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ITERATED HIGHER WHITEHEAD PRODUCTS IN
TOPOLOGY OF MOMENT-ANGLE COMPLEXES
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Abstract: We give an example of a simplicial complex whose corresponding moment-angle complex
is homotopy equivalent to a wedge of spheres, but there is a sphere that cannot be realized by any
linear combination of iterated higher Whitehead products. Using two explicitly defined operations on
simplicial complexes, we prove that there exists a simplicial complex that realizes any given iterated
higher Whitehead product. Also we describe the smallest simplicial complex that realizes an iterated
product with only two pairs of nested brackets.
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§ 1. Introduction
The moment-angle complex ZK is a cell complex built from products of polydisks and tori para-

metrized by simplices in a finite simplicial complex K. There is torus action on ZK, which plays an
important role in toric topology (see [1]). In the case when K is a triangulation of a sphere, ZK is
a topological manifold with rich geometric structure. Moment-angle complexes are particular examples
of the homotopy-theoretical construction of polyhedral products, which provides a wonderful “testing
ground” for application of unstable homotopy theory techniques.
In this paper we study the topological structure of moment-angle complexes ZK. Interest to higher

Whitehead products in homotopy groups of moment-angle complexes and polyhedral products goes back
to the work of Panov and Ray [2] where the first structure results were obtained. Some important
results about the structure of higher Whitehead products were obtained by Grbić, Theriault [3] and
Iriye, Kishimoto [4].
We consider the two classes of simplicial complexes: The first class BΔ consists of simplicial com-

plexes K for which ZK is homotopy equivalent to a wedge of spheres. The second class WΔ consists
of K ∈ BΔ such that all spheres in the wedge are realized by iterated higher Whitehead products
(see § 2). Buchstaber and Panov asked in [1, Problem 8.4.5] whether it is true that BΔ = WΔ. In this
paper we show that this is not so (see § 7). Namely, we give an example of a simplicial complex whose
corresponding moment-angle complex is homotopy equivalent to a wedge of spheres, but there is a sphere
that cannot be realized by any linear combination of iterated higher Whitehead products.
On the other hand we show that WΔ is large enough. Namely, we show that WΔ is closed under two

explicitly defined operations on simplicial complexes (see Proposition 5.1 and Theorem 5.2). Then using
these operations we prove that there exists a simplicial complex that realizes every given iterated higher
Whitehead product (see Theorem 5.3). We also describe the smallest simplicial complex that realizes an
iterated product with only two pairs of nested brackets (see Theorem 6.1).

§ 2. Preliminaries
A simplicial complex K on the set [m] def= {1, 2, . . . ,m} is a collection of subsets I ⊂ [m] closed under
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taking any subsets. We refer to I ∈ K as simplices or faces of K, and always assume that ∅ ∈ K. Denote
by Δm−1 or Δ(1, . . . ,m) the full simplex on the set [m].
Assume we are given some set of m topological pairs

(X,A) = {(X1, A1), . . . , (Xm, Am)},
where Ai ⊂ Xi. Given a simplex I ∈ K, we put

(X,A)I = {(x1, . . . , xm) ∈ X1 × · · · ×Xm | xj ∈ Aj for j /∈ I}.
The polyhedral product of (X,A) corresponding to K is the following subset of X1 × · · · ×Xm:

(X,A)K =
⋃

I∈K
(X,A)I (⊂ X1 × · · · ×Xn).

In case when all pairs (Xi, Ai) are (D
2, S1) we use the notation ZK for (X,A)K, and refer to ZK =

(D2, S1)K as the moment-angle complex. Also, if all pairs (Xi, Ai) are (X, pt) we use the abbreviated
notation XK for (X,A)K.

Theorem 2.1 [1, Chapter 4]. The moment-angle complex ZK is the homotopy fiber of the canonical
inclusion (CP∞)K ↪→ (CP∞)m.
We will also need the following more explicit description of the mapping ZK → (CP∞)K. Consider

the mapping of pairs (D2, S1) → (CP∞, pt) sending the interior of the disk homeomorphically onto the
complement of the basepoint in CP 1. By functoriality, we have the induced mapping of the polyhedral
products ZK = (D2, S1)K → (CP∞)K.
The general definition of higher Whitehead product can be found in [5]. We only describe Whitehead

products in the space (CP∞)K and their lifts to ZK. In this case the indeterminacy of higher Whitehead
products can be controlled effectively because extension mappings can be chosen canonically.
Let μi be the mapping (D

2, S1) → S2 ∼= CP 1 ↪→ (CP∞)∨m ↪→ (CP∞)K. Here the second mapping
is the canonical inclusion of CP 1 into the ith wedge summand. The third mapping is induced by embed-
ding m disjoint points into K. The Whitehead product (or Whitehead bracket) [μi, μj ] of μi and μj is the
homotopy class of the mapping

S3 ∼= ∂D4 ∼= ∂(D2 ×D2) ∼= D2 × S1 ∪ S1 ×D2 [μi,μj ]−−−−→ (CP∞)K,

where

[μi, μj ](x, y) =

{
μi(x) for (x, y) ∈ D2 × S1,
μj(y) for (x, y) ∈ S1 ×D2.

Every Whitehead product becomes trivial after composing with the embedding (CP∞)K ↪→ (CP∞)m
� K(Zm, 2). This implies that the mapping [μi, μj ] : S3 → (CP∞)K has a lift S3 → ZK; we will use the
same notation for it. Such a lift [μi, μj ] is given by the inclusion of the subcomplex

[μi, μj ] : S
3 ∼= D2 × S1 ∪ S1 ×D2 ↪→ ZK.

If the Whitehead product [μi, μj ] is trivial then the mapping [μi, μj ] : S
3 → ZK can be extended canoni-

cally to a mapping D4 ∼= D2i ×D2j ↪→ ZK.
Higher Whitehead products are defined inductively as follows.
Let μi1 , . . . , μin be a collection of mappings such that the (n−1)-fold product [μi1 , . . . , μ̂ik , . . . , μin ] is

trivial for any k. Then for every (n− 1)-fold product there is a canonical extension [μi1 , . . . , μ̂ik , . . . , μin ]
to a mapping from D2(n−1) which is the composition

[μi1 , . . . , μ̂ik , . . . , μin ] : D
2
i1 × · · · ×D2ik−1 ×D2ik+1 × · · · ×D2in ↪→ ZK → (CP∞)K,
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and all these extensions are compatible on the intersections. The n-fold product [μi1 , . . . , μin ] is defined

as the homotopy class of the mapping1)

S2n−1 ∼= ∂(D2i1 × · · · ×D2in
) ∼=

n⋃
k=1

D2i1 × · · · × S1ik × · · · ×D2in
[μi1 ,...,μin ]−−−−−−−→ (CP∞)ZK ,

which is given as follows:

[μi1 , . . . , μin ](x1, . . . , xn) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[μi1 , . . . , μin−1 ](x1, . . . , xn−1) for xn ∈ S1in ,
. . .

[μi1 , . . . , μ̂ik , . . . , μin ](x1, . . . , x̂k, . . . , xn) for xk ∈ S1ik ,
. . .

[μi2 , . . . , μin ](x2, . . . , xn) for x1 ∈ S1i1 .
Alongside with higher Whitehead products of canonical mappings μi we will consider general iterated

higher Whitehead products, i.e. higher Whitehead products whose arguments can be higher Whitehead
products. For example, [μ1, μ2, [μ3, μ4, μ5], [μ6, μ13, [μ7, μ8, μ9], μ10], [μ11, μ12]]. In most cases we consider
only nested iterated higher Whitehead products, i.e. products of the form

w =
[
μi01 , . . . , μi0p0 ,

[
. . .
[
μiq1 , . . . , μiqpq

]]]
: Sd(w) → (CP∞)K.

Here d(w) denotes the dimension of w.
As in the case of ordinary Whitehead products any iterated higher Whitehead product lifts to a map-

ping Sd(w) → ZK for dimensional reasons.
Definition 2.2. We say that a simplicial complex K realizes a Whitehead product w if ZK is

homotopy equivalent to a wedge of spheres in which one of the wedge summands is realized by a lift
Sd(w) → ZK of w.
Notation 2.3. Denote byWΔ the class of simplicial complexes K such that ZK is a wedge of spheres

and each sphere in the wedge is a lift of a linear combination of iterated higher Whitehead products. The
classWΔ is not empty as it contains the boundary of the simplex ∂Δ

n for each n > 0. The moment-angle
complex ZK corresponding to ∂Δn is homotopy equivalent to S2n+1, which can be realized by the product
[μ0, . . . , μn].

We consider the following decomposition of the disk D2 into 3 cells: the point 1 ∈ D2 is the 0-cell;
the complement to 1 in the boundary circle is the 1-cell, which we denote by S; and the interior of D2

is the 2-cell, which we denote by D. These cells are canonically oriented as subsets of R2. By taking
products we obtain a cellular decomposition of (D2)m whose cells are parametrized by pairs of subsets
J, I ⊂ [m] with J ∩ I = ∅: the set J parametrizes the S-cells in the product and I parametrizes the
D-cells as we describe below. We denote the cell of (D2)m corresponding to the pair J, I by χ(J, I):

χ(J, I) = {(x1, . . . , xm) ∈ (D2)m | xj ∈ S for j ∈ J and xl = 1 for l /∈ J ∪ I}.

Then ZK embeds as a cellular subcomplex in (D2)m; we have χ(J, I) ⊂ ZK whenever I ∈ K.
The coproduct in the homology of a cell-complex X can be defined as follows. Consider the composite

mapping of cellular cochain complexes

C∗(X) Δ̃∗−−−→ C∗(X ×X) P−−−→ C∗(X)⊗ C∗(X). (1)

1)In all set-theoretic formulas in this paper we consider the product operation to be a higher priority than the
union.
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Here the mapping P sends the basis chain corresponding to a cell ei × ej to ei ⊗ ej . The mapping Δ̃∗ is
induced by a cellular mapping Δ̃ homotopic to the diagonal

Δ : X
x�→(x,x)−−−−−→ X ×X.

In homology, (1) induces a coproduct H∗(X) → H∗(X) ⊗H∗(X) which does not depend on a choice of
cellular approximation and is functorial. But (1) itself is not functorial because the choice of a cellular
approximation is not canonical.
Nevertheless, in the case X = ZK we can use the following construction.
Construction 1. Consider the mapping Δ̃ : D2 → D2 × D2 given in the polar coordinates z =

ρeiϕ ∈ D2, 0 � ρ � 1, 0 � ϕ � 2π, by the formula

ρeiϕ �→
{
(1− ρ+ ρe2iϕ, 1) for 0 ≤ ϕ ≤ π,
(1, 1− ρ+ ρe2iϕ) for π ≤ ϕ < 2π.

This is a cellular mapping homotopic to the diagonal Δ : D2 → D2 × D2, and its restriction to the
boundary circle S1 is a diagonal approximation for S1:

S1 −−−→ D2

Δ̃|S1
⏐⏐�

⏐⏐�Δ̃

S1 × S1 −−−→ D2 ×D2.

Taking the m-fold product we get a cellular approximation Δ̃m
def
= Δ̃×· · ·×Δ̃ : (D2)m → (D2)m×(D2)m

which restricts to a cellular approximation of the diagonal mapping of ZK, as described in the following
diagram:

ZK −−−→ (D2)m

Δ̃m|ZK
⏐⏐�

⏐⏐�Δ̃m

ZK ×ZK −−−→ (D2)m × (D2)m.
The diagonal approximation Δ̃ is functorial with respect to mappings of moment-angle complexes induced
by simplicial mappings.

Further, we denote Δ̃m|ZK simply by Δ̃.

§ 3. Algebraic Constructions
Let Λ〈u1, . . . , um〉 and Z〈K〉 denote respectively the exterior coalgebra and the Stanley–Reisner

coalgebra of a simplicial complex K, which is a subcoalgebra of the symmetric coalgebra Z〈v1, . . . , vm〉.
The Stanley–Reisner coalgebra Z〈K〉 is generated as a Z-module by monomials whose support is a simplex
of K [1, § 8.4]. Consider the submoduleR∗(K) of Λ〈u1, . . . , um〉⊗Z〈K〉 additively generated by monomials
not containing uivi and v

2
i . Clearly, R∗(K) ⊂ Λ〈u1, . . . , um〉⊗Z〈K〉 is a subcoalgebra. We endow it with

the differential ∂ =
∑m
i=1 ui

∂
∂vi
of degree −1.

The following statements are obtained by dualization of the corresponding statements from [1, § 4.5]
for cellular cochains and cohomology.

Lemma 3.1. The mapping

g : R∗(K) uJvI �→χ(J,I)−−−−−−−−→ C∗(ZK)
is an isomorphism of chain complexes. Hence, there is an additive isomorphism H

(R∗(K), ∂
) ∼= H∗(ZK).
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Lemma 3.2. The cellular chain coalgebra C∗(ZK) with the product defined via the diagonal ap-
proximation Δ̃ : ZK → ZK ×ZK (see Construction 1) is isomorphic to the coalgebra R∗(K). So, there is
an isomorphism of homology coalgebras H((R∗(K), ∂)) ∼= H∗(ZK).
Given J ⊂ [m] and a simplicial complex on [m], denote by KJ the full subcomplex on the vertex

set J , i.e. KJ = {I ∈ K | I ⊂ J }.
Theorem 3.3. The homomorphisms

Cp−1(KJ) L�→ε(L,J)χ(J\L,L)−−−−−−−−−−−−→ Cp+|J |(ZK)
induce the injective homomorphisms

H̃p−1(KJ) ↪→ Hp+|J |(ZK),
which are functorial with respect to simplicial inclusions. Here L ∈ KJ is a simplex and ε(L, J) is the
sign of the shuffle (L, J). The inclusions above induce the isomorphism of the abelian groups

h :
⊕
J⊂[m]

H̃∗(KJ)
∼=−−−→ H∗(ZK).

§ 4. The Hurewicz Homomorphism for Moment-Angle Complexes
We will use the notation Si and Di for the 1-cell and the 2-cell in the ith factor of (D

2)m. We denote
the product cells in (D2)m by the records like DiSjDk.
In this section we consider the iterated higher Whitehead products of the following form:

[
μi01 , . . . , μi0p0 ,

[
. . . [μin1 , . . . , μinpn ] . . .

]]
: S2(p0+···+pn)−(n+1) → ZK,

where ikl ∈ [m] for all k and l. The existence of a simplicial complex K ∈ WΔ realizing each product
above will be proved in the next section (see Theorem 5.3).
The following lemma is a generalization of Lemma 3.1 in [6].

Lemma 4.1. The Hurewicz image

h([μi01 , . . . , μi0p0 , [. . . , [μi(n−1)1 , . . . , μi(n−1)pn−1 , [μin1 , . . . , μinpn ]] . . . ]]) ∈ H2(p0+···+pn)−(n+1)(ZK)
is represented by the cellular chain

n∏

k=0

( pk∑

j=1

Dik1 . . . Dik(j−1)SikjDik(j+1) . . . Dikpk

)
. (2)

Proof. We induct on the number n of nested higher products.
For n = 0 we have the single higher product

[μ1, . . . , μk] : S
2k−1 ∼= ∂(D21 × · · · ×D2k

)

∼= D21 × · · · ×D2k−1 × S1k ∪ · · · ∪ S11 ×D22 × · · · ×D2k → (CP∞)K,
which lifts to the inclusion of a subcomplex

[μ1, . . . , μk] : D
2
1 × · · · ×D2k−1 × S1k ∪ · · · ∪ S11 ×D22 × · · · ×D2k → ZK.

Therefore, the Hurewicz image is represented by the cellular chain (2).
Let n = 1; i.e., we have a product of the form

[
μi1 , . . . , μip , [μj1 , . . . , μjq ]

]
, q > 1.
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By the definition of higher Whitehead products, the class

[μi1 , . . . , μip , [μj1 , . . . , μjq ]] ∈ π2(p+q−1)((CP∞)K)
is represented by the composite mapping

S2(p+q−1) ∼= D2i1 × · · · ×D2ip × ∂D2q−1j1...jq

∪
(( p⋃

k=1

D2i1 × · · · ×D2ik−1 × S1ik ×D2ik+1 × · · · ×D2ip
)
×D2q−1j1...jq

)

→ D2i1 × · · · ×D2ip × pt

∪
(( p⋃

k=1

D2i1 × · · · ×D2ik−1 × S1ik ×D2ik+1 × · · · ×D2ip
)
× S2q−1j1...jq

)

→ S2i1 × · · · × S2ip × pt

∪
(( p⋃

k=1

S2i1 × · · · × S2ik−1 × pt× S2ik+1 × · · · × S2ip
)
× S2q−1j1...jq

)
→ (CP∞)K.

By Theorem 2.1, the composite mapping above lifts to an inclusion of a cell subcomplex as described
by the diagram:

ZK (CP∞)K

D2
i1
× · · · ×D2

ip × pt ∪
((

p⋃
k=1

D2
i1
× · · · × S1

ik
× · · · ×D2

ip

)
×

(
q⋃

k=1

D2
j1
× · · · × S1

jk
× · · · ×D2

jq

))

D2
i1
× · · · ×D2

ip × pt ∪
((

p⋃
k=1

D2
i1
× · · · × S1

ik
× · · · ×D2

ip

)
× S2q−1

j1...jq

)
.

[
μi1 , . . . , μip ,

[
μj1 , . . . , μjq

]]

In the union above, all cells but D2i1×· · ·×D2ip×pt have dimension 2(p+ q−1) while D2i1×· · ·×D2ip×pt
has dimension 2p < 2(p + q − 1). Thus, the Hurewicz image of the lifted iterated higher Whitehead
product in H2(p+q−1)(ZK) is represented by the cellular chain

( p∑

k=1

Di1 . . . Dik−1SikDik+1 . . . Dip

)
·
( q∑

k=1

Dj1 . . . Djk−1SjkDjk+1 . . . Djp

)
.

A similar argument applies in the general case. Consider the iterated higher Whitehead product
[μi01 , . . . , μi0p0 , w] : S

2p0+d(w)−1 → (CP∞)K. Here
w = [μi11 , . . . , μi1p1 , [. . . , [μi(n−1)1 , . . . , μi(n−1)pn−1 , [μin1 , . . . , μinpn ]] . . . ]].

The sphere S2p0+d(w)−1 is decomposed into the union

D2i01 × · · · ×D2i0p0 × ∂D
d(w) ∪

(( p⋃

k=1

D2i01 × · · · ×D2i0(k−1) × S1i0k ×D2i0(k+1) × · · · ×D2i0p0
)
×Dd(w)w

)
.
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By contracting ∂Dd(w) to a point we obtain some cell subcomplex X ⊂ ZK. The inclusion X ↪→ ZK
is a lift of the Whitehead product [μi01 , . . . , μi0p0 , w]. Arguing by induction we find that the Hurewicz

image of the mapping S
d(w)
w → ZK is represented by the cellular chain

n∏

k=1

( pk∑

j=1

Dik1 . . . Dik(j−1)SikjDik(j+1) . . . Dikpk

)
.

By dimensional reasons,

h([μi01 , . . . , μi0p0 , w]|D2i01×···×D2i0p0×pt) = 0 ∈ H2p0+d(w)−1(ZK).

Thus,

h([μi01 , . . . , μi0p0 , w]) =
n∏

k=0

( pk∑

j=1

Dik1 . . . Dik(j−1)SikjDik(j+1) . . . Dikpk

)
. �

Example 4.2. Consider theWhitehead product [μ1, μ2, [μ3, μ4, μ5]]. The simplicial complexK ∈WΔ
realizing this product is described in Example 5.4 below. By Lemma 4.1, the homology class h([μ1, μ2,
[μ3, μ4, μ5]]) ∈ H8(ZK) is represented by the cellular chain

D1S2D3D4S5 +D1S2D3S4D5 +D1S2S3D4D5

+S1D2D3D4S5 + S1D2D3S4D5 + S1D2S3D4D5.

§ 5. Operations on WΔ and Realization of Whitehead Products
Let K = K1 ∪I K2 be the simplicial complex obtained by gluing K1 and K2 along a common face I

(we allow I = ∅, in which case K1 ∪I K2 = K1 � K2).
Proposition 5.1 (cp. [1, Theorem 8.2.1]). If K1,K2 ∈ WΔ then K = K1 ∪I K2 ∈ WΔ for any

common face I of simplicial complexes K1 and K2.
Proof. Consider a full subcomplex KJ in K = K1 ∪I K2. Let V (K1) and V (K2) be the sets of

vertices of the simplicial complexes K1 and K2. Put J1 = V (K1) ∩ J, J2 = V (K2) ∩ J . Consider the two
cases. If J ∩ I = ∅, then KJ is the disjoint union KJ1 �KJ2 , and we have Hp(KJ) ∼= Hp(KJ1)⊕Hp(KJ2).
If J ∩ I �= ∅ then KJ is homotopy equivalent to KJ1 ∨ KJ2 , and H̃p(KJ) ∼= H̃p(KJ1)⊕ H̃p(KJ2). In both
cases generators of each summand mapping to generators of the corresponding homology groups H∗(ZK)
under the homomorphism of Theorem 3.3.
Let {σα(J1, p)}α∈A and {σβ(J2, p)}β∈B be sets of simplicial chains which represent bases of the free

abelian groups H̃p
(
(K1)J1

)
and H̃p

(
(K2)J2

)
respectively. Let {χα(J1, p)}α∈A and {χβ(J2, p)}β∈B be the

images of these bases under the mapping Cp−1(KJl)→ Cp+|Jl|(ZKl), l = 1, 2, of Theorem 3.3. Considering
the same bases as elements of H̃∗(KJ), we see that the homomorphism Cp−1 → Cp+|J | sends them to the
cellular chains ∏

j∈J\J2
Sj · {χα(J1, p)}α∈A and

∏

j∈J\J1
Sj{χβ(J2, p)}β∈B (3)

respectively. When J1 �= ∅ and J2 �= ∅, but J ∩ I = ∅, we get the new generator of H̃0(KJ) which is
represented by a simplicial chain j1+j2 with j1 ∈ J1 and j2 ∈ J2; this one is different from the generators
of the homology of KJ1 and KJ2 . The corresponding cellular chain in C∗(ZK) is

∏

j 
=j1,j2
Sj · (Dj1Sj2 + Sj1Dj2). (4)
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Let {wα(J1, p)}α∈A and {wβ(J2, p)}β∈B be the Whitehead products corresponding to the bases
{σα(J1, p)}α∈A and {σβ(J2, p)}β∈B. The Hurewicz images of the products

[μk1 , [μk2 , [. . . [μkr−1 , [μkr , wα(J1, p)]] . . . ] for J \ J2 = {k1, . . . , kr},
[μl1 , [μl2 , [. . . [μls−1 , [μls , wβ(J2, p)]] . . . ] for J \ J1 = {l1, . . . , ls}

are represented by chains (3). Chain (4) represents the Hurewicz image of the product

[μj3 , [μj4 , [. . .
[
μj|J| , [μj1 , μj2 ]] . . . ], J = {j1, . . . , j|J |}.

The wedge sum of the Whitehead products above
( ∨

J1,J2
J1∩I=J2∩I

( ∨

p≥0

( ∨

α∈A
Sp+|J |+1 ∨

∨

β∈B
Sp+|J |+1

)))
∨

∨

J1,J2 
=∅
J1∩I=J2∩I=∅

S|J |+1 → ZK

induces an isomorphism in homology. As all spaces involved are simply connected, it is a homotopy
equivalence. �

1

2

3

4

5

1

2

3

4

5

Fig. 1. K = J1(∂Δ2) Fig. 2. L = J1(∂Δ(3, 4, 5)) ∪ {1, 2, 3}
Theorem 5.2. Let K ∈WΔ be a simplicial complex. Then the simplicial complex

Jn(K) = (∂Δn ∗ K) ∪Δn
belongs to WΔ.

Note that Jn(K) � Σn(K) ∨ Sn.
The case K = ∂Δ2 and n = 1 is shown in Fig. 1.
Proof. Put L = Jn(K) and let V (K) = I and V (Δn) = I1 be the sets of vertices. By Theorem 3.3,

the homology of ZL comes from the homology of the full subcomplexes LJ1,J = ((∂Δn)J1 ∗ KJ) ∪ ΔnJ1
where J1 ⊂ I1 and J ⊂ I.
If J1 � I1 is a nonempty proper subset, then the complex LJ1,J is topologically contractible. So,

in this case H̃∗(LJ1,J) = 0. If J1 = ∅, then the corresponding full subcomplex is L∅,J = KJ . Hence,
H̃∗(L∅,J) ∼= H̃∗(KJ). Finally, when J1 = I1, we have

LI1,J = (∂Δn ∗ KJ) ∪Δn � Σn(KJ) ∨ Sn. (5)

Hence, H̃∗(LI1,J) ∼= H̃∗−n(KJ)⊕ H̃∗(Sn), where the generator of the second summand is represented by
the boundary of the (n+ 1)-simplex Δ(I1, j).
We will show that all generators of H∗(ZL) are represented by the cellular chains (2), and therefore

are the Hurewicz images of iterated higher Whitehead products by Lemma 4.1. The generator of H∗(ZL)
corresponding to the wedge summand Sn in (5) is represented by the cellular chain

m−1∏

k=1

Sjk ·
(
Di1 . . . Din+1Sj +

(n+1∑

k=1

Di1 . . . Sik . . . Din+1

)
Dj

)
,
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where I1 = {i1, . . . , in+1} and J = {j1, . . . , jm−1, j}. It is the Hurewicz image of the Whitehead product
[μj1 , [μj2 , [. . . [μjm−1 , [μi1 , . . . , μin+1 , μj ]] . . . ].

Finally, every generator of H∗(ZL) corresponding to the wedge summand Σn(KJ) in (5) is represented
by the cellular chain

(n+1∑

k=1

Di1 . . . Sik . . . Din+1

)
h(w), (6)

where w is the Whitehead product that goes to the corresponding generator of H̃∗−n(KJ) ⊂ H∗(ZK).
The chain (6) represents the class h([μi1 , . . . , μin+1 , w]).
The wedge sum of the Whitehead products described above is a mapping from a wedge of spheres

to ZL that induces an isomorphism of homology groups. Hence, it is a homotopy equivalence. �
Theorem 5.3. For every iterated higher Whitehead product

w = [μi01 , . . . , μi0p0 , [. . . [μin1 , . . . , μinpn ] . . . ] (7)

there exists a simplicial complex K ∈WΔ that realizes w.
Proof. Consider the simplicial complex L = Jp0−1◦Jp1−1◦· · · ◦Jpn−1−1(∂Δpn−1). By Theorem 5.2,

the complex L belongs to WΔ. The maximal dimensional sphere in the wedge ZL has dimension 2(p0 +
· · ·+ pn)− (n+ 1) and it is realized by w, as shown by considering the Hurewicz homomorphism. �

Table 1. Homology of ZK for K = J1(∂Δ2) (see Fig. 1)

H5(ZK)

Z D3D4S5 +D3S4D5 + S3D4D5 [μ3, μ4, μ5]

Z D1D2S3 +D1S2D3 + S1D2D3 [μ1, μ2, μ3]

Z D1D2S4 +D1S2D4 + S1D2D4 [μ1, μ2, μ4]

Z D1D2S5 +D1S2D5 + S1D2D5 [μ1, μ2, μ5]

H6(ZK)

Z S4(D1D2S3 +D1S2D3 + S1D2D3) [μ4, [μ1, μ2, μ3]]

Z S5(D1D2S3 +D1S2D3 + S1D2D3) [μ5, [μ1, μ2, μ3]]

Z S5(D1D2S4 +D1S2D4 + S1D2D4) [μ5, [μ1, μ2, μ4]]

H7(ZK) Z S5S4(D1D2S3 +D1S2D3 + S1D2D3) [μ4, [μ5, [μ1, μ2, μ3]]]

H8(ZK) Z (D1S2 + S1D2)(D3D4S5 +D3S4D5 + S3D4D5) [μ1, μ2, [μ3, μ4, μ5]]

Example 5.4. The Whitehead product
[
μ1, μ2, [μ3, μ4, μ5]

]
is realized by the complex K which is

the minimal triangulation of a 2-sphere with diameter (see Fig. 1). Note that K = J1
(
∂Δ(3, 4, 5)

)
, and

so K ∈WΔ.
Using Theorem 3.3 and Lemma 4.1 we identify the homology of ZK, cellular chains representing

the homology generators and Whitehead products which mapping to the generators under the Hurewicz
homomorphism (see Table 1).
The wedge sum of the Whitehead products from the right column of Table 1 gives a mapping

(S5)∨4 ∨ (S6)∨3 ∨ S7 ∨ S8 → ZK that induces an isomorphism of homology groups. Thus, we have
ZK � (S5)∨4 ∨ (S6)∨3 ∨ S7 ∨ S8.
Note that this is the first example of K with a nontrivial iterated Whitehead product in which one

of the arguments of a higher product is again a higher product.
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§ 6. The Smallest Complex Realizing a Given Whitehead Product
Theorem 6.1. The simplicial complex Jp−1(∂Δq−1) ∈ WΔ (see Theorem 5.2) is the smallest com-

plex realizing the product

[μi1 , . . . , μip , [μj1 , . . . , μjq ]]. (8)

Proof. Assume that K realizes (8).
For (8) to be defined it is necessary that the product [μj1 , . . . , μjq ] is defined and the products

[μi1 , . . . , μip ] and

[μi1 , . . . μ̂ik , . . . , μip , [μj1 , . . . , μjq ]] for k = 1, . . . , p (9)

are trivial.

For the existence of [μj1 , . . . , μjq ] it is necessary that each [μj1 , . . . , μ̂jk , . . . , μjq ] with k = 1, . . . , q be

trivial; i.e., {j1, . . . ĵk, . . . , jq} ∈ K is a simplex. Thus, the existence of the [μj1 , . . . , μjq ] gives the inclusion
∂Δq−1 ↪→ K and the triviality of [μi1 , . . . , μip ] gives the inclusion Δp−1 = {i1, . . . , ip} ↪→ K.
We will show that the triviality of products (9) is equivalent to the existence of inclusions

{i1, . . . , îk, . . . , ip} ∗ ∂Δq−1 ↪→ K for k = 1, . . . , p. (10)

Without loss of generality we can assume that k = p. Since
[
μi1 , . . . , μip−1 , [μj1 , . . . , μjq ]

]
is trivial, we

have the inclusion

D2i1 × · · · ×D2ip−1 ×
( q⋃

k=1

D2j1 × · · · × S1jk × · · · ×D2jq
)
↪→ ZK;

see the proof of the case n = 1 in Lemma 4.1. Therefore, we have (10) for k = p.

It follows that Jp−1(∂Δq−1) embeds into each simplicial complex K that realizes (8). By Theorem 5.3,
the complex K = Jp−1(∂Δq−1) realizes (8), and so it is the smallest complex with this property. �
In Theorem 6.1 we showed that if the simplicial complex L realizes (8) then there exists an embed-

ding Jp−1(∂Δq−1) ↪→ L. However, the next example shows that Jp−1(Δq−1) is not necessarily a full
subcomplex of L.

Table 2. Homology of ZL for L = J1(∂Δ(3, 4, 5)) ∪ {1, 2, 3} (see Fig. 2)

H5(ZK)

Z D3D4S5 +D3S4D5 + S3D4D5 [μ3, μ4, μ5]

Z D1D2S4 +D1S2D4 + S1D2D4 [μ1, μ2, μ4]

Z D1D2S5 +D1S2D5 + S1D2D5 [μ1, μ2, μ5]

H6(ZK) Z S5(D1D2S4 +D1S2D4 + S1D2D4) [μ5, [μ1, μ2, μ4]]

H8(ZK) Z (D1S2 + S1D2)(D3D4S5 +D3S4D5 + S3D4D5) [μ1, μ2, [μ3, μ4, μ5]]

Example 6.2. Consider the simplicial complex L = J1(∂Δ(3, 4, 5)) ∪ Δ(1, 2, 3) (see Fig. 2). Rea-
soning as in Example 5.4 shows that ZK � (S5)∨3∨S6∨S8 (see Table 2). Here S8 is a lift of the product
[μ1, μ2, [μ3, μ4, μ5]]. We can see that J1

(
∂Δ(3, 4, 5)

)
is not a full subcomplex of L.

§ 7. An Example of Unrealizability
In this section we give an example of a simplicial complex K such that the corresponding moment-

angle complex ZK is homotopy equivalent to a wedge of spheres, but K /∈ WΔ. In other words, there
is a sphere in the wedge which is not realizable by any linear combination of iterated higher Whitehead
products (in the sense of Definition 2.2). This implies that the answer to [1, Problem 8.4.5] is negative.
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Proposition 7.1. Let K be the simplicial complex (∂Δ2 ∗ ∂Δ2) ∪ Δ2 ∪ Δ2. The moment-angle
complex ZK is homotopy equivalent to a wedge of spheres.
Proof. Note that the 2-skeleton of K coincides with the 2-skeleton of a 5-dimensional simplex.

Therefore, ZK is 6-connected. Note that |K| � S3 ∨ S2 ∨ S2. Using Theorem 3.3, we can describe the
homology of ZK (see Table 3).

Table 3. Homology of ZK for K = (∂Δ2 ∗ ∂Δ2) ∪Δ2 ∪Δ2

H7(ZK) Z
6

H8(ZK) Z
6

H9(ZK) Z
2

H10(ZK) Z

By [7] (see also [1, Corollary 8.3.6]), there is a homotopy equivalence

f : (S8)∨6 ∨ (S9)∨6 ∨ (S10)∨2 ∨ S11 
−−−→ ΣZK.

Put X = (S7)∨6 ∨ (S8)∨6 ∨ (S9)∨2 ∨ S10. As both spaces X and ZK are 6-connected, by the Freudenthal
Theorem, the suspension homomorphism Σ : πn → πn+1 for X and ZK is an isomorphism for n < 13.
Consider the commutative diagram for n < 13:

πn+1(ΣX) πn+1(ΣZK)

πn(X) πn(ZK).

∼= ΣX

f∗

∼= ΣZK

Σ−1
ZK ◦ f∗ ◦ ΣX

The class [inj ] of the inclusion of the jth n-sphere i
n
j : S

n ↪→ X mappings to the class of a mapping
Sn → ZK under the composite Σ−1ZK ◦ f∗ ◦ ΣX . The wedge sum of these mappings gives a mapping
g : X → ZK. By construction, Σg : ΣX → ΣZK induces an isomorphism in homology. Thus, g also
induces an isomorphism in homology, so it is a homotopy equivalence. �

Proposition 7.2. The sphere S10 ⊂ ZK cannot be realized by any linear combination of general
iterated higher Whitehead products.

Proof. By dimensional reasons, if there is a general iterated higher Whitehead realizing the sphere
S10; then it contains exactly two nested brackets. The internal bracket may have size 2, 3, 4, or 5. Since
the 2-skeleton of K coincides with the 2-skeleton of Δ5, all Whitehead 2- and 3-products are trivial. We
are left with the following two iterated products with the internal bracket of size 5 and 4:

[μi1 , [μi2 , μi3 , μi4 , μi5 , μi6 ]], [μi1 , μi2 , [μi3 , μi4 , μi5 , μi6 ]].

The first product is not defined because K does not contain ∂Δ(i2, i3, i4, i5, i6). For the second product,
without loss of generality we can consider the two cases {i1, i2} = {1, 2} and {i1, i2} = {1, 4}. In both
cases the product is not defined because K does not contain Δ(2, 4, 5, 6). �
I am gratitude to my supervisor Taras E. Panov for stating the problem, valuable advice and stimu-

lating discussions. I thank Anton Ayzenberg for valuable comments. Also I express my thanks to Maria
Aksenova for carefully reading the text and repairing typos.
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