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Abstract

We analyze the complexity of several NP-hard
election-related problems under the assumptions
that the voters have group-separable preferences.
We show that under this assumption our problems
typically remain NP-hard, but we provide more ef-
ficient algorithms if additionally the clone decom-
position tree is of moderate height.

1 Introduction

We study computational properties of elections for the case
where voters’ preferences are group-separable [Inada, 1964;
1969]. In this we follow a well-established line of research
where the authors assume that the voters’ preferences are
nicely structured—e.g., are single-peaked [Black, 1958] or
single-crossing [Mirrlees, 1971; Roberts, 1977]—and show
that various NP-hard election-related problems either be-
come polynomial-time solvable or, less frequently, remain
computationally intractable (see, e.g., the survey of Elkind
et al. [2016]). So far, group-separable preferences have re-
ceived limited attention in the literature (especially regarding
their computational properties, but see the work of Bredereck
et al. [2016]) and we hope that our paper will convince more
researchers of their value.

We consider the ordinal model of preferences, that is, we
assume that each voter ranks the candidates from the most
to the least appealing one. In the general, unrestricted case,
each voter is free to report any such preference order, even
if—intuitively—it would not correspond to any apparent eval-
uation of the candidates’ merits. By assuming that the pref-
erence orders are structured in some way, we require that the
voters follow some common, rational criteria. For example,
Black [1958] introduced the notion of single-peaked prefer-
ences, where all the voters agree on some ordering of the
candidates with respect to a given criterion (this ordering is
referred to as the societal axis; in political elections it may,
e.g., correspond to the standard left-to-right spectrum of opin-
ions), each voter has his or her favorite position on the axis
(i.e., each voter is free to choose any of the candidates as his
or her most preferred one), and given two candidates that lay
on the same side of the axis with respect to the voter’s favorite
candidate, the voter prefers the one closer to the favorite can-
didate. For example, if a voter ranks a centrist candidate on
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Figure 1: The feature hierarchy (clone decomposition tree) for the
beverages example.

top, then he or she is forced to prefer a moderate left-wing
candidate to an extreme left-wing one.

Group-separable preferences, introduced by Inada [1964;
1969], also capture a certain rationality assumption, but a
completely different one. Formally, we say that the voters
have group-separable preferences if each subset A of candi-
dates, |A| > 2, can be split into two parts, A’ and A”, such
that each voter prefers all the members of one of these sets
to all the members of the other. One interpretation of this is
that there is a hierarchy of features that the candidates may
have, up to some level of this hierarchy all the candidates
from A have the same features, and for the level where they
differ, some voters prefer the features of the candidates in A’,
whereas the others prefer the features of those in A” (the fea-
tures do not need to be binary, but this is a natural case).

Example 1. To illustrate the above intuition, let us consider
an example where the voters have preferences over five bev-
erages: coffee, green tea, black tea, juice, and soda. There
are three voters with the following preferences (we write
a > b to indicate that a voter ranks a above b):

v1: coffee = black tea > green tea > soda - juice,
vy green tea > black tea > coffee >~ juice > soda,
vs: soda > juice > black tea = green tea > coffee

To see that these preferences are group-separable, we make
the following observations. First, if we consider the set of all
the beverages, then each voter either prefers all the hot drinks
to all the cold ones, or the other way round. Second, among
the hot drinks, all the voters either prefer coffee to both kinds
of tea or the other way round. In other words, all the voters
agree that the beverages can be classified as in Figure 1 and
form their preferences accordingly (such trees as in Figure 1



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

were already discussed by Inada [1964]). In particular, no
voter would rank coffee above juice above green tea because
it would put a cold drink between two hot ones.

We note that the tree presented in Figure 1 is, in fact, a
clone decomposition tree for our preference profile [Elkind et
al., 2012]; indeed, all the candidates in a given branch of the
tree are clones in the sense that all the voters rank them con-
secutively. While not all decomposition trees correspond to
group-separable preferences (see Section 2), for each election
there is a polynomial-time computable canonical decomposi-
tion tree [Karpov, 2019; Elkind et al., 2012].

Assuming that the voters have single-peaked preferences
(or single-crossing ones, or ones that are structured in some
other appealing way) has various positive consequences. For
example, if the number of voters is odd then there always ex-
ists a Condorcet winner (i.e., a candidate c that is preferred to
every other candidate by a majority of voters). Further, many
NP-hard election-related problems become polynomial-time
solvable. While it is well-known that group-separable pref-
erences behave equally nicely on the normative front (in par-
ticular, they also guarantee the existence of Condorcet win-
ners), we show that their computational properties are more
involved. To this end, we consider the problems of win-
ner determination under the Chamberlin—-Courant multiwin-
ner voting rule [Chamberlin and Courant, 1983] and Young
single-winner voting rule [Young, 1977], as well as two kinds
of election control problems. We chose these problems be-
cause they all are NP-hard in the general setting, but be-
come polynomial-time solvable if the voters’ preferences are
single-peaked (or single-crossing). On the high level, our
main contribution is that:

Many (although not all) election-related NP-hard
problems remain intractable even if the voters have
group-separable preferences. Yet, often these prob-
lems can be solved more efficiently (often in poly-
nomial time) if the clone decomposition tree for the
given input preference profile has moderate height.

Briefly put, our NP-hardness results rely on the fact that if the
clone decomposition tree has caterpillar structure (i.e., it is a
path where each node on the path—except for the last one—
has an edge to one additional node) then we have enough
freedom in forming preference orders to adapt already ex-
isting NP-hardness proofs. For our positive results, we ei-
ther use dynamic programming over the clone decomposition
trees (storing an exponential amount of information with re-
spect to the height of the tree) or show reductions to particu-
larly structured integer linear programming (ILP) tasks. We
omit some of the proofs due to restricted space.

2 Preliminaries

For an integer ¢, we write [¢] to denote the set {1, ...,t}.

An election E = (C,V) consists of a set of candidates
C ={c1,...,cn} and acollection V = (vy,...,v,) of vot-
ers. Each voter v; is associated with preference order >,,,
which ranks all the candidates from the most to the least de-
sirable one. Given two disjoint subsets of candidates, A and
B, we write v;: A > B to indicate that v; prefers each mem-
ber of A to each member of B. We extend this notation to
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three or more sets in a natural way, and for singleton sets
we often omit braces. For example, given candidates a and
b, by v;: a = C\ {a,b} > b we mean that voter v; prefers
candidate a to all the other candidates, and prefers all the can-
didates to candidate b. We omit v; from this notation if it is
clear from the context. For a voter v; and candidate ¢, we
write pos,, (c) to denote the position of ¢ in v;’s preference
order (the top-ranked candidate has position 1, the next one
has position 2, and so on).

(Weak) Condorcet winners. We say that a candidate c is
a (weak) Condorcet winner if for every other candidate d a
strict majority of the voters (at least half of the voters) ranks ¢
above d. In general, a Condorcet winner may not exist, but if
he or she exists, then he or she is unique. A Condorcet winner
is also a weak Condorcet winner.

Single-winner voting rules. A single-winner voting rule is
a function R that given an election E outputs a set of tied
election winners (in practice, tie-breaking rules are needed,
but we disregard this issue!). A single-winner voting rule
is (weak) Condorcet-consistent if it outputs exactly the Con-
dorcet winner (the weak Condorcet winners) whenever he or
she (they) exist. We focus on the following two rules:

1. Under the Plurality rule, each candidate gets score equal
to the number of voters that rank him or her first, and the
candidates with the highest score win.

Under the Young rule [Young, 1977], each candidate gets
score equal to the smallest number of voters that need to
be removed from the election for this candidate to be-
come a weak Condorcet winner. The candidates with
the lowest score win.

Naturally, the Young rule is (weak) Condorcet-consistent,
whereas the Plurality rule is not.

Example 2. Consider the election from Example 1. The Plu-
rality rule outputs three tied candidates, coffee, green tea,
soda, whereas the Young rule outputs a unique winner,
black tea (who is the Condorcet winner).

Multiwinner rules. Multiwinner voting rules are defined
analogously to the single-winner ones, except that their in-
put additionally includes the desired committee size k, and
they output a family of committees—i.e., size-k subsets of
candidates—that tie as election winners. We are interested in
the Chamberlin—-Courant (CC) multiwinner rule [Chamber-
lin and Courant, 1983], which is defined as follows: Let 3
be the Borda dissatisfaction function, defined for each posi-
tive integer ¢ as 3(i) = ¢ — 1. Further, consider an election
E = (C, V), committee size k, and some committee W C C.
The CC-dissatisfaction score of W is:

dissaty (W) = 3, oy mineew (8(pos,(c)).

Intuitively, each voter v contributes dissatisfaction 5(¢) to the
committee, where ¢ is the position of the committee member
that v ranks highest; this candidate is referred to as the rep-
resentative of v. The CC rule outputs the size-k committees

!Occasionally, tie-breaking may affect the complexity of election
problems [Obraztsova and Elkind, 2011; Obraztsova et al., 2011].
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with the lowest CC-dissatisfaction score. There are a num-
ber of variants of the CC rule which use other functions in
place of /3 (or focus on the approval setting [Procaccia e al.,
2008]), but for the sake of brevity we focus on the classic,
Borda-based variant.

Example 3. In the election from Example 1, there are three
CC winning committees of size k = 2. Each of them con-
tains soda and one of the hot drinks. Their CC-dissatisfaction
score is two (e.g., the committee {black tea, soda} receives
one point from each of the first two voters and zero points
from the last one).

Computational problems. We are interested in the follow-
ing computational problems. In each of the problems below
we are given an election E = (C, V), a (preferred) candidate
p (except for the CC-SCORE problem, where we are given
committee size k instead), and a nonnegative integer ¢ (ex-
cept for the YOUNG-WINNER problem):

1. In the YOUNG-WINNER problem we ask if p is one of
the Young winners of election E. In the YOUNG-SCORE
problem we ask if p’s Young score is at most . Both
problems are NP-hard [Brandt er al., 2015; Rothe et
al., 2003] (indeed, the former problem is @g-complete
and the latter is NP-complete), but both are polynomial-
time solvable for single-peaked [Brandt ez al., 2015] and
single-crossing [Magiera and Faliszewski, 2017] prefer-
ences.

In the CC-SCORE problem we ask if there is a
size-k committee whose CC-dissatisfaction score is
at most . The problem is NP-complete [Procac-
cia et al., 2008; Lu and Boutilier, 2011] in gen-
eral, but becomes polynomial-time solvable under
both single-peaked [Betzler er al., 2013] and single-
crossing [Skowron et al., 2015b] preferences.

In the PLURALITY-CCAC problem? we are addition-
ally given a set A of spoiler candidates (the voters’
preferences include members of A), whereas in the
CONDORCET-CCAV problem® we additionally get a
collection W of spoiler voters. In the former prob-
lem we ask if there is a set A’ C A of at most ¢
spoiler candidates such that p is a Plurality winner of
election (C' U A’, V'), whereas in the latter we ask if
there is a collection W’ of at most ¢ spoiler voters such
that p is the Condorcet winner of the election (C,V +
W'). Both problems were shown to be NP-complete by
Bartholdi et al. [1992], whereas Faliszewski et al. [2011]
and Brandt et al. [2015] showed polynomial-time algo-
rithms for the single-peaked cases, and Magiera and Fal-
iszewski [2017] did the same for single-crossing ones.

We also study the PLURALITY-CCDC and CONDORCET-
CCDYV problems (constructive control by deleting candidates
or voters, respectively). They are defined analogously to the
CCAC/CCAV variants, but instead of adding spoiler candi-
dates/voters, we ask if it is possible to make the preferred
candidate a winner by deleting at most ¢ candidates or voters,

2CCAC stands for constructive control by adding candidates.
3CCAV stands for constructive control by adding voters.
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respectively. The difference between CONDORCET-CCDV
and YOUNG SCORE is that in the former we ask about a Con-
dorcet winner and in the latter about a weak one.

3 Group-Separability and Clone Structures

The notion of group-separable preferences is due to In-
ada [1964; 1969]. We say that an election F is group sep-
arable (or, that the voters’ preferences are group-separable)
if each subset A C C of candidates, |A| > 2, can be parti-
tioned into two nonempty subsets, A’ and A", such for each
voter v € V it holds that either v: A’ = A” orv: A” = A’.
It turns out that it is particularly convenient to look at group-
separable elections through the lenses of clone analysis.

We say that a subset B of candidates is a clone set in elec-
tion F if all the voters rank the members of B consecutively.
We write C(E) to denote the family of all clone sets of elec-
tion E; we also refer to C(E) as the clone structure of E.

As discussed by Elkind et al. [2012], clone structures are
hierarchical and are conveniently described using PQ-trees of
Booth and Lueker [1976]: A PQ-tree over candidate set C' is
an ordered tree, where each leaf is labeled with a unique can-
didate and each internal node is either of type P or of type Q
(for the sake of brevity, we will often treat candidates as if
they were the leaves themselves). By reading the candidates
associated with the leaves from left to right, we obtain a pref-
erence order referred to as the frontier of this tree. A prefer-
ence order > is consistent with a given PQ-tree if it can be
obtained as its frontier by performing the following types of
operations: (a) if a node is of type P, then its children can be
permuted arbitrarily, and (b) if a node is of type Q, then the
order of its children can be reversed.

If every preference order in an election E = (C, V) is con-
sistent with a given PQ-tree 7 (over the same candidate set),
then we say that F' is consistent with 7. We say that 7 is a
clone decomposition tree of E if E is consistent with 7 and
for each set A of candidates, A is a clone setin F if and only if
either (a) there is a subtree of 7 whose leaves are exactly the
candidates from A, or (b) there is a sequence of subtrees of 7,
whose leaves are consecutive children of the same Q-node,
such that A is the union of the sets of leaves of these trees.
Elkind et al. [2012] argued that for every election there is a
clone decomposition tree and that it is, in essence, unique (up
to permuting the order of children in nodes of type P and re-
versing the order of children of nodes of type Q). Further, this
tree is easily computable in polynomial time. Karpov [2019]
has shown that if an election is group-separable, then all the
nodes in its clone decomposition tree are of type Q.

Example 4. Let E = (C, V') be the election from Example 1.
In addition to all the singleton sets and the set of all candi-
dates, the clone structure of E consists of sets {juice, soda},
{black tea, green tea}, and {black tea, green tea, coffee}.
All the preference orders in this election are consistent with
the PQ-tree from Figure 1 (all nodes are of type Q, say). In-
deed, this tree is a clone decomposition tree for E.

Let 7 be some PQ-tree over candidate set C'. For a node
T of T, we write C(T") to denote the set of candidates that
appear as the leaves of the tree rooted at 7T'. For example, for
the tree from Figure 1 we have C(cold) = {juice, soda}.
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4 Hardness Results and Caterpillar Trees

In this section we argue that nearly all our problems remain
NP-hard even if the voters’ preferences are group-separable
(the YOUNG WINNER problem is the only exception—under
group-separable preferences weak Condorcet winners always
exist and it suffices to check if the given candidate p is one of
them). We obtain all our NP-hardness proofs using the same
trick, i.e., by noting that we can form a caterpillar PQ-tree
(where all the nodes are type-Q) and ensure that all our pref-
erence orders are consistent with it. Caterpillar trees give us
enough flexibility to either form simple NP-hardness proofs
or adapt those already available in the literature.

A caterpillar tree consists of a core path and each node
either lays on the path or is directly connected to a node
on the path. In our case we will be interested in bi-
nary caterpillar PQ-trees (we let all nodes be of type Q).
Let C = {ci,...,cm} be a set of candidates. We write
CP(c1,- .., cm) to mean the following caterpillar tree: There
are internal nodes P, ..., P,,_1, where P is the root of the
tree and for each ¢ € [m — 2], P; has one leaf child ¢; and
one internal-node child P;;;. Further, P,,_; has two leaf
children, ¢,,,_1 and ¢,,.*

Observation 1. Consideratree T =CP(c1,...,cm). Let A
and B be two disjoint subsets of C such that C = AUB (i.e.,
A and B form a partition of C'). Then a preference order v of
the form v: A = B, where all the members of A are listed in
the order of increasing indices and all the members of B are
listed in the order of decreasing indices, is consistent with T .

Using Observation 1, we can show our first result (similar
proofs work for CONDORCET-CCAV/CCDV).

Proposition 1. YOUNG-SCORE is NP-hard even for group-
separable elections.

Proof. We will give a reduction from the following classic
variant of the X3C problem. The input instance I consists of
aset X = {x1,...,23;} and a family S = {S1,...,Sm}
of size-3 subsets of X (each element of X belongs to ex-
actly three sets in ). The question is if it is possible to
choose k sets whose union is X. We assume that k& > 3.
We form an instance of YOUNG-WINNER with candidate set
C ={x,...,23k, p} and the following voters, whose prefer-
ence orders are consistent with CP(x1, ..., Z3k, p) and, thus,
are group-separable:

1. For each set S; € &, there is a voter with preference
order of the form X — S; > p > §; (in the language of
Observation 1, we have A = X —S; and B = {p} US)).

2. We have m — k — 4 voters with preference order of the
form p > xgx > -+ = x71.

We ask if p’s Young score is at most k, i.e., we ask if it is pos-
sible to ensure that p is a weak Condorcet winner by deleting
at most k voters.

Prior to deleting any voters, for each candidate x; there are
exactly (m — k — 4) + 3 = m — k — 1 voters who prefer p
to z; and m — 3 voters who prefer x; to p. Since (m — 3) —
(m—k—1)=k—2>0,pisnot a weak Condorcet winner.

“Note that the core path in this tree is, e.g., Pi,..., Pm—1,Cm.
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However, if there is a family of k sets from S whose union
is X, then by deleting the corresponding voters we remove
k — 1 voters who prefer x; to p and one voter who prefers p to
x;. Then we have (m—3—(k—1))—(m—k—1-1) =0, so
p and z; tie in their head-to-head contest. As this reasoning
applies to all members of X, we have that p becomes a weak
Condorcet winner. Thus, if I is a yes-instance then we also
output a yes-instance.

For the other direction, we assume that it is possible to
delete at most k voters so that p becomes a weak Condorcet
winner. It does not make sense to delete voters who prefer p
to all the other candidates, so we assume that we delete voters
from the first group only. By a reasoning analogous to that in
the previous paragraph, for each element x; we have to delete
at least k£ — 1 voters who prefer x; to p and at most one who
prefers p to x;. This is possible only if 7 is a yes-instance. [

Corollary 1. CONDORCET-CCAV and CONDORCET-
CCDV are NP-hard even for group-separable elections.

For the case of CC-SCORE, we observe that its NP-
hardness proof of Skowron et al. [Skowron et al., 2015a, The-
orem 3] has the following properties. The set C of candidates
is partitioned into two subsets, A = {a1,...,a,} and D =
{dy,...,dn}, where D is a set of dummy candidates. Fur-
ther, the set D is partitioned into groups Dy, Ds, ... (where
each D, contains consecutive members of D). Each voter has
a preference order of the form a; > a; = Dy > C\ (D, U
{ai,a;}), where i < j and x is some integer (and the orders
of candidates within D,, and C' \ (D, U {a;,a;}) are irrele-
vant). Such preference orders are consistent with caterpillar
trees CP(as,...,an,d1,...,dy) and, thus, the proof applies
to group-separable preferences. We similarly adapt the NP-
hardness proofs for PLURALITY-CCAC/CCDC [Bartholdi
et al., 1992; Hemaspaandra et al., 2007].

Corollary 2. CC-SCORE, PLURALITY-CCAC, and
PLURALITY-CCDC are NP-hard even for group-separable
elections.

Our NP-hardness proofs use caterpillar trees, which have
the largest height possible. In the following sections we show
algorithms for the case of trees with more moderate height.

5 Algorithm for the CC Rule

In this section we focus on the CC-SCORE problem, which
asks if there is a committee with at least a given CC score.

Theorem 1. There is an algorithm for CC-SCORE that given
committee size k and an election E with m candidates and
n voters, where the voters’ preferences are group-separable
and yield a clone decomposition tree of height h, runs in time
O(2") - poly(n, m, k).

While, in general, our algorithm runs in exponential time,
we note that if the clone decomposition tree has height i1 =
O(log m) (which happens, e.g., if it is a balanced binary tree)
then the algorithm runs in polynomial time. Our algorithm
is based on dynamic programming over the clone decompo-
sition tree of the input election; we describe it throughout the
rest of this section. We first note that it suffices to focus on
CC committees of a particular form.
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Lemma 1. Let E = (C,V) be a group-separable election
and let T be its clone decomposition tree. Let S C C be some
committee. There exists a committee S’ C C, |S’| < |5, such
that dissaty; (S') < dissat}y (S) and for each internal node
T of T, whose children are T4, ..., T, (and appear in this
order in the tree), exactly one of the following holds:

1. at most one of the sets C(T1),...,C(T,) has a non-
empty intersection with S’, or

2. exactly C(Ty1) and C(T,) have nonempty intersections
with S’

Proof. If committee S does not satisfy our condition then let
T be some node of 7 where this condition is violated, and
let Ty, ..., T, be the children of T' (in the order in which
they appear in the tree). Let ¢; be some arbitrary member of
C(T1) and let ¢, be some arbitrary member of C(T.). Since
the condition is violated, it must be that S N (J;_, C(T;)
contains at least two elements (because at least two sets
among C(T1),...,C(T,) have nonempty intersection with
S). We form S” = (S \ U._, C(T})) U {c1, ¢, } and claim
that S” satisfies our condition at node 7', contains at most
|S| candidates, and does not have higher dissatisfaction than
S. Indeed, |S”| < |S| and exactly C'(71) and C(T,.) have
nonempty intersections with S”. To see why dissatf (S”) <
dissat; (S), we note that for every voter v in E, his or her
preference order either satisfies v: C(Ty) > C(Ts) > --- >
C(T}), or satisfies v: C(T.) = --- = C(T3) = C(T1) (this
follows because for group-separable preferences the clone de-
composition trees contain Q-nodes only). In either case, if the
highest-ranked member of S belonged to | J;_, C(T}), then
the highest ranked member of S” is either ranked at the same
position or higher. Further, we see that for every node where
S did not violate the conditions, committee S” also does not
violate them. By repeating the above-described process for
all the nodes where the lemma condition is violated we ob-
tain the desired committee. O

We will refer to the committees of the form described in
Lemma 1 as normal. Our algorithm will compute a lowest-
dissatisfaction normal committee of up to a given size k,
and then fill it in up to size k with arbitrary candidates. By
Lemma 1, this will be a winning committee for our election.
To this end, we will need a certain compact way of represent-
ing key properties of normal committees.

Let E = (C,V) be some group-separable election and
let 7 be its clone decomposition tree, whose root is node Fy.
Further, let S be a normal committee for £ (and 7) and let
P = (P, ..., P;) be a path leading from the root of 7 down
to some node P, (this node may either be an internal node or
a leaf). We say that this path is relevant if C(P,)NS # 0 (i.e.,
if there is some member of .S that is reachable from the root
of T by a path that extends P). If P is relevant, then for each
P, i € [q], we define type(F;) as follows (let @1, ..., Q, be
the children of node P;_1):

1. type(P;) = 1 if for each Q;, j € [r], it holds that
C(Q;) NS # 0 if and only if Q; = P; (in other words,
P; is the unique child of P;_; that has leaves in S);
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2. type(P;) =2ifr>2,C(Q1)NS # 0,and C(Q,)NS #
(0 (i.e., exactly the two extreme children of P;_; have
leaves in S; by definition, P; is one of these children).

Since S is a normal committee, the above two types are
the only ones possible. We define the type vector of the
path P to be type(P) = (type(P1),...,type(F,)). As we
will next show, given P and type(P) it is possible to com-
pute those voters in V' whose representatives (with respect
to S) are in C(P,). We refer to this collection of voters as
V(P,type(P)). (A crucial observation here is that this col-
lection of voters does not depend on the actual contents of S,
provided that they are consistent with type(P).)

Lemma 2. Let E = (C, V) be an election and let T be its
clone decomposition tree. Let S be some normal committee
for E and let P = (P, ..., P,) be some relevant path in T .
There is an algorithm that given E, T, P, and type(P) com-
putes V (P, type(P)).

Proof. Our algorithm proceeds by first setting V’ to be the
collection of all the voters (i.e., V' := V) and then remov-
ing voters from V’ until we are left with the desired col-
lection. Specifically, we consider nodes P4, ..., P, in order
and, while considering node P;, we proceed as follows (let
@1, -.,Q, be the children of P;_;):

1. If type(P;) = 2 then we consider two cases. If P; = @
then we remove from V' all the voters v for whom it
holds that v: C(Q,) > C(Q1); if P, = @, then we
remove from V' all the voters v for whom it holds that
v: C(Q1) > C(Q1) (since T is a clone decomposition
tree for a group-separable profile, we know that for each
voter one of the above conditions holds).

2. If type(P;) = 1 then we leave V'’ unchanged.

A simple induction shows that for each i € [q], after con-
sidering node P;, V' contains exactly those voters, whose
representatives belong to C'(P;). Thus, in the end, V'
V (P, type(P)). It is also easy to verify that the algorithm
runs in polynomial time. O

We are now ready to present our main algorithm. The
input consists of a group-separable election £ = (C,V)
and committee size k. Additionally, we also compute E’s
clone decomposition tree 7; this can be done in polynomial
time [Elkind er al., 2012]. The algorithm is based on dy-
namic programming. For each number k' € [k] of candi-
dates, each path P = (P, ..., P,) leading from the root
of T to one of its internal nodes or leaves, and each vector
T = (t1,...,ty) € {1,2}%—which specifies the intended
type of P—we define function f(k', P,T) to be the low-
est dissatisfaction achievable by a committee S C C(F,),
|S| < k', among voters V(P,T). We note that for path
Pioot = (Py) and empty vector Tyoor = (), we have that
f(k, Proot, Troot) gives exactly the dissatisfaction of a win-
ning size-k committee for election F. It remains to show how
to compute f efficiently.

Consider some integer k' € [k], apath P = (P, ..., P,),
and vector T = (t1,...,t5) € {1,2}%. If P, is aleaf (and ¢
is the candidate associated with this leaf), then f(k', P, Q) =
dissat(¢, v (pry) ({c}). This follows because, by definition
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of f, we can only consider committees that are nonempty
subsets of {c}, so there is just one choice. If P, is not a leaf,
then let Q1, . .., @, be its children within 7. For j € [r], we
write P|Q; to denote (P, ..., P,,Q;) and fort € {1,2} we
write T'|t to denote (1,...,t,,t). We express f recursively
as f(k', P,Q) = max(A, B), where:

A= max f(K', P|Q,,T|1), and
elr
B= max  f(ky, P|lQ1,T|2) + f(k;, P|Qy,T|2).
ky .k, €[k']
K +kl =k

Intuitively, value A corresponds to choosing committee mem-
bers from a tree rooted at a single child of P, whereas B cor-
responds to choosing some committee members from C(Q1)
and some from C(Q,) (by Lemma 1 there is no need to con-
sider other possibilities).

Using the above recursion and standard dynamic program-
ming, it is possible to compute f(k, Proot, Troot) in time
O(2") - poly(|C|, |V|, k), where h is the height of 7. The
O(2") factor comes from the fact that for each node of 7" we
need to consider at most 2" possible types of paths that lead
to it. As argued above, f(k, Proot, Troot) 18 the lowest dissat-
isfaction achievable by a committee of size (at most) k in our
election and computing it suffices to decide CC-SCORE. Via
dynamic programming tricks, we can also compute a com-
mittee that achieves this dissatisfaction.

6 Plurality Control

For the case of PLURALITY-CCAC and PLURALITY-CCDC
we obtain a result analogous to that for CC-SCORE.

Theorem 2. There are algorithms for the PLURALITY-
CCAC and PLURALITY-CCDC problems that for group-
separable elections run in time O(4") - poly(n,m), where
h is the height of the clone decomposition tree for the input
election, n is the number of its voters, and m is the number
of its candidates.

7 Young Rule and Condorcet Control

We will now present our algorithm for computing the Young
score of a given candidate. Unfortunately the algorithm will
not work in polynomial time even for elections with decom-
position trees of height O(log m). Still, the running time will
be subexponential, giving a strong argument that in this case
the problem is not NP-hard.

Theorem 3. There is an algorithm that given an election
FE with m candidates and n voters, where the voters’ pref-
erences are group-separable and yield clone decomposition
tree of height h, computes the Young score of a given candi-

date in time RO . poly(n, m).

Let E = (C,V) be our input election and let p be the can-
didate in whose Young score we are interested. Let 7 be the
clone decomposition tree for E, and let P = (Py,..., Pp)
be the path leading from the root of 7 to a leaf node corre-
sponding to p. Our algorithm forms an integer linear program
(ILP) and then solves it using the algorithm of Eisenbrand
and Weismantel [2018] (see also the overview of Gavenciak
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et al. [2018] for a discussion of modern ILP algorithms).
For each voter v € V, we have a binary variable x, which
takes value 1 if the voter stays in the election (i.e., is not
deleted), and which takes value 0 otherwise. To form con-
straints, we consider each node P;, i € [h — 1] U {0}, sep-
arately, and for each we introduce two constraints. Let us
fix some node P; and let @1, ..., Q, be its children, such
that Q; = Pi;1. Let X be the collection of voters v such
that v: C(Q1) > --- = C(Q,) (we refer to them as X-
voters), and let Y be the set of voters for whom it holds that
v: C(Qr) » -+ = C(Q1) (we refer to them as Y -voters; by
the properties of group-separable preferences, we know that
each voter is either of type X or of type Y'). We introduce the
constraints as follows:

1. If j > 1 thenforp € C(P;) to be a weak Condorcet win-
ner, there must be at least as many X -voters as Y -voters
(or some member of C'(Q1) would be strictly preferred

to p). We form constraint ) | v o, > > oy To.

If j < r then, by an analogous reasoning as above, we
require that there are at least as many Y -voters as X-

voters and form constraint ) J _y @, > >0 oy Ty,

One can verify that if all these constraints are satisfied, then
p is a weak Condorcet winner. We set the goal in our ILP to
be maximizing ZUEV x,, (so that we delete as few voters as
possible). The score of pis [V/| = >y 2.

For the running time, we have |V| variables and O(h) con-
straints. As all the coefficients in our constraints are either 1
or —1, the algorithm of Eisenbrand and Weismantel [2018]
runs in time |V| - hO(h*) | which suffices for us. Analogous
algorithms also work for Condorcet-CCAV/CCDV.

Corollary 3. There are algorithms that solve CONDORCET-

CCAV/CCDYV for group-separable elections in time RO(™?).
poly(m,n), where h is the height of the clone decomposition
tree for the input election, m is the number of candidates, and
n is the number of voters.

8 Conclusions

So far, most algorithmic studies of restricted domains focused
on positive results and provided efficient algorithms. This
is the case for the single-peaked [Faliszewski er al., 2011;
Conitzer, 2009] and single-crossing [Skowron et al., 2015b;
Magiera and Faliszewski, 2017] domains, as well as for many
of their variants [Peters and Elkind, 2016; Yu et al., 2013].
Indeed, there even are domains—such as SPOC [Peters and
Lackner, 2017]—that lack good normative properties, but
are useful algorithmically. We have shown that the group-
separable domain is somewhat different. It is known to have
good normative properties, but to obtain efficient algorithms,
one has to look deeper into its structure.
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