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Abstract—Under consideration is the Successive Minima Problem for the 2-dimensional lattice
with respect to the order given by some conic function f . We propose an algorithm with complexity of
3.32 log2 R + O(1) calls to the comparison oracle of f , where R is the radius of the circular searching
area, while the best known lower oracle complexity bound is 3 log2 R + O(1). We give an efficient
criterion for checking that given vectors of a 2-dimensional lattice are successive minima and form
a basis for the lattice. Moreover, we show that the similar Successive Minima Problem for dimension
n can be solved by an algorithm with at most O(n)2n log R calls to the comparison oracle. The
results of the article can be applied to searching successive minima with respect to arbitrary convex
functions defined by the comparison oracle.
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INTRODUCTION

The integer minimization problem of a (quasi)convex function under (quasi)convex constraints is
a familiar and intensively studied generalization of the integer linear programming problem [1–13].

The target function and constraints can be given explicitly or by oracles. In [4, 13], some algorithms
are given for solving the problem of checking the nonemptiness of the set K ∩ Z

n, where K is
a convex set defined by a strong separation oracle included in a ball of radius R. The number of calls
to the separation oracle produced by the given algorithms depends polynomially on log R. Modification
of this result and a good survey are given in [3], where some algorithm is proposed with complexity
of O(n)n poly(log R) calls to the separation oracle. Furthermore, a randomized algorithm is given in [3]
with expected complexity of O(n)n poly(log R) calls to the oracle for the minimization of a convex func-
tion f defined by a subgradient oracle on K ∩ Z

n, where the convex domain K is defined by the strong
separation oracle. Some new approach, based on a generalization of the notion of the barycenter is
proposed in [12, 14] to the integer-valued case.

The main defect of the oracles mentioned above is the complexity of their realization. Some more
convenient way consists in using a comparison oracle and a 0th-order oracle computing the values of the
function at points. However, it is shown in [15] that the problem of minimization of a quasiconvex func-
tion f on K = R ·Bn

2 ∩ Z
n, where R ·Bn

2 stands for the n-dimensional ball of radius R in the Euclidean
norm, cannot be solved by an algorithm with the number of calls to the comparison oracle polynomial
in log R.

The integer minimization problem for convex functions (and for functions close to convex) defined
by a comparison oracle or a 0th-order oracle was considered in [1, 15, 16]. In [1], some new integer mini-
mization algorithm was developed for the discrete strictly quasiconvex functions defined by a comparison
oracle on Z

2. The oracle complexity of the algorithm in [1] is at most 2 log2
2 R + O(log2 R). In [16], the
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symmetric version of this problem was considered, in case the function f is additionally assumed even.
The algorithm obtained in [16] has complexity of 4 log2 R + O(1) calls to a 0th-order oracle.

In [15], the question was considered of constructing a restriction of the class of quasiconvex functions
equipped by the comparison oracle for which the integer minimization problem in fixed dimension
admits solving by an algorithm whose oracle complexity depends polynomially on log R. In more detail,
in [15], the classes of conic and discrete-conic functions were introduced. The class of conic functions
contains convex functions, strictly quasiconvex functions, and quasiconvex polynomials as proper
subclasses. For the problem of minimization of a conic function f equipped by the comparison oracle
on R · Bn

2 ∩ Z
n, some algorithm was obtained in [15] with oracle complexity O(n)2n log R. Moreover,

in [15], the lower bound 3n−1 log2(2R − 1) was obtained for the necessary number of calls to the oracle.
Under the assumption that the function f under minimization is additionally assumed even, the lower
bound (2n − 1) log2(R − 1) of oracle complexity was given.

The important problem that can be reduced to the integer nonlinear optimization problem is con-
struction of the vectors constituting successive minima of a lattice with respect to some vector norm.
The results of [17, 18] show that, for the Euclidean norm, this problem can be solved by an algorithm
with overall complexity 4n poly(size(R)), where size(R) is the length of the bit encoding of R. In [19, 20],
an approach was developed which, together with results from [17], makes it possible to solve the problem
under consideration by a randomized algorithm with complexity 2n+o(n) poly(size(R)). Note that
the results of the above works can be extended to wider classes of norms.

In this article, we study the generalized problem of constructing the vectors that constitute successive
minima of a lattice with respect to the order defined by an arbitrary conic function f . For the problem
of an arbitrary dimension n, we obtain an algorithm with complexity of O(n)2n log R calls to the com-
parison oracle of the function f , where R is the radius of the ball containing the vectors of successive
minima. In more detail, we consider the case n = 2 under the additional assumption that f is even.
For this case, we propose an algorithm with oracle complexity 3.32 log2 R + O(1), whereas the lower
complexity bound given in [15] is 3 log2 R + O(1).

1. DEFINITIONS AND NOTATIONS. SOME AUXILIARY RESULTS

Denote by Bn
p the n-dimensional unit ball of the lp-norm:

Bn
p = {x ∈ R

n | ‖x‖p ≤ 1}.

We use the special notations and names for the following sets of matrices generated by the columns
of a matrix B ∈ R

m×n:
• cone(B) = {Bt | t ∈ R

n
+} is the cone,

• conv.hull(B) =
{
Bt | t ∈ R

n
+,

n∑
i=1

ti = 1
}

is the convex hull,

• affine(B) =
{

Bt | t ∈ R
n,

n∑
i=1

ti = 1
}

is the affine envelope,

• span(B) = {Bt | t ∈ R
n} is the linear span,

• N(B) = {Bt | t ∈ Z
n} is the lattice.

Given D ⊆ R
n, denote by int (D) and br (D) the subsets of its interior and boundary points respec-

tively. The subsets of interior and boundary points of D ⊆ R
n relative to the affine envelope affine(D)

will be denoted by rel.int (D) and rel.br (D) respectively.
Denote by i : j = {i, i + 1, . . . , j} the set of integers ranging from i to j. Denote by xi the ith

coordinate of x ∈ R
n. The interval between y, z ∈ R

n will be denoted by

[y, z] = {x = ty + (1 − t)z | 0 ≤ t ≤ 1}.
The symbol (y, z) stands for an open interval. A set D is called convex if [x, y] ⊆ D for all x, y ∈ D.
Denote the domain of a function f by dom(f). Given y ∈ dom(f), designate as H≤

f (y) the level set of f :

H≤
f (y) = {x ∈ dom(f) | f(x) ≤ f(y)}.
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58 GRIBANOV, MALYSHEV

The sets H<
f (y) and H=

f (y) are defined similarly.

For denoting the indicators of the fulfillment of logical conditions, we will use the Iverson notation
(see, for instance, [21, p. 11, 37]). Given a logical condition A, we put [A] = 1 if A is true and [A] = 0
if A is false.

Consider the set of functions f : dom(f) → R such that dom(f) ⊆ R
n is a convex set. A function f

is called quasiconvex if

∀x, y ∈ dom(f) ∀z ∈ (x, y) f(z) ≤ max{f(x), f(y)}.
A function f is called strictly quasiconvex if

∀x, y ∈ dom(f) ∀z ∈ (x, y) f(z) < max{f(x), f(y)}.
A function f is called convex if

∀x, y ∈ dom(f) ∀t ∈ (0, 1) f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y).

We denote these classes of functions by QConvn (quasiconvex), SQConvn (strictly quasiconvex), and
Convn (convex) respectively. Designate as QCPolyn the class of quasiconvex polynomials of nonzero
degree with real coefficients.

Call a function f : dom(f) → R bounded if {x ∈ dom(f) | f(x) ≤ α} is bounded for every α ∈ R.

Given x(1), x(2), . . . , x(k) ∈ R
n, denote by cone(x(1), . . . , x(k−1) | x(k)) the set

x(k) + cone(x(k) − x(1), x(k) − x(2), . . . , x(k) − x(k−1)), (1)

which is the cone constituted by the vectors −x(1), . . . ,−x(k−1) shifted by x(k).

Definition 1. Suppose that a set D is equipped by the linear order 	. Let f : dom(f) → D, where
dom(f) is convex.

The function f is conic if, for all y, z ∈ dom(f) and t ≥ 0 such that f(y) 	 f(z) and z + t(z − y) ∈
dom(f), the following is true:

f(z + t(z − y)) � f(z).

The class of conic functions will be denoted by Conicn.

Remark 1. Henceforth, we assume almost everywhere that D = R with the standard order. However,
in the proof of Theorem 5, we need to use D = R

2 with the lexicographic order. Note that all results
of the article are also valid in the most general case.

Remark 2. It is not hard to see that the class Conicn of conic functions is a subclass in the class
of quasiconvex functions; i.e.,

Conicn ⊂ QConvn.

The inclusion is strict: a counterexample is given by the quasiconvex function sgn (x1) which is not
conic.

Denote by MINf (1) the set of minimum points of a function f :

MINf (1) = arg min
x∈dom(f)

f(x).

If the set MINf (1) is undefined then we put MINf (1) = ∅. Analogously, for k ≥ 2, define the set
MINf (k) of the points of the kth minimum of f :

MINf (k) = arg min
x∈dom(f)\M

f(x), where M =
k−1⋃
i=1

MINf (i).

If MINf (k) is undefined then we put MINf (k) = ∅.
The following theorem [15] gives several equivalent ways of defining Conicn:

Theorem 1. Let f : dom(f) → D, where dom(f) ⊆ R
n is convex and D is equipped by the linear

order relation 	. The following are equivalent:
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MINIMIZATION OF EVEN CONIC FUNCTIONS 59

Fig. 1. Illustration to Theorem 1: definition (1) on the left and definition (2)
on the right.

(1) f(z + t(z − y)) � f(z) for every pair of points y, z ∈ dom(f) and all t ≥ 0 such that

f(y) 	 f(z), z + t(z − y) ∈ dom(f).

(2) f(y) ≥ f(x(k)) for all x(1), x(2), . . . , x(k), y ∈ dom(f) such that

f(x(1)) ≤ · · · ≤ f(x(k)), y ∈ cone(x(1), . . . , x(k−1) | x(k)),

Moreover, we may additionally require that x(1), x(2), . . . , x(k) be in general position (each
collection of i ≤ k points is affinely independent).

(3) If x ∈ dom(f), then H≤
f (x) is convex (which is equivalent to the quasiconvexity of f ) and

∀x ∈ dom(f) \ MINf (1) H=
f (x) ⊆ rel.br (H≤

f (x)).

Fig. 1 illustrates the definitions in Theorem 1.

The following theorems [15] state that Conicn contains important subclasses of functions and is
closed under some natural operations:

Theorem 2. The following hold:

(1) SQConvn ⊂ Conicn ⊂ QConvn,

(2) QCPolyn ⊂ Conicn,

(3) Convn ⊂ Conicn.

Theorem 3. (1) Suppose that fi ∈ Conicn and wi ∈ R+ for each i ∈ 1 : k.

g(x) = max
i∈1:k

{wifi(x)}

belongs to Conicn, where

dom(g) =
⋂

i∈1:k

dom(fi).
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60 GRIBANOV, MALYSHEV

(2) Let f ∈ Conicn and let h : R → R be a nondecreasing conic function. Then g = h ◦ f belongs
to Conicn.

(3) Suppose that f ∈ Conicm, A ∈ R
m×n, and b ∈ R

m. Then g(x) = f(Ax + b), which is an affine
image of f(x), belongs to Conicn.

(4) Suppose that f1, f2 ∈ Conicn and D = dom(f1) ∩ dom(f2). Then

g(x) =
(

f1(x)
f2(x)

)
: D → R

2

is conic with respect to the lexicographic order on R
2.

A function f is called even if, for all x ∈ dom(f), −x ∈ dom(f) and f(x) = f(−x). A set D ⊆ R
n is

called discrete if, for every x ∈ D, there exists a ball B = x + R · Bn
2 of radius R > 0 centered at x such

that D ∩ B = {x}. A set D ⊆ R
n is called uniformly discrete if there exists a ball B = R ·Bn

2 of radius
R > 0 such that D ∩ (x + B) = {x} for all x ∈ D.

Definition 2. Let f : dom(f) → D, where dom(f) ⊂ R
n is discrete and D is equipped by the linear

order relation 	. A function f is called discrete-conic if, for all points y, x(1), x(2), . . . , x(k) ∈ dom(f)
such that

f(x(1)) ≤ f(x(2)) ≤ · · · ≤ f(x(k)), y ∈ cone(x(1), x(2), . . . , x(k−1) | x(k)),

we have f(y) ≥ f(x(k)). The class of all discrete-conic functions will be denoted by DConicn.

Is it true that each function in DConicn is naturally extendible to a function in Conicn? Theorem 14,
proved in [15], answers this question for bounded functions with uniformly discrete domain.

Definition 3. Let f ∈ DConicn. A function g ∈ Conicn is called an extension of a function f if

dom(g) = conv.hull(dom(f)) and g(x) = f(x) for x ∈ dom(f).

Consider a bounded function f ∈ DConicn such that dom(f) is a uniformly discrete set. The bound-
edness of f and the uniform discreteness of dom(f) imply that the sets {x ∈ R

n | f(x) ≤ α} are finite,
and so the sets MINf (i) are defined uniquely for all i ≥ 1. Moreover, MINf (i) are finite and form a unique
partition of dom(f):

dom(f) =
⋃
i≥1

MINf (i).

Assume for simplicity that MINf (i) �= ∅ for i ≥ 1. Then let z(i) be a representative of MINf (i).

Theorem 4. A function f ∈ DConicn has an extension in terms of Definition 14 if and only if
the following hold for all i ≥ 2:

MINf (i) ⊆ rel.br (Pi), where Pi = conv.hull(MINf (1) ∪ · · · ∪ MINf (i)).

Since Pi = conv.hull(H≤
f (z(i))), the condition can be reformulated as follows:

H=
f (z) ⊆ rel.br (conv.hull(H≤

f (z)))

for all z ∈ dom(f) \ MINf (1).

Corollary 1. For every function f ∈ DConicn, there exists a function g ∈ Conicn such that

dom(g) = conv.hull(dom(f)), MINg(1) = MINf (1),
∅ �= MINg(2) ⊆ MINf (2).
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2. STATEMENT OF THE PROBLEM

A function f : dom(f) → R is called discrete-quasiconvex if dom(f) is discrete and

∀x, y ∈ dom(f) ∀z ∈ (x, y) ∩ dom(f) f(z) ≤ max{f(x), f(y)}.

Classical in the geometry of numbers are the notions of a shortest vector of a lattice and successive
minima of a lattice (see, for example, [22, pp. 201–219; 3, pp. 35–38; 17–20] These notions can be
generalized to discrete-quasiconvex functions defined at the points of the lattices.

Definition 4. Let Λ ⊆ R
n be an n-dimensional lattice and let f : Λ → R be a discrete-quasiconvex

bounded function. Denote by λ1(Λ, f) the minimal value f among nonzero vectors of Λ:

λ1(Λ, f) = min
x∈Λ\{0}

f(x).

A nonzero vector v of Λ satisfying f(v) = λ1(Λ, f) is called a minimal vector of Λ with respect to f .
Given i ∈ 2 : n, put

λi(Λ, f) = min{α ∈ R | dim L(α) ≥ i}, where L(α) = span{x ∈ Λ | f(x) ≤ α}.
The values λi(Λ, f) for i ∈ 1 : n are called successive minima of Λ with respect to f .

We say that the vectors b1, b2, . . . , bn ∈ Λ constitute successive minima of Λ with respect to f if
they are linearly independent and f(bi) = λi(Λ, f) for i ∈ 1 : n.

Given a matrix A ∈ Q
m×n, denote by size(A) the length of the binary encoding of A. Consider the

following

Problem 1. Suppose that B ∈ Q
m×n, Λ = Λ(B), and f : R

n → R is a conic function equipped by
the comparison oracle. Assume also that some vector of Λ at which the value λn(Λ, f) is attained
lies in the ball R · Bn

2 of radius R ∈ Q+.
The problem consists in constructing an algorithm which, given a matrix B, a number R,

and a comparison oracle of f , finds the vectors constituting successive minima of Λ with respect
to f . The number of calls to the oracle must be bounded by Cn log R, where Cn is some constant
depending only on n. The overall complexity of the algorithm must be bounded by Cn poly(s),
where s = size(B) + size(R).

Remark 3. Observe the two important circumstances: Firstly, it was demonstrated in [15] that
for Problem 1 there is no algorithm with number of calls to the oracle Cn log R if the function class
Conicn is replaced by the wider class of quasiconvex functions QConvn. It is this negative result
that motivated us to consider the class of conic functions Conicn. The existence of an algorithm
with the desired properties for Conicn will be proved below.

Secondly, the statement of the problem still makes sense if we replace the class of conic func-
tions Conicn by the class of discrete conic functions DConicn. Nevertheless, in this case, we lose
the possibility of asking questions to the comparison oracle at any points of Q

n. As far as the authors are
aware, all available algorithms on the base of oracles solving the nonlinear integer optimization problem
for an arbitrary dimension n use this possibility. The existence of algorithms with the indicated properties
using questions to the oracle at the points of the lattice Λ is known only for the dimension n ≤ 2.
In [1], the existence was shown of an algorithm for strictly discrete-quasiconvex functions for n = 2
with complexity of 2 log2

2 R + O(log R) calls to the comparison oracle. In [16], the existence was proved
of an algorithm for the same problem with complexity of 4 log2 R + O(1) calls to a 0th-order oracle under
the additional condition that the function is even. In the present article, the last result is generalized
to the case of even functions of class DConic2; the complexity of the algorithm is 3.32 log2 R + O(1)
calls to the oracle.

Remark 4. Since the classes Conicn and DConicn are invariant under affine mappings, the problem
of constructing the vectors constituting successive minima of Λ(B) with respect to f is equivalent
to the analogous problem for Z

n with respect to g(x) = f(Bx). For this reason, we will henceforth
consider only the problem of constructing successive minima for Z

n.
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Using integer optimization algorithms (see, for example, [3, 15]) it is easy to obtain some satisfactory
solution of Problem 1.

Theorem 5. Let f : Z
n → R be a discrete-conic function f ∈ DConicn equipped by the compar-

ison oracle. Suppose also that we know R ∈ Q+ such that some vector of a lattice Λ at which
the value λn(Λ, f) is attained lies in the ball R · Bn

2 . Then the problem of constructing successive
minima of Z

n with respect to f admits an algorithm with oracle complexity O(n)2n log R. The
overall complexity of the algorithm equals O(n)2n poly(size(R)).

Proof. Let D be a set with a linear order. It was proved in [15] that an algorithm with oracle comple-
xity O(n)2n log R exists for the problem of finding a vector that is a solution to the problem

min
x∈Zn

g(x),

where g : R
n → D is a conic function defined by a comparison oracle. Moreover, it is additionally

assumed that some minimum point lies in the ball of radius R.
Show how to find some vectors v1, v2, . . . , vn that are a solution to the problem.
Fix k ∈ 0 : (n − 1), assume that v1, v2, . . . , vk−1 are already found, and show how to find vk.

The lengths of the bit representations of the vectors v1, v2, . . . , vk−1 are bounded by some polynomial
of size(R). This means that, in polynomial time of size(R) and n, we can find a matrix A ∈ Z

(n−k+1)×n

of full rank and a vector b ∈ Z
n−k+1 such that

span(v1, v2, . . . , vk−1) = {x ∈ R
n | Ax = b}.

For k = 0, put A = E and b = 0, where E is the identity matrix. The matrix A and the vector b can be
found, for example, by the Gauss method whose polynomiality was proved in [23] (see also [24, p. 37]).

It is not hard to see that vk is a solution to one of the 2n problems of the form

f(x) → min,{
±Ai∗x ≤ ±bi − 1,
x ∈ Z

n,

(2)

where i ∈ 1 : n and Ai∗ stands for the ith row of A. The symbol ± means that we, separately for each
i ∈ 1 : n, consider the variant of the problem with the + sign and the variant of the problem with
the − sign. For example, for i = 1, we will consider the problems with the inequalities

A1∗x ≤ b1 − 1, −A1∗x ≤ −b1 − 1.

Show how to solve (2) for i = 1 with the inequality A1∗x ≤ b1 − 1; the remaining inequalities
are solved by analogy. To this end, introduce the auxiliary function h(x) = (A1∗x − b1 + 1)+, where
(x)+ = x[x ≥ 0] stands for the positive part of a number x. By Theorem 3, h(x) is conic since h(x) is
the composition of a convex function and a nondecreasing function. Put

f̂(x) =

⎛
⎝h(x)

f(x)

⎞
⎠ : R

n → R
2

and endow R
2 with the lexicographic order. By Theorem 3, the function f̂(x) is conic; thus, the problem

under consideration is equivalent to the problem

lexmin
x∈Zn

f̂(x).

Here the lexicographic comparison oracle is easily obtained from the comparison oracle of f and
the calculation of the values of the function h(x) = (A1∗x − b1 + 1)+; the last is achieved in time
polynomial in size(R).

Thus, the problem of finding the vector vk is reduced to 2n problems of the form (2). By the remark
at the beginning of the proof, vk can be found by an algorithm with oracle complexity O(n)2n log R.
The resulting complexity of finding all vectors v1, v2, . . . , vn is the same.

Theorem 5 is proved.
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Remark 5. The complexity of the algorithm can be decreased by strengthening the hypothesis of the
theorem and require that the function f be convex and equipped by the subgradient oracle.

It was proved in [3, pp. 245–255] that there exists a randomized algorithm for solving the problem

min
K∩Zn

f(x),

where K is a convex set equipped by the separation oracle and f is a convex function equipped by
the subgradient oracle. For this oracle, the expected number of calls to the oracle for this algorithm
does not exceed O(n)n(log R)O(1). By analogy to the proof of Theorem 5, this algorithm can be applied
for constructing successive minima for Z

n with respect to f . The expectation of the number of calls
to the oracle for the resulting algorithm is O(n)n(log R)O(1).

For the most important case f(x) = ‖x‖2, there exist algorithms with complexity 2O(n) poly(size(R))
(see, for example, [17–20]).

3. A CRITERION FOR AN f-REDUCED BASIS FOR Z
2

Consider the Successive Minima Problem for Z
2 with respect to an even discrete-conic function

f : Z
2 → R equipped by the comparison oracle. The substantial difference from Problem 14 is the fact

that f is defined only at the points of Z
2, which excludes questions to the oracle at arbitrary points of Q

2.
By analogy with the definition of Minkowski reduced basis (see, for instance, [22, pp. 26–35]),

introduce the definition of f-reduced basis for Z
n. As we will show below, for n = 2, this definition

is equivalent to the definition of successive minima for Z
2.

Definition 5. Let f : Z
n → R be an even function of class DConicn. A basis b1, b2, . . . , bn for Z

n

is called f-reduced if f(b1) = λ1(Zn, f) and for each 2 ≤ i ≤ n the vector bi is a minimal vector
with respect to f such that the system of vectors b1, b2, . . . , bi can be supplemented to a basis for Z

n.

The following theorem and its corollary enable us to formulate some necessary and sufficient
condition for the f-reducedness of a basis for Z

2. Observe that, for every even discrete-quasiconvex
function f : Z

2 → R, the point 0 is a minumum point: 0 ∈ MINf (1). In accordance with Remark 14,
this property also holds for the class of discrete-conic functions DConicn.

Theorem 6. Let f : Z
2 → R be an even bounded function in DConic2. Some y ∈ Z

2 is the second
minimum point of f (y ∈ MINf (2)) if and only if there exists z ∈ Z

2 satisfying the conditions:

(1) the vectors y and z constitute a basis for Z
2;

(2) f(y) ≤ f(z) ≤ min{f(z + y), f(z − y)}.

Proof. Sufficiency: Show that, f(x) ≥ f(y) for all x ∈ Z
2 \ {0}. Theorem 3 about the properties of conic

functions implies that the conditions of the theorem are invariant under unimodular transformations, and
so we can assume that y =

(1
0

)
and z =

(0
1

)
. Consider the cones

R1 = cone(y, z | z + y), R2 = cone(−y, z | z − y), C = cone(y,−y | z), L = cone(0 | y).

Fig. 2 shows that all points of Z
2 \ {0} are covered by these cones and their symmetric versions.

By the definition of functions of class DConic2 and the inequalities of condition (2), we infer that
f(x) ≥ f(y) for all integer points of the cones R1, R2, C, L, and their symmetric versions.

Necessity: Let y ∈ MINf (2). Show that there is z ∈ Z
2 satisfying conditions (1) and (2) of the the-

orem. Let

M = {x ∈ Z
2 | y, x constitute a basis for Z

2}.
Choose a point z ∈ M so that f(z) = min{f(x) | x ∈ M}; such z exists by boundedness. The inequality
f(y) ≤ f(z) of condition (2) obviously holds. The remaining inequalities are fulfilled since

{z + y, z − y} ⊆ M.

Theorem 6 is proved.
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Fig. 2. The covering of Z
2 \ {0}.

Remark 6. The requirement of the boundedness of f is needed only for proving necessity. It is
also obvious that if we require that f(y) = f(z) then all points of the integer lattice are covered
by the cones cone(z,−z | y), cone(y,−y | z) and their symmetric versions. The inequalities f(z) ≤
min{f(z + y), f(z − y)} are unnecessary in this case.

Corollary 2. Let f : Z
2 → R be an even function in DConic2 and let y, z ∈ Z

2. The following
assertions are equivalent:

(1) y and z constitute an f-reduced basis for Z
2;

(2) y and z constitute successive minima of Z
2 with respect to f ;

(3) y and z form a basis for Z
2 such that

f(y) ≤ f(z) ≤ min{f(z + y), f(z − y)}.

4. AN ALGORITHM FOR CONSTRUCTING AN f-REDUCED BASIS FOR Z
2

The goal of this section is to describe an algorithm for constructing an f reduced basis for Z
2

given an even function f : Z
2 → R in DConic2. Note that the results of [15] imply the lower complexity

bound 3 log2 R + O(1) for the minimal number of calls to the oracle necessary for searching the second
minimum of f in a domain bounded by a ball of radius R.

We assume that the search for a minimum of f(z + ty) for t ∈ Z is carried out by some separate
procedure that will be considered later. Let by y(k) and z(k) denote the values of the variables y and z after
the kth iteration of Algorithm 1. Denote also by tk the value of the variable t in the search for a minimum
of f(y + tx) at iteration k. We assume that tk = 0 for k < 1 and the iterations are enumerated from 1.
Let y(0) and z(0) denote the values of the variables before the first iteration of the algorithm.

Algorithm 1

Input : The comparison oracle of f .
Output : A pair of vectors (y, z) that is an f-reduced basis for Z

2.
1 : y := e1, z := e2
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2 : repeat
3 : if f(y) > f(z) then
4 : y ↔ z

5 : end if
6 : t := arg min

t∈Z

f(z + ty)

7 : z := z + ty

8 : until t �= 0
9 : return (y, z)

Theorem 7. Let f : Z
2 → R be an even bounded function in DConic2. Then, Algorithm 1 outputs

some vectors (y, z) that are an f-reduced basis for Z
2 after finitely many iterations.

Proof. Note that if k ≥ 2 and f(y(k)) ≤ f(z(k)) then the algorithm interrupts at iteration k + 1. Indeed,
in this event, search for a minimum on a straight line, which has already been carried out, is implemented.
Hence, tk+1 = 0.

If f(y(k)) > f(z(k)) then f(y(k+1)) < f(y(k)). Thus, the values f(y(k)) are strictly monotone de-
creasing or the algorithm finishes. Since f is bounded, this proves the finiteness of the algorithm.

At each iteration, the property of the pair of vectors (y(k)z(k)) to form a basis for Z
2 is preserved

because, from iteration to iteration, the unimodular transformations of the following form are applied
to them:

(yz)

⎛
⎝ 0 1

1 0

⎞
⎠ → (yz), (yz)

⎛
⎝1 t

0 1

⎞
⎠ → (yz).

After the final iteration, we have

f(y(k)) ≤ f(z(k)) ≤ min
{
f(z(k) + y(k)), f(z(k) − y(k))

}
.

By Corollary 2, we conclude that the pair of vectors (y(k)z(k)) is an f-reduced basis for Z
2.

Theorem 7 is proved.

Remark 7. Some remark can help us to simplify the further analysis of Algorithm 1. If f(e1) ≤ f(e2)
then there will no permutation of the variables (yz) at iteration 1 but this may fail to finish the algorithm
at iteration 2, which would be the case at the iterations with numbers greater than 2. For reconstructing
the homogeneity of the algorithm, in the case of f(e1) < f(e2), interchange the vectors (e1e2). If f(e1) =
f(e2) then, by Remark 6, the points (e1e2) already constitute an f-reduced basis and the algorithm
can be finished. Such a change has no influence on the complexity of the algorithm but substantially
simplifies the formulas and the analysis.

If the kth iteration, k ≥ 1, is final then

either (z(k−1)z(k)) = (z(k−2)z(k−1)) or (z(k−1)z(k)) = (z(k−1)z(k−2)).

If the kth iteration is not final then

(
y(k)z(k)

)
=

(
y(k−1)z(k−1)

)
⎛
⎝ 0 1

1 tk

⎞
⎠ .

Put z(−1) = e1. Then for k ≥ 0 we have y(k) = z(k−1), whence we obtain

(
z(k−1)z(k)

)
=

(
z(k−2)z(k−1)

)
⎛
⎝ 0 1

1 tk

⎞
⎠ . (3)
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Put ak = z
(k)
2 for k ≥ −1 and ak = 0 for k < −1. Then the sequence ak satisfies

ak = ak−1tk + ak−2 + [k = 0]. (4)

Examine the growth of |ak|. The proofs of the following three lemmas for the case when f is a strictly
discrete-quasiconvex function was done in [16]. Part of the proofs for functions of class DConicn is
carried over without substantial changes. However, we will give the proof to ensure the completeness
and integrity of the exposition.

Lemma 1. Suppose that the kth iteration, k ≥ 1, is not final. Then

f
(
z(k)

)
≤ min

τ∈Z

f
(
τz(k−1) ± z(k)

)
.

Proof. Since the kth iteration, with k ≥ 1, is not final,

z(k) = arg min
x∈L

f(x),

where L = {z(k−2) + tz(k−1) | t ∈ Z}, and z(k) = z(k−2) + tkz
(k−1). Obviously, the points τz(k−1) ± z(k)

lie on straight lines L and −L. Since f is even, we obtain the desired inequalities.
Lemma 1 is proved.

Lemma 2. Suppose that Algorithm 1 has produced n ≥ 2 iterations. Then

(1) |t1| ≥ 1, |tn−1| ≥ 1, and tn = 0;

(2) |tk| ≥ 2 for k ∈ 2 : (n − 2);

(3) if |tk| = 2 then tktk+1 > 0 for k ∈ 2 : (n − 3).

Proof. Item (1) stems from the fact that the first and (n − 1)th iterations are not final. The equality
tn = 0 means that the nth iteration is final.

(2) Suppose on the contrary that tk = ±1. Then

z(k) = z(k−2) ± z(k−1)

but, by Lemma 1, we have

f(z(k−1)) ≤ f(z(k−2) ± z(k−1)) = f(z(k)).

The last inequality means that the (k + 1)th iteration is final, which is possible only for k = n − 1.
(3) Consider the cones

R1 = cone
(
− z(k−1), z(k−1) | z(k−1) + z(k−2)

)
, R2 = cone

(
− z(k−1), z(k−1) | −z(k−1) + z(k−2)

)
.

Since the (k − 1)th iteration is not final, by Lemma 1, we have the inequalities

f
(
± z(k−1) + z(k−2)

)
≥ f

(
z(k−1)

)
.

Thus,

∀x ∈ R1 ∪ R2 ∪ −R1 ∪−R2 f(x) ≥ f
(
z(k−1)

)
.

Suppose that tk = −2 and tk+1 = τ ≥ 1. Then, by (3), we infer

z(k+1) = (1 − 2τ)z(k−1) + τz(k−2) = (−z(k−1) + z(k−2)) + (τ − 1)(−2z(k−1) + z(k−2)) ∈ R2,

whence z(k+1) ∈ R2. If tk = 2 and tk+1 = −τ ≤ 1 then

−z(k+1) = (2τ − 1)z(k−1) + τz(k−2) = (z(k−1) + z(k−2)) + (τ − 1)(2z(k−1) + z(k−2)) ∈ R1,

whence z(k+1) ∈ −R1. In both cases,

f(z(k+1)) ≥ f(z(k−1)) ≥ f(z(k)).

The last inequality means that the (k + 2)th iteration is final, which is possible only for k = n − 2.
Lemma 2 is proved.
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Consider only the sequence {bk} obtained from {ak} by putting t1 = −1 and tk = 2 for k ≥ 2.
It satisfies the equality

bk = 2bk−1 + bk−2 − 3[k = 1] + [k = 0].

Lemma 3. Suppose that Algorithm 1 has produced n ≥ 2 iterations. Then

(1) |ak| > |ak−1| for k ∈ 1 : (n − 2);

(2) sgn (ak) = sgn (tkak−1) for k ∈ 1 : (n − 2);

(3) |ak| = |tk||ak−1| + sgn (tktk−1)|ak−2| for k ∈ 2 : (n − 2);

(4) |ak| ≥ |bk| for k ∈ 0 : (n − 2);

(5) |ak|/|ak−1| ≥ |bk|/|bk−1| for k ∈ 1 : (n − 2);

(6) |an−1| ≥ |an−4|.

Proof. (1) Since the subsequence {ak} satisfies (4), we have |a1| > |a0|. By the triangle inequality and
the induction assumption, we have

|ak| ≥ |tk||ak−1| − |ak−2| > (|tk| − 1)|ak−1|.
The desired inequality follows from the fact that |tk| ≥ 2 for 2 ≤ k ≤ n − 2.

Item (2) stems from item (1).
(3) Use the formula |x + y| = |x| + sgn (xy)|y|, valid for |x| ≥ |y|. Since

sgn (tkak−1ak−2) = sgn (tkak−2) sgn (ak−1) = sgn (tkak−2) sgn (tk−1ak−2) = sgn (tktk−1),

we obtain

|ak| = |tkak−1| + sgn (tkak−1ak−2)|ak−2| = |tk||ak−1| + sgn (tktk−1)|ak−2|.

(4) Let t = {tk} = {t1, t2, . . . } be some sequence. By analogy with (4), put

ak(t) = ak−1(t)tk + ak−2(t) + [k = 0].

Consider the two sequences t = {tk} and t̂ = {t̂k} with the properties mentioned in Lemma 2. Refer
to a sequence t̂ dominating if, for every other sequence t, we have |ak(t)| ≥ |ak(t̂)| for 0 ≤ k ≤ n − 2.
The existence of a dominating sequence can be easily proved by induction by gluing dominating
sequences of smaller lengths with varying initial conditions.

Suppose that ak = ak(t) for some t. Then, for k ≥ 3, we have

|ak| = (|tk||tk−1| + sgn (tktk−1))|ak−2| + |tk| sgn (tk−1tk−2)|ak−3|.
If |tk−1| ≥ 3 then the minimum of this expression is attained for tk = − sgn (tk−1)2. If |tk−1| = 2 then,
by property 3 of Lemma 2, we can choose tk so that tktk−1 > 0. Then the minimum is attained at
tk = sgn (tk−1)2.

Let t̂ be a dominating sequence. It is easy to see that t̂1 = ±1 and t̂2 = ∓2. For k ≥ 3, the choice
of tk must agree with the greedy choice rule for tk described in the previous paragraph. Using this rule,
we obtain that a dominating sequence for k ≥ 3 must satisfy tk = ∓2; which proves the assertion.

(5) In a similar fashion, use the notation ak(t) = ak−1(t)tk + ak−2(t) + [t = 0] and introduce the def-
inition of dominating sequence. Consider two arbitrary sequences t = {tk} and t̂ = {t̂k} satisfying
the properties of Lemma 2. Call a sequence t̂ dominating if every other sequence t satisfies

|ak(t)|
|ak−1(t)|

≥ |ak(t̂)|
|ak−1(t̂)|

, 0 ≤ k ≤ n − 2.
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Let ak = ak(t) for some t. Then for k ≥ 2 we have

|ak|
|ak−1|

= |tk| + sgn (tktk−1)
|ak−2|
|ak−1|

.

If |tk−1| ≥ 3 then the minimum of this expression is attained for tk = − sgn (tk−1)2. If |tk−1| = 2 then,
by property 3 of Lemma 2, we can choose tk so that tktk−1 > 0. In this case, the minimum is attained
for tk = sgn (tk−1)2.

Using analogous arguments, as at the end of item (4), we conclude that

|ak|
|ak−1|

≥ |bk|
|bk−1|

, k ≥ 0.

(6) We cannot apply item (1) for |an−1| since |tn−1| = 1 is possible. However, we can show that
|an−1| ≥ |an−4|.

By definition,

|an−1| = |tn−1||an−2| + sgn (tn−1tn−2)|an−3|.

If |tn−1| ≥ 2 or sgn (tn−1tn−2) = 1 then, by Lemma 3(1), we have |an−1| ≥ |an−2| > |an−4|. Otherwise,

|an−1| = |an−2| − |an−3| = (|tn−2| − 1)|an−3| + sgn (tn−2tn−3)|an−4|.

If |tn−2| ≥ 3 or sgn (tn−2tn−3) = 1 then |an−1| ≥ |an−3| > |an−4|. Otherwise,

|an−1| = |an−3| − |an−4| = (|tn−3| − 1)|an−4| + sgn (tn−3tn−4)|an−5|.

If |tn−3| ≥ 3 then |an−1| ≥ |an−3| > |an−4|. Otherwise, |tn−2| = |tn−3| = 2 and sgn (tn−2tn−3) = −1.
By Lemma 2(3), this situation is impossible, and so either |tn−2| ≥ 3 or |tn−3| ≥ 3.

Lemma 3 is proved.

Theorem 8. For each k ≥ 0, we have

bk = (−1)k
1
2
(
√

2 − 1)k−1 − 1
2
(
√

2 + 1)k−1,

|bk|
|bk+1|

≤ 1√
2 + 1

(1 + O(αk)), where α =
√

2 − 1√
2 + 1

.

Proof. The sequence bk is a shifted sequence of Pell numbers with changed initial conditions. Using the
standard tools of the method of generating functions (see, for example, [21, pp. 337–350]), we can prove
the first equality. Prove the second equality:

|bk|
|bk+1|

=
(
√

2 + 1)k−1 + (−1)k−1(
√

2 − 1)k−1

(
√

2 + 1)k + (−1)k(
√

2 − 1)k
=

1√
2 + 1

· 1 + (−α)k−1

1 + (−α)k
,

where α = (
√

2 − 1)/(
√

2 + 1). If k is even then |bk|/|bk+1| ≤ (
√

2 + 1)−1. If k is odd then

|bk|
|bk+1|

≤ 1√
2 + 1

· 1 + αk−1

1 − αk
=

1√
2 + 1

(1 + O(αk)).

Theorem 8 is proved.

Theorem 9. Suppose that Algorithm 1 has produced n ≥ 5 iterations and MINf (2) ⊆ R · B2
2 .

Then n ≤ log(1+
√

2) R + O(1).
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Proof. Since the nth iteration is final, we have |an| = |an−1| or |an| = |an−2|. We cannon apply
Lemma 3(1) to |an−1| but, by item(6), |an−1| ≥ |an−4|.

Since the second minimum of f lies in R ·B2
2 , we have |an| ≤ R. By Theorem 8 and Lemma 3(4), we

obtain

C(1 +
√

2)n−5 = |bn−4| ≤ |an−4| ≤ |an| ≤ R

for some constant C. Theorem 9 is proved.

The following algorithms make it possible to carry out an effective search of a minimum point t∗ of f
on the straight line L(t) = z + t(z − y) and are used at Step 5 in Algorithm 1:

Algorithm 2
Input : The comparison oracle of f ; a parameter k such that t∗ ≥ 2k.
Output : An interval [tst, tfn) containing t∗.

1 : tst := 2k, tfn := 2k+1

2 : while f(z + (tfn − 1)y) > f(z + tfny) do
3 : tst := tfn, tfn := tfn · 2
4 : end while
5 : return [tst, tfn)

Algorithm 3
Input : The comparison oracle of f and an interval [tst, tfn) containing t∗.
Output : The point t∗.

1 : while tst �= tfn − 1 do
2 : tmid := �(tst + tfn)/2�
3 : if f(z + (tmid − 1)y) ≤ f(z + tmidy) then
4 : tfn := tmid

5 : else
6 : tst := tmid
7 : end if
8 : end while
9 : return tst

Lemma 4. Suppose that a point

t∗ ∈ arg min
t∈Z

f(z + ty)

is defined for a function f in DConic2 and k ∈ N. Then there exists an algorithm for the search
for t∗ making at most 2 + k comparisons for |t∗| ∈ [0, 2k) and at most 3 − k + 2 log2 |t∗| compar-
isons for |t∗| ∈ [2k,+∞).

Proof. Let g(t) = f(z + ty). For finding t∗, we must determine to which of the rays corresponding
to t ≥ 0 and t ≤ 0 the point t∗ belongs. This can be done by comparing g(0) and g(1). Suppose that
t∗ ∈ [0,+∞).

Compare the values g(2k − 1) and g(2k). If g(2k − 1) ≤ g(2k) then the minimum is in [0, 2k); apply
Algorithm 3 for finding it. This case requires 2 + k calls to the oracle in total.

In the opposite case, we have g(2k − 1) > g(2k) and t∗ ∈ [2k,+∞). For finding an interval of the form
[2k+p−1, 2k+p) to which t∗ belongs, use Algorithm 2 with parameter k. For this, the algorithm needs
p calls to the oracle. After that apply Algorithm 3 to find t∗ in this interval, for which we need k + p − 1
calls to the oracle. In total, the case under consideration requires 1 + k + 2p calls to the oracle. Since
p ≤ log2 t∗ − k + 1, the total number of calls to the oracle is at most 3 − k + 2 log2 t∗.

Lemma 4 is proved.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 14 No. 1 2020



70 GRIBANOV, MALYSHEV

Theorem 10. Suppose that Algorithm 1 has been launched for finding an f-reduced basis
for Z

2 with respect to an even function f : Z
2 → R in DConic2 equipped by the comparison oracle.

Suppose that the second minimum point of f lies in the ball of radius R and Algorithm 1 has
produced n ≥ 3 iterations for its search.

Then the total number of calls to the oracle produced by Algorithm 1 is at most

3.32 log2 R + O(1).

The estimate is found provided that Lemma 4 was used for finding a minimum on straight lines
arising at Step 5 of Algorithm 1.

Proof. Let s be the number of the iterations of the algorithm at which |ti| < 2k. Note that, at the last
iteration, at most two calls to the oracle are made and tn = 0. By Lemma 2, |ti| ≥ 2 for all 2 ≤ i ≤ n− 2.
We will assume that |tn−1| ≥ 2 since otherwise the analysis is only simplified. By Lemma 4, the total
number of calls to the oracle with account taken of an additional comparison made at the beginning
of each iteration is equal to

n + O(1) + s(2 + k) + (n − s)(3 − k) + 2
n−1∑
i=1

[|ti| ≥ 2k] log2 |ti|. (5)

Estimate the sum using the following

Lemma 5.
n−1∑
i=1

[|ti| ≥ 2k] log2 |ti| ≤ log2 R − (1 +
√

2)s + γ(n − s) + O(1),

where γ = 1 − log2(2 − (
√

2 + 1)−1).

Proof. It is easy to verify that the following inequality holds for every integer t ≥ 2 and ε ∈ (0, 1):

log2 t ≤ log2(t − ε) + 1 − log2(2 − ε), (6)

where equality is attained for t = 2. Prove that

n−1∑
i=1

[|ti| ≥ 2k] log
(
|ti| −

|ai−2|
|ai−1|

)
≤ log2 R − (1 +

√
2)s + O(1). (7)

By Lemma 3(1), reckoning with the fact that |tn−1| ≥ 2, for 1 ≤ i ≤ n − 1 we have

|ai| ≥ |ti||ai−1| − |ai−2|,
whence

|ai|
|ai−1|

≥ |ti| −
|ai−2|
|ai−1|

.

By Lemma 3(5), for 1 ≤ i ≤ n − 2 the following

|ai|
|ai−1|

≥ |bi|
|bi−1|

is true. By Theorem 8, we obtain

|bi|
|bi−1|

≥ (1 +
√

2)
1

1 + O(αi−1)
,

where α = (
√

2 − 1)/(
√

2 + 1). Since |tn−1| ≥ 2, we obtain |an−1|/|an−2| ≥ 1. Since a−1 = 0, a0 = 1,
a1 = t1, and |an−1| ≤ R, multiplying the inequalities for |ai|/|ai−1| and taking the logarithm, we infer
what was required.
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Using (6) and (7), we obtain

n−1∑
i=1

[|ti| ≥ 2k] log2 |ti| ≤ log2 R − (1 +
√

2)s + O(1) +
n−1∑
i=1

[|ti| ≥ 2k](1 − log2(2 − εi−2)),

where εi = |ai|/|ai+1|. (8)

By Lemma 3(5) and Theorem 8, for 0 ≤ i ≤ n − 3 we have

εi ≤
1√

2 + 1
(1 + O(αk)).

The obtained inequalities yield

log2(2 − εk−2) ≥ log2(2 − (
√

2 + 1)−1(1 + O(αk))) = log2(2 − (
√

2 + 1)−1) + O(αk).

The lemma follows from this inequality and (8). Lemma 5 is proved.

Using (5) and Lemma 5, we conclude that the total number of calls to the oracle is as follows:

(4 − k + 2γ)n + O(1) + (2k − 3 − 2(
√

2 + γ))s + 2 log2 R.

For k ≤ 3 < 3/2 +
√

2 + γ, we can neglect the third summand in the estimate. In this case, the
minimum is attained for k = 3 and equals

(1 + 2γ)n + O(1) + 2 log2 R.

Using Theorem 9, we infer that the number of calls to the oracle is equal to
(

2 +
1 + 2γ

log2(1 +
√

2)

)
log2 R + O(1) ≤ 3.32 log2 R + O(1).

Theorem 10 is proved.
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