W 

m (v ) 

(
∧ 

i ∈ A 
x i 

)
. For the aforementioned set W 

m ( v )

he function f ( W 

m ( v ), x ) takes the form 

f (W 

m (v ) , x ) = ( x 1 ∧ x 3 ∧ x 4 ∧ x 6 ) ∨ ( x 1 ∧ x 3 ∧ x 4 ∧ x 5 ∧ x 7 ) 

∨ ( x 2 ∧ x 5 ∧ x 6 ) ∨ ( x 2 ∧ x 5 ∧ x 7 ) ∨ ( x 2 ∧ x 3 ∧ x 4 ∧ x 6 ) 

∨ ( x 2 ∧ x 3 ∧ x 4 ∧ x 5 ∧ x 7 ) . 

Transforming f ( W 

m ( v ), x ), we get 

f (W 

m (v ) , x ) = ( x 1 ∨ x 2 ) ∧ ( x 2 ∨ x 3 ) ∧ ( x 2 ∨ x 4 ) ∧ ( x 3 ∨ x 5 ) 

∧ ( x 4 ∨ x 5 ) ∧ ( x 5 ∨ x 6 ) ∧ ( x 6 ∨ x 7 ) . 

Consider the simple games 〈 N, v j 〉 , j ∈ { 1 , 2 , . . . , 7 } , W 

m (v 1 ) =
{ 1 } , { 2 }} , W 

m (v 2 ) = {{ 2 } , { 3 }} , W 

m (v 3 ) = {{ 2 } , { 4 }} , W 

m (v 4 ) = 

{ 3 } , { 5 }} , W 

m (v 5 ) = {{ 4 } , { 5 }} , W 

m (v 6 ) = {{ 5 } , { 6 }} , W 

m (v 7 ) = 

{ 6 } , { 7 }} . 
Since v (K) = ( v 1 ∧ v 2 ∧ . . . ∧ v 7 ) ( K) , ∀ K ⊆ N, then, according to

heorem 2 , 〈 N, v 〉 is the vertex cover game on the graph G =
 N, E〉 , E = {{ 1 , 2 } , { 2 , 3 } , { 2 , 4 } , { 3 , 5 } , { 4 , 5 } , { 5 , 6 } , { 6 , 7 }} . 
tatement 1. Let 〈 N, v 〉 is the vertex cover game on G = 〈 N, E〉 .
hen 

 (K) = 

∏ 

(i, j) ∈ E 

(
v { i } (K) + v { j} (K) − v { i, j} (K) 

)
, 
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where ∀ i ∈ N , ∀ { i, j } ∈ E , 〈 N, v { i } 〉 and 〈 N, v { i, j } 〉 are unanimity games.

The proof is in Appendix. 

3.3. Dimension of the vertex cover game 

The dimensionality of 〈 N, v 〉 is the least r such that there exists

weighted majority games 〈 N, v 1 〉 , . . . , 〈 N, v r 〉 for which 

 (v ) = W (v 1 ) ∩ . . . ∩ W (v r ) 

[26,62] . 

The vertex cover game on a complete graph and a star

graph can be represented in the form [1 ; 1 , 1 , . . . , 1] and

[1 ; 1 , 1 
n −1 , 

1 
n −1 , . . . , 

1 
n −1 ] , respectively. Hence, the dimensionality of

such games is 1. 

It follows from Theorem 2 that the vertex cover game dimen-

sionality does not exceed the number of edges in the graph, i.e. | E |.

The upper bound can, however, be specified by | L m | and codimen-

sionality by | W 

m |. 

The vertex cover game 〈 N, v 〉 of G = 〈{ 1 , 2 , 3 , 4 } , {{ 1 , 2 } ,
{ 2 , 3 } , { 3 , 4 } , { 1 , 4 }}〉 , where W 

m (v ) = {{ 1 , 3 } , { 2 , 4 }} is not a

weighted majority game. 

Statement 2. Let 〈 N, v 〉 is the vertex cover game on G .

Decompose the graph G in the graphs G j = 〈 N, E j 〉 , j ∈ Y, Y =
{ 1 , 2 , . . . , r} , ∪ j∈ Y E j = E. Then 

dim (v ) ≤
∑ 

j∈ Y 
dim (v j ) , 

where 〈 N, v j 〉 is the vertex cover game on the graph G j , j ∈ Y . 

The proof is in Appendix. 

Statement 3. The dimensionality of vertex cover game does not

exceed the number of edges in the minimal vertex cover of the

graph G . 

The proof is in Appendix. 

Theorem 3. Among all vertex cover games on trees only the vertex

cover game on a star graph is a weighted majority game. 

The proof is in Appendix. 

4. Calculation of the Shapley–Shubik index in the vertex cover 

game 

Decompose the characteristic function v over the basis (Möbius

transformation) [57] , and set u (x ) = 

∑ 

S⊆N 

(
λS (v ) 

∏ 

i ∈ S x i 
)
, ∀ x ∈

{ 0 , 1 } n , where λS (v ) = 

∑ 

R ⊆S (−1) | S|−| R | v (R ) . In that case, if f :

[0 , 1] n → R is a multilinear extension of u : { 0 , 1 } n → R , then

φi (N, v ) = 

∫ 1 
0 

∂ f 
∂x 

(t , t , . . . , t ) dt [31,48] . If the minimal winning coali-

tions do not intersect, the following statement is true. 

Lemma 1. Let W 

m (v ) = { A 1 , A 2 , . . . , A m 

} , | A j | = a j , j = 1 , 2 ,

. . . , m ; ∀ i, j, i � = j : A i ∩ A j = ∅ . Then, in the simple game 〈 N, v 〉 ,
the Shapley–Shubik index for the player k ∈ N is calculated by the

formula 

φk (v ) = 

∫ 1 

0 

x a i −1 
m ∏ 

j =1 , j � = i 
(1 − x a j ) dx, 

where k ∈ A i , a i = | A i | , i ∈ { 1 , 2 , . . . , m } . 
The proof is in Appendix. 

Statement 4 deals with the case where the intersection of any

two given minimal winning coalitions is one and the same player. 

Statement 4. Let N = { 1 , 2 , . . . , n } , i ∈ N, W 

m (v ) =
{ A 1 , . . . , A m 

} , ∪ 

m 

j=1 
 j = N; ∀ j, l, j � = l : A j ∩ A l = { i } . Then, in the game 〈 N, v 〉 , the

hapley–Shubik index for the player k ∈ N is equal to 

k (v ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 −
1 ∫ 
0 

m ∏ 

j=1 

(1 − x a j −1 ) dx, k = i ;
1 ∫ 
0 

x a k −1 
∏ 

j=1 , 2 , ... ,m 

j � = k 

(1 − x a j −1 ) dx, otherwise . 

The proof is in Appendix. 

xample 3. Let N be the set of players, and 1 ∈ N . W 

m (v ) =
 A 1 , . . . , A m 

} is the set of minimal winning coalitions, and ele-

ents of the set W 

m ( v ) fulfill the following restrictions: 1. ∀ i, j, i � =
j : A i ∩ A j = { 1 } ; 2. | A i | = i + 1 . E.g., A 1 = { 1 , 2 } , A 2 = { 1 , 3 , 4 } , A 3 =
 1 , 5 , 6 , 7 } , etc. Find the limit payoff of player 1 in the game 〈 N,

 〉 , where the number of minimal winning coalitions tends to in-

nity. We get 

lim 

 →∞ 

φ1 (v ) = lim 

m →∞ 

( 

1 −
∫ 1 

0 

m ∏ 

k =1 

(
1 − x a k −1 

)
dx 

) 

= 1 −
∫ 1 

0 

∞ ∏ 

k =1 

(
1 − x k 

)
dx = 1 − 4 π

√ 

3 √ 

23 

· sinh 

π
√ 

23 
3 

cosh 

π
√ 

23 
2 

≈ 0 . 6316 . 

e find that as the number of minimal winning coalitions in the

et W 

m ( v ) increases, the payoff of player 1 tends to a finite limit.

ome limit theorems for the Penrose–Banzhaf value can be found

n [35] . 

The Shapley–Shubik indices for the linear graph consisting of n

ertices, n = 2 , 3 , . . . , 10 are given in Table 1 . Numbers from 2 to

0 in the first line indicate the number of vertices in the linear

raph. Numbers from 1 to 10 in the first column are the players

umbers. The index will be the highest for the vertices connected

o end vertices. 

Let G = 〈 N, E〉 be a star graph, for which E = {{ 1 , 2 }{ 1 , 3 } ,
 . . , { 1 , n }} . Consider the vertex cover game 〈 N, v 〉 of G , where

 

m (v ) = {{ 1 } , { 2 , 3 , . . . , n }} . Calculate Shapley–Shubik index of

ach player. Elements of the set of minimal winning coalitions do

ot intersect each other, wherefore Lemma 1 can be applied: 

1 ( v ) = 

∫ 1 

0 

(1 − x n −1 ) dx = 1 − 1 

n 

, 

i ( v ) = 

∫ 1 

0 

x n −2 (1 − x ) dx = 

1 

n (n − 1) 
, i � = 1 . 

tatement 5. Let G = 〈 N, E〉 be a complete bipartite graph, L ∪ R =
, L ∩ R = ∅ , E = {{ a, b}| a ∈ L, b ∈ R } . Then, the Shapley–Shubik in-

ex for the player i ∈ N in the vertex cover game 〈 N, v 〉 has the

ollowing form: 

i (v ) = 

{
1 
| L | − 1 

| L | + | R | , i ∈ L ;
1 
| R | − 1 

| L | + | R | , i ∈ R. 

The proof is in Appendix. 

tatement 6. Let G = 〈 N, E〉 , E = {{ 1 , 2 } , {{ 1 , a p } k p=1 
} , {{ 2 , b q }} r q =1 

} ,
 p, q : a p � = 2 , b q � = 1 , a p � = b q . Then, the Shapley–Shubik index for

he player i ∈ N in the vertex cover game 〈 N, v 〉 has the following

orm: 

i (v ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
2 

− 1 
k +2 

+ 

1 
r+1 

− 1 
r+2 

, i = 1 ;
1 
2 

− 1 
r+2 

+ 

1 
k +1 

− 1 
k +2 

, i = 2 ;
1 

k +1 
− 1 

k +2 
, i = a p , p ∈ { 1 , . . . , k };

1 
r+1 

− 1 
r+2 

, i = b q , q ∈ { 1 , . . . , r} . 
The proof is in Appendix. 

An example of the graph used in Statement 6 is shown

n Fig. 3 . We get φ1 (v ) = 

34 
105 ≈ 0 . 32 , φ2 (v ) = 

57 
140 ≈ 0 . 41 , φa p (v ) =

1 
20 = 0 . 05 , φb q (v ) = 

1 
42 ≈ 0 . 02 , p ∈ { 1 , 2 , 3 } , q ∈ { 1 , 2 , 3 , 4 , 5 } . 
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Table 1 

Solution for the linear graph. 

2 3 4 5 6 7 8 9 10 

1 1/2 1/6 1/6 7/60 1/10 1/12 61/840 23/360 2/35 

2 1/2 2/3 1/3 17/60 13/60 11/60 131/840 43/315 61/504 

3 - 1/6 1/3 1/5 11/60 3/20 37/280 293/2520 263/2520 

4 - - 1/6 17/60 11/60 1/6 39/280 311/2520 23/210 

5 - - - 7/60 13/60 3/20 39/280 151/1260 34/315 

6 - - - - 1/10 11/60 37/280 311/2520 34/315 

7 - - - - - 1/12 131/840 293/2520 23/210 

8 - - - - - - 61/840 43/315 263/2520 

9 - - - - - - - 23/360 61/504 

10 - - - - - - - - 2/35 

Fig. 3. Star graph with two centers, k = 3 , r = 5 . 
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. Vertex cover game for transport networks 

Section 5 deals with the application of a vertex cover game in

ransport networks. Section 5.1 provides argumentation that the

llocation of cameras based on the values of the Shapley–Shubik

ndex is efficient. In Section 5.2 , the Shapley–Shubik index is cal-

ulated for a specific transport network. 

.1. Application of the Shapley–Shubik index for estimating the 

fficiency of vertices in the vertex cover of a graph 

Let the graph G be a transport network. A vertex in this graph

s a crossroads, an edge is a road. The task is to optimally dis-

ribute surveillance cameras. Knowing the power of graph vertices,

ne can deploy the cameras accordingly. 

Surveillance cameras are to provide for full coverage of the

ransport network. If the existing cameras capture the transport

etwork entirely, no more budget allocations are needed to pur-

hase new cameras. Let us consider all possible rearrangements of

raph vertices. Let σ denote a rearrangement of vertices. In the re-

rrangement σ , enumerate vertices as 1 , 2 , . . . , | V | . Denote by σ ( k )

he set of vertices occupying in the rearrangement σ positions be-

ore and including the vertex with the number k . The coalition of

ertices σ ( k ) in the rearrangement σ is losing if it does not cover

he transport network, and winning otherwise. If σ (k − 1) is the

osing coalition and σ ( k ) is the winning one, then the vertex num-

ered as k is called pivotal for the given rearrangement. Vertices

ccupying positions preceding the pivotal vertex in the rearrange-

ent do not cover the network. Vertices after the pivotal vertex

ake no further contribution since the transport network is al-

eady covered. Hence, the essential question when arranging cam-

ras is whether a vertex is the pivotal one. Knowing this, the effi-

iency of each vertex can be calculated by the formula 

i = 

the number of rearrangements in which the vertex i 
is pivotal with regard to vertex covers 

n ! 
, 

here n ! is the number of all possible rearrangements among n

ertices. The value of φi is the Shapley–Shubik index for the ver-

ex cover game. The higher is the number of the rearrangements

here the vertex is pivotal, the higher is the power of this vertex. 
Denote SG n the set of all simple games with n players. 

Since the vertex cover game is a simple game and the effi-

iency axiom (for all v ∈ SG n , 
∑ n 

i =1 φi (v ) = 1 [18] ) is fulfilled for the

hapley–Shubik index, the power of each vertex is not less than

ero and the sum of all values is equal to unity. 

Let us demonstrate what properties an array of surveillance

ameras will have if the cameras are arranged proportionately to

he values of the Shapley–Shubik index in a vertex cover game.

he Shapley–Shubik index conforms to the null player, anonymity,

ymmetry, transfer axioms. 

Null player axiom: for any v ∈ SG n and any i ∈ N , if i is a null

layer in game v , then φi (v ) = 0 . The player i ∈ N is called the null

layer if v (S) = v (S \ { i } ) for all i ∈ S ⊆ N . If the vertex degree is 0,

his means there are no roads running across the given crossroads.

n the vertex cover game, such a vertex is the null player. Owing

o the null player property, cameras will not be deployed in the

ertices in which they are unnecessary. 

Anonymity axiom: for all v ∈ SG n , any permutation π of N , and

ny i ∈ N , φi (πv ) = φπ(i ) (v ) , where ( πv )( S ) := v ( π ( S )). The numbers

ssigned to vertices have no effect on the distribution of cameras.

f the vertex numbering scheme is changed but the transport net-

ork topology remains the same, the distribution of cameras will

ot be affected. Owing to the anonymity axiom, all vertices are in

n equal position. 

The Shapley–Shubik index has the symmetry axiom, i.e. if i,

 ∈ N, i � = j v (S ∪ { i } ) = v (S ∪ { j} ) ∀ S ⊆ N \ { i, j} then φi (v ) = φ j (v ) . If
here are two vertices symmetrical with respect to the graphâs ver-

ex cover, then these vertices will have equal Shapley–Shubik index

n the vertex cover game. This axiom ensures that symmetric ver-

ices are allocated equal numbers of surveillance cameras. 

Transfer axiom: for any v, w ∈ SG n such that v ∨ w ∈ SG n , φ(v ) +
(w ) = φ(v ∧ w ) + φ(v ∨ w ) . This axiom implies that when win-

ing coalitions are added, changes in the solution of the game de-

end only on the added coalitions. This interpretation of the axiom

an be found in [19] . If, for instance, a new road appeared in the

ransport network or, vice versa, a road has been closed, changes

n the distribution of cameras will depend solely on the respective

hanges in the graph topology, but not on any other factors. 

.2. Shapley–Shubik index for a specific transport network 

For the graph shown in Fig. 1 , the vector of the Shapley–Shubik

ndices in the cooperative vertex cover game has the form 

= 

{ 

3 

20 

, 
1 

5 

, 
7 

30 

, 
1 

15 

, 
1 

5 

, 
3 

20 

} 

. 

ne of its minimum vertex covers is the set S = { 1 , 3 , 5 } . Vertices

 and 5 have the same degree, which is equal to 3. From the

hapley–Shubik index perspective, however, vertex 3 has the

ighest weight. Normalize the numbers φ1 , φ3 , φ5 and convert

he resultant values to percentages. We get 25.71%, 40.00%, 34.29%,

espectively. If the graph G is a transport network, the budget
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Fig. 4. Layout of the main roads of Kukkovka district, Petrozavodsk, Russia. 
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Fig. 5. Graph G of the transport network. 

Fig. 6. Graph G 1 , subgraph of the graph G shown in Fig. 5 . 

Fig. 7. Graph G 2 , subgraph of the graph G shown in Fig. 5 . 

Fig. 8. Graph G 3 , subgraph of the graph G shown in Fig. 5 . 

W  

W

allocated to purchasing cameras can be distributed in accordance

with the resultant per cent values. 

Fig. 4 shows the layout of major roads in Kukkovka district in

Petrozavodsk, Russia. Construct the transport network graph G =
〈 N, E〉 , N = { 1 , 2 , . . . , 16 } , which is shown in Fig. 5 . 

{ 8 , 9 } , { 9 , 10 } , { 10 , 5 } , { 5 , 6 } , { 6 , 7 } form Rovio Street 

{ 1 , 4 } , { 4 , 8 } , { 8 , 14 } form Komsomolskij Avenue

{ 14 , 15 } , { 15 , 16 } , { 16 , 11 } form Karelskiy Avenue 

{ 10 , 13 } , { 12 , 13 } , { 13 , 16 } form Pitkyarantskaya Street

{ 3 , 7 } , { 7 , 11 } form Lyzhnaya Street 

{ 9 , 12 } , { 12 , 15 } form Sortovalskaya Street 

{ 1 , 2 } , { 2 , 3 } form Baltiyskaya Street 

{ 4 , 5 } form General Frolova Street

{ 2 , 6 } form Parfenova Street 

{ 6 , 11 } form Torneva Street 

The names and locations of the streets can be looked up online. 1 

If a simple game is a weighted game, then the Shapley–Shubik

index can be calculated using the theory of generating functions. A

vertex cover game is, however, not always a weighted game. Find-

ing the minimum vertex cover is recognized as an NP-complete

problem [29] , and finding all least vertex covers is a challenging

computational problem. It is therefore more convenient to handle

the original vertex cover game using the decomposition theorem

and to calculate the Shapley–Shubik index for new simple games.

We decompose the graph into subgraphs and find the least vertex

covers for the new graphs. It is advisable to decompose the orig-

inal graph so that the number of vertices and edges in the new

graphs is roughly equal. This approach will reduce the number of

vertex covers and the number of vertices in the least vertex cov-

ers compared to the original graph. Calculate the Shapley–Shubik

index in the vertex cover game 〈 N, v 〉 . 
To this end, decompose the graph G into the graphs G 1 , G 2 , G 3 

as shown in Figs. 6–8 , respectively. The sets of minimal winning

coalitions W 

m ( v 1 ), W 

m ( v 2 ), W 

m ( v 3 ) are 

 

m (v 1 ) = { { 4 , 5 , 6 } , { 1 , 5 , 6 , 8 } , { 4 , 6 , 10 } , { 2 , 4 , 5 , 7 , 11 } , 
1 https://www.google.ru/maps/@61.7653959,34.3725932,15z?hl=en . 

v

{ 1 , 2 , 5 , 7 , 8 , 11 } } ;
 

m (v 2 ) = {{ 1 , 3 , 7 , 16 } , { 1 , 3 , 11 , 16 } , { 1 , 3 , 11 , 13 , 15 } , { 2 , 7 , 16 } ,
{ 2 , 7 , 11 , 13 , 15 } , { 2 , 3 , 11 , 16 } , { 2 , 3 , 11 , 13 , 15 }};

 

m (v 3 ) = {{ 9 , 12 , 13 , 14 } , { 9 , 13 , 14 , 15 } , { 8 , 9 , 13 , 15 } , 
{ 8 , 10 , 12 , 14 } , { 9 , 10 , 12 , 14 } , { 8 , 10 , 12 , 15 }} . 

Write v ( K ), K ⊆N in the form 

 (K) = v 1 (K) + v 2 (K) + v 3 (K) − (v 1 ∨ v 2 )(K) 

−(v 1 ∨ v 3 )(K) − (v 2 ∨ v 3 )(K) + (v 1 ∨ v 2 ∨ v 3 )(K) . 

https://www.google.ru/maps/@61.7653959,34.3725932,15z?hl=en
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Table 2 

Shapley–Shubik index values. 

i w 1 ( K ) w 2 ( K ) w 3 ( K ) w 4 ( K ) w 5 ( K ) w 6 ( K ) w 7 ( K ) v ( K ) 

1 0.0560 0.0762 - 0.0678 0.0231 0.0378 0.0419 0.0453 

2 0.0393 0.1690 - 0.1075 0.0158 0.0891 0.0714 0.0674 

3 - 0.1357 - 0.0706 - 0.0651 0.0448 0.0447 

4 0.2321 - - 0.1227 0.1296 - 0.0877 0.0675 

5 0.1726 - - 0.0738 0.0940 - 0.0569 0.0617 

6 0.2821 - - 0.1627 0.1435 - 0.1063 0.0822 

7 0.0393 0.1595 - 0.0976 0.0158 0.0855 0.0672 0.0672 

8 0.0560 - 0.1262 0.0222 0.0889 0.0575 0.0535 0.0671 

9 - - 0.1762 - 0.0894 0.0770 0.0542 0.0640 

10 0.0833 - 0.1262 0.0461 0.1115 0.0639 0.0767 0.0648 

11 0.0393 0.1190 - 0.0679 0.0158 0.0501 0.0399 0.0645 

12 - - 0.1762 - 0.0770 0.0897 0.0538 0.0634 

13 - 0.0524 0.1262 0.0206 0.0652 0.0841 0.0551 0.0637 

14 - - 0.1429 - 0.0726 0.0728 0.0480 0.0455 

15 - 0.0524 0.1262 0.0206 0.0579 0.0841 0.0513 0.0672 

16 - 0.2357 - 0.1199 - 0.1433 0.0911 0.0637 

Table 3 

Percentage distribution of the budget. 

i 6 15 8 11 9 13 5 1 3 

% 14.66 12.00 11.98 11.51 11.43 11.37 11.00 8.08 7.97 

w

w

 

n  

u  

l

S  

t  

q  

e

 

9

S

 

p  

f  

a  

o

S  

c  

i

S  

g

 

e  

b  

a  

[

6

 

b  

t  

a  

i  

o

 

g  

i  

i  

a  

a  

a  

o

 

o  

a  

s  

r

 

c  

o  

r  

d  

f  

t

 

o  

e

 

t  

s  

t  

a  

i  

l

 

a  
For brevity, denote 

 1 (K) = v 1 (K) , w 2 (K) = v 2 (K) , w 3 (K) = v 3 (K) , w 4 (K) 

= (v 1 ∨ v 2 )(K) , 

 5 (K) = (v 1 ∨ v 3 )(K) , w 6 (K) = (v 2 ∨ v 3 )(K) , w 7 (K) 

= (v 1 ∨ v 2 ∨ v 3 )(K) . 

Perform the Shapley–Shubik index calculations in Table 2 . 

Numbers in Table 2 are Shapley–Shubik indices. The players

umber and the characteristic function are written in the first col-

mn and first line, respectively. We are now interested only in the

ast column of Table 2 . 

Consider two situations. 

ituation 1. The number of cameras is equal to the number of ver-

ices in the graphs minimum vertex cover. Cameras are ranked by

uality. The question is which vertices should higher quality cam-

ras be deployed to. 

The vertex cover of the graph is the set of vertices {1, 3, 5, 6, 8,

, 11, 13, 15}. 

Arranging the vertices in the order of decreasing Shapley–

hubik index we get the vector 

(6, 15, 8, 11, 9, 13, 5, 1, 3). 

Hence, the best camera among the nine available should be de-

loyed in vertex 6, the next best in quality in vertex 15, and so

orth. Vertices 15, 8, 11, 9, 13, 5 have the degree 3, and vertices 1

nd 3 have the degree 2. Yet, vertex 15 is the most powerful among

ther vertices with the degree 3 in the minimum vertex cover. 

ituation 2. The task is to distribute the budget for purchasing

ameras which will be deployed in the vertices constituting a min-

mum vertex cover of the graph. Normalize the values of Shapley–

hubik indices and convert the resultant values to percentages. We

et the Table 3 . 

The share of the budget to be allocated for the purchase of cam-

ras and related equipment (outdoor power supply, connecting ca-

le, fasteners, etc.) is determined according to Table 3 . Financial

pplications of power indices are presented in detail in the papers

28,55] . 
. Conclusions and future work 

Games on graphs have become a popular field in game theory

ecause the solution of applied problems requires the analysis of

ransport, communication, or computer networks. As the society

nd social interactions develop, this field is moving even further

nto the foreground. The questions of centrality and significance of

bjects in a network structure come up. 

Relying on the graph theory and methods of the cooperative

ame theory, a graph decomposition technique for Shapley–Shubik

ndex estimation was suggested. This procedure permits represent-

ng the characteristic function of the original game in the form of

 linear combination of simpler characteristic functions. Using this

pproach, the Shapley–Shubik index was calculated in the cooper-

tive vertex cover game for a transport network and some classes

f graphs. 

The cooperative game in this paper depends on vertex covers

f the graph. Since there exist also other covers of a graph, such

s the edge cover, it is interesting to consider the corresponding

imple games, too. If the covers are interrelated, is there also a

elationship between the respective simple games? 

The usual procedure in mathematical models of resource allo-

ation is that a functional is composed to be then optimized. One

f the properties of the solution is that the composed functional

eaches the required value. The cooperative game theory has a

ifferent approach to resource allocation. The optimal distribution

ulfils several axioms, these axioms having an applied interpreta-

ion. 

Where a graph has several minimum vertex covers, a measure

f centrality can be composed based only on minimum vertex cov-

rs. 

Cooperative vertex cover games are useful in problems where

he vertex cover is essential. For example, each vertex is either a

ource or a receiver of information. The source vertices form a ver-

ex cover of the information network. A vertex cover game can be

pplied to find the power of sources and receivers, rank vertices

n the information network, give recommendations on how to al-

ocate resources [21,38,56] . 

Theorem 1 proved in this paper can serve as the basis for the

nalysis of networks by means of Owen [49] , Aumann-Dreze values
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[6] , C-core [58] . The statements related in the paper can be used

to analyze network objects by cooperative game theory methods. 
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Proof of Theorem 1. The equality 2 N = A ∪ (2 N \ A ) , where 

A = { K| K ∈ 2 

N ∧ (∀ i ∈ Y, ∃ S i ∈ M(G i ) : S i ⊆ K) } . 
is valid. Consider 2 possible cases. 

1. Let K ∈ A . The coalition K contains the sets S i , i ∈ Y , which

are vertex covers of the graphs G i , i ∈ Y , respectively.

The condition is that E = 

⋃ 

i ∈ Y E i . Hence, 
⋃ 

i ∈ Y S i is a ver-

tex cover of graph G . Since 
⋃ 

i ∈ Y S i ⊆ K, we have v (K) =
1 ; ( v 1 ∧ v 2 ∧ . . . ∧ v r ) (K) = 1 . 

2. Let K ∈ 2 N �A . The coalition K contains no vertex covers of the

graph G , wherefore v (K) = 0 . Since E = 

⋃ 

i ∈ Y E i , there exists

such graph G i that K does not contain a vertex cover of the

graph G i . Hence, ( v 1 ∧ v 2 ∧ . . . ∧ v r ) (K) = 0 . 

In each of the cases, v (K) = ( v 1 ∧ v 2 ∧ . . . ∧ v r ) ( K) holds, which

proves the theorem. �

Proof of Theorem 2. 

1) Let 〈 N, v 〉 be a simple vertex cover game on the graph G .

Let us demonstrate that (2) holds. Decompose G = 〈 N, E〉
into the subgraphs G j = 〈 N, e j 〉 , e j ∈ E, j = 1 , . . . , | E| . Apply-

ing Theorem 1 , we get the equality (2). 

2) Let the equality (2) be true. Let us demonstrate that 〈 N, v 〉 is
a vertex cover game on the graph G . Do this by proving the

equality W 

m (v ) = M(G ) . Since the functions v j ( K ), j ∈ Y exist,

then E � = ∅ . Note that the graph G may be disconnected. 

Let A ∈ W 

m ( v ). Then, v (A ) = 1 , (v 1 ∧ v 2 ∧ . . . ∧ v r )(A ) = 1 . So,

∀ j ∈ Y : v j (A ) = 1 ⇒ i j ∈ A or k j ∈ A . Hence, A is the vertex cover of

the graph G . 

Let K ⊂ A, K � = ∅ . Then, v (A \ K) = 0 , (v 1 ∧ v 2 ∧ . . . ∧ v r )(A \ K) =
0 . So, ∃ j ∈ Y : v j (A \ K) = 0 ⇒ i j / ∈ A \ K and k j �∈ A �K . Hence, A is

the minimal vertex cover of the graph. It follows that W 

m ( v ) ⊆M ( G ).

Let A ∈ M ( G ). Then, ∀ ( i j , k j ) ∈ E : i j ∈ A or k j ∈ A . So, ∀ j ∈ Y :

v j (A ) = 1 ⇒ (v 1 ∧ v 2 ∧ . . . ∧ v r )(A ) = 1 , v (A ) = 1 . Hence, A is the

winning coalition. 

Let K ⊂ A, K � = ∅ . Then, A �K �∈ M ( G ), ∃ j ∈ Y : i j �∈ A �K and k j �∈ A �K . So,

v j (A \ K) = 0 ⇒ (v 1 ∧ v 2 ∧ . . . ∧ v r )(A \ K) = 0 , v (A \ K) = 0 . Hence,

A is the minimal winning coalition. It follows that M ( G ) ⊆W 

m ( v ). 

Since M ( G ) ⊆W 

m ( v ) and W 

m ( v ) ⊆M ( G ), then W 

m (v ) = M(G ) . By

definition, 〈 N, v 〉 is a vertex cover game. �

Proof of Lemma 1. Fix the player k . Since the minimal winning

coalitions do not intersect, there exists only one minimal winning

coalition containing the player k . Denote this coalition by A i . Let

L ⊆ { 1 , 2 , . . . , m } , L � = ∅ . Then ∣∣∣∣ ∪ 

j∈ L 
A j 

∣∣∣∣ = | A i | + 

∣∣∣∣ ∪ 

j∈ L \{ i } A j 

∣∣∣∣ = a i + 

∑ 

j∈ L \{ i } 
a j . 

The following sequence of equations is valid: 

φk (v ) = 

∑ 

L ⊆{ 1 , 2 , ... ,m } 
k ∈ ⋃ 

j∈ L 
A j 

(−1) | L |−1 ∣∣∣∣⋃ 

j∈ L 
A j 

∣∣∣∣
= 

∑ 

L ⊆{ 1 , 2 , ... ,m } 
k ∈ ⋃ 

j∈ L 
A j 

(−1) | L |−1 

a i + 

∑ 

j∈ L \{ i } a j 

= 

∑ 

L ⊆{ 1 , 2 , ... ,m }\{ i } 

(−1) | L | 
a i + 

∑ 

j∈ L a j 
= 

∑ 

L ⊆{ 1 , 2 , ... ,m }\{ i } 
(−1) | L | 

∫ 1 

0 

x a i −1+ ∑ 

j∈ L a j dx 

= 

∫ 1 

0 

( ∑ 

L ⊆{ 1 , 2 , ... ,m }\{ i } 
(−1) | L | · x a i −1+ ∑ 

j∈ L a j 

) 

dx 

= 

∫ 1 

0 

x a i −1 

( ∑ 

L ⊆{ 1 , 2 , ... ,m }\{ i } 
(−1) | L | · x 

∑ 

j∈ L a j 

) 

dx 

= 

∫ 1 

0 

x a i −1 
m ∏ 

j =1 , j � = i 
(1 − x a j ) dx. 

he lemma is thus proven. �

roof of Statement 1. Since 〈 N, v 〉 is a vertex cover game, then

 (K) = (v 1 ∧ v 2 ∧ . . . ∧ v | E| )(K) = v 1 (K) · v 2 (K) · . . . · v | E| (K) , follow-

ng from Theorem 2 . Since W 

m (v j ) = {{ i j } , { k j }} , then v j (K) =
 { i j } (K) + v { k j } (K) − v { i j ,k j } (K) . Substituting the representation of

he functions v j ( K ) over the basis into the product, we get that the

tatement is true. �

roof of Statement 2. Since any simple game has a dimension-

lity, then ∀ j ∈ Y : W (v j ) = W (v j, 1 ) ∩ W (v j, 2 ) ∩ . . . ∩ W (v j, dim (v j ) ) ,

here 〈 N, v j,k 〉 , k = 1 , 2 , . . . , dim (v j ) is a weighted majority game.

ince the conditions of Theorem 1 are fulfilled, then v (K) =
(v 1 ∧ v 2 ∧ . . . ∧ v r )(K) . So, W (v ) = 

⋂ 

j∈ Y 
⋂ dim (v j ) 

k =1 
W (v j,k ) . Hence,

im( v ) ≤	j ∈ Y dim( v j ). �

roof of Statement 3. Let S = { j 1 , j 2 , . . . , j r } be the minimal ver-

ex cover of the graph G . Decompose the graph G into the

raphs G i = 〈 N, E i 〉 , E i = {{ j i , k }| j i ∈ S, { j i , k } ∈ E} , i = 1 , 2 , . . . , r. The

raph G i consists of a star graph and, possibly, several disconnected

ertices. Each star graph is centered around a vertex from the

inimal vertex cover S . Since ∪ i ∈{ 1 , 2 , ... ,r} E i = E, then conformant to

tatement 2 , we get that dim (v ) ≤ ∑ 

i ∈{ 1 , ... ,r} dim (v i ) , where 〈 N, v i 〉
s the vertex cover game on the graph G i . Since dim (v i ) = 1 ∀ i ∈
 1 , 2 , . . . , r} , then dim( v ) ≤ | S |, which proves the statement. �

roof of Statement 4. Let W 

m (v 1 ) = {{ i }} , W 

m (v 2 ) = { A 1 \ { i } , . . . ,
 m 

\ { i }} . Then v (K) = (v 1 ∧ v 2 )(K) , W 

m (v 1 ∨ v 2 ) = {{ i } , A 1 \
 i } , . . . , 
 m 

\ { i }} . Observe that elements in the sets W 

m ( v 2 ), W 

m ( v 1 ∨ v 2 ) do

ot intersect pairwise, respectively. Make use of Shapley–Shubik

ndex linearity property, and Lemma 1 . For the player i we get the

ollowing sequence of equalities: 

i (v ) = φi (v 1 ∧ v 2 ) = φi (v 1 ) + φi (v 2 ) − φi (v 1 ∨ v 2 ) 

= 1 + 0 −
∫ 1 

0 

m ∏ 

j=1 

(1 − x a j −1 ) dx = 1 −
∫ 1 

0 

m ∏ 

j=1 

(1 − x a j −1 ) dx. 

or the player k ∈ N, k � = i we get 

k (v ) = φk (v 1 ) + φk (v 2 ) − φk (v 1 ∨ v 2 ) 

= 0 + 

∫ 1 

0 

x a k −2 
∏ 

j=1 , 2 , ... ,m 

j � = k 

(1 − x a j −1 ) dx 

−
∫ 1 

0 

x a k −2 (1 − x ) 
∏ 

j=1 , 2 , ... ,m 

j � = k 

(1 − x a j −1 ) dx 

= 

∫ 1 

0 

(x a k −2 − x a k −2 (1 − x )) 
∏ 

j=1 , 2 , ... ,m 

j � = k 

(1 − x a j −1 ) dx 

= 

∫ 1 

0 

x a k −1 
∏ 

j=1 , 2 , ... ,m 

j � = k 

(1 − x a j −1 ) dx. 
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�

roof of Theorem 3. The vertex cover game on a star graph is a

eighted majority game, [1 ; 1 , 1 
n −1 , 

1 
n −1 , . . . , 

1 
n −1 ] . Consider the tree

 = 〈 N, E〉 , that is not a star. The set of vertices {1, 2, 3, 4} ⊆ N , {{1,

}, {2, 3}, {3, 4}} ⊆ E , {1, 3} �∈ E , {2, 4} �∈ E , {1, 4} �∈ E will then exist. 

Decompose the graph G into the graphs G 1 = 〈 N, E 1 〉 , E 1 =
{ 1 , 2 } , { 2 , 3 } , { 3 , 4 }} , G 2 = 〈 N, E \ E 1 〉 . If E �E 1 � = ∅ , then we compose

he vertex cover S of the graph G 2 by the following algorithm: 1.

 := ∅ ; 2. Run the direct search through all edges of the graph G 2 .

or all edge { i, x }, i ∈ {1, 2, 3, 4}, x ∈ N �{1, 2, 3, 4}, S := S ∪ { x }. For all

dge { x, y }, x, y ∈ N �{1, 2, 3, 4}, S := S ∪ { x } or S := S ∪ { y }. 

According to Theorem 1 , v (K) = (v 1 ∧ v 2 )(K) , where 〈 N, v 1 〉 ,
 N, v 2 〉 are vertex cover games on the graphs G 1 , G 2 , respec-

ively. Hence, v ({ 1 , 3 } ∪ S) = 1 , v ({ 2 , 4 } ∪ S) = 1 , v ({ 1 , 2 } ∪ S) = 0

since the edge {3, 4} is not covered), v ({ 3 , 4 } ∪ S) = 0 (since

he edge {1, 2} is not covered). Suppose that the game 〈 N,

 〉 can be represented in the form 〈 q ; w 1 , w 2 , . . . , w | N| 〉 . Then,

 1 + w 3 + 

∑ 

i ∈ S w i ≥ q, w 2 + w 4 + 

∑ 

i ∈ S w i ≥ q, w 1 + w 2 + 

∑ 

i ∈ S w i < 

, w 3 + w 4 + 

∑ 

i ∈ S w i < q. Adding the first and the second inequali-

ies together and the third and the fourth inequalities together, we

et a contradiction. �

roof of Statement 5. For a complete bipartite graph, W 

m (G ) =
 L, R } is valid. Elements of the set of minimal winning coalitions

o not intersect with one another, wherefore Lemma 1 can be ap-

lied. 

i ( v ) = 

∫ 1 

0 

x | L |−1 (1 − x | R | ) dx = 

1 

| L | −
1 

| L | + | R | , i ∈ L 

j ( v ) = 

∫ 1 

0 

x | R |−1 (1 − x | L | ) dx = 

1 

| R | −
1 

| L | + | R | , j ∈ R. 

�

roof of Statement 6. Decompose the graph G = 〈 N, E〉 into sub-

raph 

 1 = 〈 N, E 1 〉 , G 2 = 〈 N, E 2 〉 

 1 = {{ 1 , 2 } , { 1 , a p }} , p ∈ { 1 , . . . , k } , E 2 = {{ 2 , b q }} , q ∈ { 1 , . . . , r} , 

 

m (v 1 ) = {{ 1 } , { 2 , a 1 , . . . , a k }} , W 

m (v 2 ) = {{ 2 } , { b 1 , . . . , b r }} , 

 

m (v 1 ∨ v 2 ) = {{ 1 } , { 2 } , { b 1 , . . . , b r }} . 
pply Theorem 1 , Shapley–Shubik index linearity property, and

emma 1 . We get 

(v ) = φ( v 1 ∧ v 2 ) = φ(v 1 ) + φ(v 2 ) − φ( v 1 ∨ v 2 ) . 

1 (v ) = 

∫ 1 

0 

(1 − x k +1 ) dx −
∫ 1 

0 

(1 − x )(1 − x r ) dx 

= 

1 

2 

− 1 

k + 2 

+ 

1 

r + 1 

− 1 

r + 2 

;

2 (v ) = 

∫ 1 

0 

x k (1 − x ) dx + 

∫ 1 

0 

(1 − x r ) dx −
∫ 1 

0 

(1 − x )(1 − x r ) dx 

= 

1 

2 

− 1 

r + 2 

+ 

1 

k + 1 

− 1 

k + 2 

;

a p (v ) = 

∫ 1 

x k (1 − x ) dx = 

1 

k + 1 

− 1 

k + 2 

. 

0 
Calculate φb q (v ) . Since W 

m (v 1 ∨ v 2 ) = {{ 1 } , { 2 } , { b 1 , . . . , b r }} ,
{ 1 }| = 1 , |{ 2 }| = 1 , |{ b 1 , . . . , b r }| = r, then 

b q (v ) = 

∫ 1 

0 

x r−1 (1 − x ) dx −
∫ 1 

0 

(1 − x ) r−1 (1 − x ) 1 (1 − x ) 1 dx 

= 

∫ 1 

0 

x r−1 (1 − x ) dx −
∫ 1 

0 

(1 − x ) r−1 (1 − x ) 2 dx 

= 

1 

r + 1 

− 1 

r + 2 

. 

�
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