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Abstract
In this paper, we consider the class of quasiconvex functions and its proper subclass of conic
functions. The integer minimization problem of these functions is considered, assuming that
the optimized function is defined by the comparison oracle. We will show that there is no
a polynomial algorithm on log R to optimize quasiconvex functions in the ball of radius R
using only the comparison oracle. On the other hand, if the optimized function is conic, then
we show that there is a polynomial on log R algorithm (the dimension is fixed). We also
present an exponential on the dimension lower bound for the oracle complexity of the conic
function integer optimization problem. Additionally, we give examples of known problems
that can be polynomially reduced to the minimization problem of functions in our classes.
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1 Introduction

1.1 Motivation and related papers

We consider the following minimization problem:

f0(x) → min (1){
fi (x) ≤ 0 i = 1, 2, . . . ,m
x ∈ Z

n,

where f0 and fi are quasiconvex functions. Let D = {x ∈ R
n : fi (x) ≤ 0} and D ⊆ Bn∞(r),

where Bn∞(r) is the ball of radius r in R
n related to the Chebyshev norm. The works of

Oertel, Wagner, Weismantel [36] and Dadush, Peikert, Vempala [11] give polynomial on
log r algorithms (the dimension is fixed) to solve the problem in the case, when the set D is
equipped by the separating hyperplane oracle. The thesis [10] gives an (O(n))n poly(log r)
algorithm to solve this problem and a good survey on related topics. The paper [36] states
that a polynomial on log r algorithm (if the dimension is fixed) can be simply obtained for the
following three oracles: the feasibility oracle, the linear integer optimization oracle, and the
separation hyperplane oracle. Moreover, a result of [36] affects mixed integer setting. The
paper [6] of Basu and Oertel and the thesis [35] of Oertel give a novel approach in integer
convex optimization based on the concept of centerpoints generalized to the integer case.
These works additionally give the �(2n log r) lower bound on the complexity of algorithms
that are based on the separating hyperplane oracle. See also the books [14,39] for more
detailed survey on integer programming.

The historically first work that gives a polynomial integer programming algorithm in a
fixed dimension is thework [30] of Lenstra. It considers themixed integer linear programming
problem. Next, Frank and Tardos in [18] andKannan in [26] improved the complexity bounds
from [30]. The case, when the constraints are expressed by quasiconvex polynomials, was
solved in the work [22] of Heinz. This result was improved in the work [24] of Hildebrand
and Köppe, see also the survey [29] of Köppe. It is important to note that any quasiconvex
function can be approximated by quasiconvex polynomial due to the work [23] of Heinz. The
problem of recognizing the quasiconvexity of a given polynomial is NP-complete, due to the
paper [1]. The paper [27] of Khachiyan and Porkolab gives an algorithm for the case, when
the constraints are expressed as convex semialgebraic sets. Gavenčiak et al. give in [19] a
comprehensive review on the advances in solving convex integer programs from the last two
decades. The paper [13] of Eisenbrand contains an algorithm for linear integer programming
with the best known complexity in terms of the constraints number and an input encoding
size.

In our work, we consider only algorithms that are based on the comparison oracle. For
any pair of points x, y ∈ dom( f ), the comparison oracle of a quasiconvex function f
determines one of the following two possibilities: f (x) ≤ f (y) or f (x) > f (y). Our choice
is motivated by the following facts. Firstly, the comparison oracle is simpler to implement
than the separating hyperplane oracle. Secondly, we will show in this paper that there is no an
algorithm solving the problem (1) with the comparison oracle, which is polynomial on n or
log r . Due to results of [10,11,35,36], the last fact means that the problem with the separation
hyperplane oracle can not be polynomially reduced to the problem with the comparison
oracle. Finally, it is possible to present general subclasses of the quasiconvex functions class
that allow to develop polynomial on log r algorithms, based on the comparison oracle.
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This paper has two aims. The first is revealing new classes of functions that can be
effectively optimized in a fixed dimension, including already known and important classes
of functions. The second one is establishing exponential on the dimension lower bounds on
the oracle complexity for the problem (1) with respect to some new classes.

1.2 Content and results of this article

In Sect. 2, we introduce two new classes of functions: conic functions and discrete conic
functions. For the class of conic functions,wegive several equivalent definitions and show that
it includes the classes of strictly quasiconvex functions, convex functions, and quasiconvex
polynomials. Discrete conic functions are similar to conic functions, but their domains are
discrete sets. We will show that there is no natural extension of any discrete conic function
to some conic function and give a criteria for situation, when it is possible.

In Sect. 3, we give some general tools that are helpful for us to prove lower complexity
bounds. Additionally, in this section, we show that the problem (1) with respect to the classes
of conic functions or discrete conic functions canbepolynomially reduced to its unconstrained
variant.

In Sect. 4, we present a very simple (2r)n lower bound on the comparison-based complex-
ity of (1). After that, we give �(2n log r) lower bounds to the problem’s (1) complexity with
respect to the classes of conic functions, discrete conic functions, and their even (symmetric)
versions.

Finally, in Sect. 5, we consider examples of concrete problems that can be formulated
as optimization problems involving conic or discrete conic functions and give a polynomial
on log r comparison oracle-based algorithm for the conic function integer minimization
problem. There is a way how to minimize a convex continuous function using only the so-
called zero-order oracle, that is the oracle computing the function value in any given point.
Yudin and Nemirovskii (see [34, pp. 342–348], [41]) give a polynomial on the dimension and
log r algorithm for continuousminimization of convex continuous functions using calls to the
zero-order oracle. Using the results of Grötschel, Lovász, Schrijver and Yudin, Nemirovskii
[20,42] about the equivalence between week separation and week optimization, we can build
a week separation oracle for the sets, like {x ∈ R

n : f (x) ≤ ε}, where f is conic. Due to
the results of the thesis [10], it leads us to an algorithm with the comparison oracle-based
complexity (O(n))n poly(log r). Additionally, the result of [36] leads us to an algorithmwith
a complexity, polynomial on log r , for the mixed integer variant of the problem.

But, for the best of our knowledge, the approach of Yudin and Nemirovskii [34,41] can be
applied only for convex functions. Since the class of conic functions is not equivalent to the
class of convex functions, then the sequence of results described above can not be applied to
the conic function integer minimization problem. To this end, we develop our Lenstra’s type
algorithm for this problem that is based on ideas from the papers [10,11,24,30,35,37].

We do not present a polynomial on log r oracle-based algorithm for minimization of
discrete conic functions. The papers [9,40] present these algorithms for the dimension 2.

1.3 Future work and remarks

In Sect. 3,we give a polynomial on log r algorithm for the conic function integerminimization
problem. But the analysis of the algorithm is rough, and it is a good idea to make it more
accurate in future works.
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It is an interesting open problem to develop weak separation hyperplane oracle for the
class of conic functions. The existence of such algorithm gives opportunity to apply results
of from the thesis [10] of Dadush that give an algorithm with the best known complexity.

Additionally, in this work, we do not present algorithms for integral minimization of
discrete conic functions, we only note about algorithms for the dimension 2 from [9,40].
The difficulty to build such algorithm for any fixed dimension is the fact that we can ask
comparison oracle only in points of some discrete set and the general separation oracle is not
helpful in this situation. We are planning to work on these problems in the future.

We also note that our algorithm can be helpful to design FPT-algorithms for some com-
binatorial optimization problems. See the papers [8,19] for details.

2 Definitions, notation and some preliminary results

Let Bn
p(y, r) be the n-dimensional ball of radius r ≥ 0, centered at a point y ∈ R

n and
related to the norm l p . In other words,

Bn
p(y, r) = {x ∈ R

n : ||x − y||p ≤ r}.
If y = 0, then the symbol y will be skipped, i.e. Bn

p(r) = Bn
p(0, r).

For a matrix B ∈ R
m×n , cone(B) = {Bt : t ∈ R

n+} is the cone spanned by columns of
B, conv. hull(B) = {Bt : t ∈ R

n+,
∑n

i=1 ti = 1} is the convex hull spanned by columns of
B, affine(B) = {Bt : t ∈ R

n,
∑n

i=1 ti = 1} is the affine hull spanned by columns of B, and
span(B) = {Bt : t ∈ R

n} is the linear hull spanned by columns of B. If D ⊆ R
n , then the

symbol span(D) designates the linear hull, based on the points of D. The same is true for
other types of the hulls.

For a set D ⊆ R
n , int(D) and br(D) are the sets of interior and boundary points of D,

respectively. The sets of interior and boundary points related to affine(D) are denoted by
rel. int(D) and rel. br(D), respectively.

The set of integer values, started from i and ended in j , is denoted by i : j = {i, i +
1, . . . , j}. For a vector x ∈ R

n , xi is the i th component of x . The interval between points
y, z ∈ R

n is denoted by

[y, z] = {x = t y + (1 − t)z : 0 ≤ t ≤ 1}.
We will use the symbol (y, z) to define an open interval. The set D is said to be convex if
∀x, y ∈ D [x, y] ⊆ D. For a function f , dom( f ) is the domain of f . For any y ∈ dom( f ),
H≤

f (y) is the set of contour lines for f . In other words,

H≤
f (y) = {x ∈ dom( f ) : f (x) ≤ f (y)}.

The sets H<
f (y), H=

f (y) are defined in a similar way. The set of all minimum points of a
function f is denoted by M1( f ). If it is not defined, we will put M1( f ) = ∅. Similarly,
Mi ( f ) is the set of all i th minimum points of f . The set of all minimum points of a function
f on a set D is denoted by MD

1 ( f ). Similarly, MD
i ( f ) is the set of all i th minimum points

of f on D.
Let us consider the set of functions f : dom( f ) → R, such that dom( f ) ⊆ R

n is convex.
A function f is said to be quasiconvex if

∀x, y ∈ dom( f ), ∀z ∈ (x, y) f (z) ≤ max{ f (x), f (y)}.
A function f is said to be strictly quasiconvex if

∀x, y ∈ dom( f ), ∀z ∈ (x, y) f (z) < max{ f (x), f (y)}.
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A function f is said to be convex if

∀x, y ∈ dom( f ), ∀t ∈ (0, 1) f (t x + (1 − t)y) ≤ t f (x) + (1 − t) f (y).

We will denote these classes by the symbols QConvn , SQConvn and Convn respectively.
Additionally, we denote by QCPolyn the class of quasiconvex polynomials of all possible
non-zero degrees with real coefficients.

Note 1 Let T ⊆ dom( f ). It is known that the definition of a quasiconvex function is equiv-
alent to the following definition

∀x ∈ conv. hull(T ) f (x) ≤ max
y∈T f (y),

and the definition of a strictly quasiconvex function is equivalent to following definition

∀x ∈ conv. hull(T )\T f (x) < max
y∈T f (y).

For points x (1), x (2), . . . , x (k) ∈ R
n , the set

x (k) + cone(x (k) − x (1), . . . , x (k) − x (k−1)) (2)

is denoted as cone(x (1), x (2), . . . , x (k−1)|x (k)).

Definition 1 Let f : dom( f ) → R, where dom( f ) is convex.
The function f is conic if ∀y, z ∈ dom( f ) and ∀t ≥ 0, such that f (y) ≤ f (z) and

z + t(z − y) ∈ dom( f ), we have

f (z + t(z − y)) ≥ f (z).

Note 2 Clearly, the classConicn of conic functions is a subclass of the quasiconvex functions
class, that isConicn ⊂ QConvn . The inclusion is strict, a counterexample is the quasiconvex
function sgn(x1).

The next theorem gives two additional ways to define the class of conic functions.

Theorem 1 Let f : dom( f ) → R, where dom( f ) ⊆ R
n is convex. The following definitions

are equivalent:

1. For any pair of points y, z ∈ dom( f ) and ∀t ≥ 0, such that f (y) ≤ f (z) and z + t(z −
y) ∈ dom( f ), we have

f (z + t(z − y)) ≥ f (z).

2. For any set of points x (1), x (2), . . . , x (k), y ∈ dom( f ), such that

f (x (1)) ≤ f (x (2)) ≤ · · · ≤ f (x (k)) and

y ∈ cone(x (1), x (2), . . . , x (k−1)|x (k)),

the inequality f (y) ≥ f (x (k)) holds. Furthermore, we can assume that the points
x (1), x (2), . . . , x (k) are in general position, i.e. no hyperplane contains more than n
of them.

3. For any x ∈ dom( f ), the set H≤
f (x) is convex (which is equivalent to the quasiconvexity

of the function f ) and

∀x ∈ dom( f )\M1( f ) H=
f (x) ⊆ rel. br(H≤

f (x)).

If the set M1( f ) is not defined, we will put it to be empty.
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Fig. 1 An explanation of Theorem 1. Definition 1 on the left and Definition 2 on the right

Figure 1 gives an illustration for the first two equivalent definitions.

Proof The equivalence of 1 and 2. Any triangulation of the polytope conv. hull
(x (1), x (2), . . . , x (k)) induces a triangulation of the cone

cone(x (1), x (2), . . . , x (k−1)|x (k))

into simple cones. Thus, it can be assumed that the points x (1), x (2), . . . , x (k) are in the
general position.

Clearly, the first part follows from the second part. We will prove the converse statement.
Let the points x (1), x (2), . . . , x (k) ∈ dom( f ) be in general position and max

1≤i≤k
f (x (i)) ≤

f (x (k)). Let us fix y ∈ dom( f )\{x (k)}, such that y ∈ cone(x (1), x (2), . . . , x (k−1)|x (k)). We
show that the inequality f (y) ≥ f (x (k)) is true. Consider the line L passing through the
points y and x (k). The line L intersects the set conv. hull(x (1), x (2), . . . , x (k−1)) in some point
z. The function f is defined in the point z, because dom( f ) is convex. The quasiconvexity of
f implies that f (z) ≤ f (x (k)). By this fact and Definition 1 , the inequality f (y) ≥ f (x (k))

holds.
The equivalence of 1 and 3. The implication 1 → 3. Suppose that ∃z ∈ dom( f )\M1( f ),

such that z ∈ rel. int(H≤
f (z)). The definition of z implies the existence of a point v ∈

dom( f ), such that f (v) < f (z). Let B = cone(H≤
f (v)|z). Since z ∈ rel. int(H≤

f (z)),

then ∃u ∈ B ∩ H≤
f (z) and u = z. By Definition 2, we have f (u) ≥ f (z), and, therefore,

f (u) = f (z). By Note 2, the set H≤
f (v) is convex. Therefore, the ray cone(u|z) intersects

the set H≤
f (v) in some point. By this fact and Definition 1,

∀x ∈ cone(u|z) f (x) ≥ f (z).

The last inequality contradicts to the inequalities

x ∈ H≤
f (v) f (x) ≤ f (v) < f (z).
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The implication 3 → 1. Consider points y, z ∈ dom( f ), such that f (y) ≤ f (z). The
claim is

∀t ≥ 0, such that xt = z + t(z − y) ∈ dom( f ), f (xt ) ≥ f (z).

If z ∈ M1( f ), then the inequality f (x) ≥ f (z) holds for all x ∈ dom( f ). So, we suppose
that z /∈ M1( f ) and f (xt ) < f (z). If f (y) < f (z), then f (z) > max{ f (xt ), f (y)},
which contradicts to the quasiconvexity of f . Thus, f (y) = f (z). Since y, z /∈ M1( f ),
we have y, z ∈ rel. br(H≤

f (y)) and xt ∈ rel. int(H≤
f (y)). Hence, there is a sphere B =

Bn
2 (xt , r) ∩ affine(H≤

f (y)) of some non-zero radius, such that B ∩ H≤
f (y) = B. Let us

consider the setM = conv. hull(y, B). The convexity of the set H≤
f (y) impliesM ⊆ H≤

f (y).
The point z is an internal point of the segment [y, xt ], and, therefore, z is included in M with
some relative neighborhood. The last fact contradicts to the statement z ∈ rel. br(H≤

f (y)).

The next theorem shows that the class Conicn contains some important subclasses.

Theorem 2 The following strict inclusions hold:

1. SQConvn ⊂ Conicn ⊂ QConvn,
2. QCPolyn ⊂ Conicn,
3. Convn ⊂ Conicn.

Proof The inclusion Conicn ⊂ QConvn was analyzed in Note 2.
Let us prove that QCPolyn ⊂ Conicn . To this end, we consider a polynomial f ∈

QCPolyn . First of all, wewill show that if z /∈ M1( f ), then the set H
≤
f (z) is full-dimensional.

That is dim(H≤
f (z)) = n. Suppose that it is not true. By the definition of the point z, there is

a point y ∈ H≤
f (z), such that f (y) < f (z). By the continuity argument, ∀ε > 0 there is a

ball B = Bn
2 (y, r) with some non-zero radius, such that

∀x ∈ B | f (y) − f (x)| ≤ ε.

Choosing ε ≤ f (z) − f (y) to be small enough, we have B ⊆ H≤
f (z). The last inclusion

contradicts to the fact that dim(B) = n.
Let us prove that, for any polynomial f ∈ QCPolyn and for any point z /∈ M1( f ), the

equality

br(H≤
f (z)) = H=

f (z)

holds. The inclusion br(H≤
f (z)) ⊆ H=

f (z) follows from the continuity of the polynomial f .

Let us prove the reverse inclusion. Suppose that z ∈ int(H≤
f (z)). Note that if f (x) = const

on some n-dimensional convex set, then f (x) ≡ const. The last fact contradicts to the
definition of the class QCPolyn . There is a ball B = Bn

2 (z, r) with some non-zero radius,
such that B ∩ H≤

f (z) = B. Let us choose points u(1), u(2), . . . , u(n−1) ∈ B, such that they

are in the general position and f (u(i)) = f (z), for any i ∈ 1 : (n − 1). If such a choice
is not possible, then all of the points x ∈ B, f (x) = f (z) are contained in some affine
subspace of the dimension strictly less than n, and, therefore, f is a constant. Suppose that
the choice is possible. Then let us consider the sets X = conv. hull(u(1), u(2), . . . , u(n−1))

and Y = conv. hull(v(1), v(2), . . . , v(n−1)), where the points v(i) are the symmetry points for
u(i) with respect to z. The following two cases are possible:

(1) For all x ∈ conv. hull(z, Y ), the equality f (x) = f (z) holds. Then f is a constant.
(2) There is a point y ∈ conv. hull(z, Y ), such that f (y) < f (z). Let us consider the

line L , passing through the points z, y. The line L intersects the set X in a point ŷ. Since
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ŷ ∈ X , then, by the quasiconvexity of f , we have f (ŷ) < f (z). Hence, z ∈ [y, ŷ] and
f (z) > max{ f (y), f (ŷ)}, which contradicts to the quasiconvexity of f . The inclusion
QCPolyn ⊂ Conicn is strict, a counterexample is the function f (x) = |x1| that is clearly
conic, but it is not a polynomial.

To prove the inclusion SQConvn ⊂ Conicn , suppose that there are points y, z ∈ dom( f ),
such that f (y) ≤ f (z). We need to prove that for ∀t ≥ 0, such that xt = z + (z − y)t ∈
dom( f ), the inequality f (xt ) ≥ f (z) holds. Suppose to the contrary that ∃t > 0, such
that f (xt ) < f (z). The point z is an internal point of the segment [y, xt ]. By the definition
of the quasiconvexity, we have f (z) < max{ f (y), f (x)}. If f (y) ≤ f (x), then we have
f (z) < f (x), and if f (y) > f (x), then we have f (z) < f (y). In both cases we have a
contradiction. The inclusion SQConvn ⊂ Conicn is strict, because the class SQConvn does
not contain constants.

To prove the inclusion Convn ⊂ Conicn , suppose that there are points y, z ∈ dom( f ),
such that f (y) ≤ f (z). We need to prove that for ∀t ≥ 0, such that xt = z + (z −
y)t ∈ dom( f ), the inequality f (xt ) ≥ f (z) holds. Since xt = z + (z − y)t , we have
z = 1

1+t xt + t
1+t y. By the definition of the convexity, we have

f (z) ≤ 1

1 + t
f (xt ) + t

1 + t
f (y)

and

f (xt ) ≥ (1 + t) f (z) − t f (y) ≥ f (z).

The inclusion Convn ⊂ Conicn is strict, a counterexample is any concave, decreasing
function, for example log x1.

The class Conicn is closed with respect to the following operations.

1. Let fi ∈ Conicn andwi ∈ R+, for any i ∈ 1 : k. Then the function g(x) = max
i∈1:k{wi fi (x)}

belongs to the class Conicn , where dom(g) = ⋂
i∈1:k

dom( fi ).

2. Let f ∈ Conicn and h : R → R be a non-decreasing function. Then the function
g = h · f belongs to the class Conicn .

3. Let f ∈ Conicm , A ∈ R
m×n and b ∈ R

m . Then the affine image g(x) = f (Ax + b)
belongs to the class Conicn .

It is easy to show that the sum of two qusiconvex functions, defined on different domains,
is quasiconvex. That is, if f and g are quasiconvex, then the function h(x, y) = f (x)+ g(y)
is quasiconvex too. For the class Conicn , this property does not hold, counterexamples are
the functions f (x) = 3x and g(x) = −2x . The function h(x, y) = 3x − 2y is not conic. To
prove that it suffices to consider the points (0, 0), (1, 1) and the ray, passing through these
points. The sum of conic functions, defined on the same domain, can be a non-conic function.
Again, counterexamples are the functions f and g.

A function f is said to be even if f (x) = f (−x), for any x, (−x) ∈ dom( f ). A set
D ⊆ R

n is said to be discrete if ∀x ∈ D there is a ball B = Bn
2 (x, r) with r > 0, such that

D ∩ B = {x}.
Definition 2 Let f : dom( f ) → R, where dom( f ) ⊂ R

n is discrete.
The function f is discretely conic if for any points y, x (1), x (2), . . . , x (k) ∈ dom( f ),

such that

f (x (1)) ≤ f (x (2)) ≤ · · · ≤ f (x (k)) and
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y ∈ cone(x (1), x (2), . . . , x (k−1)|x (k)),

the inequality f (y) ≥ f (x (k)) holds.
The class of discretely conic functions will be denoted by DConicn .

Note 3 The classes Conicn and DConicn contain functions with values in R. But actually,
we can use any totally ordered set instead of R. For example, it can be the set Rk with the
lexicographical ordering.

Is it possible to extend any function in DConicn to a function in Conicn? The theorem 3
below answers this question.

Definition 3 Let f ∈ DConicn . The function g ∈ Conicn is an extension of the function f ,
if

dom(g) = conv. hull(dom( f )) and

g(x) = f (x), for x ∈ dom( f ).

Let us consider a function f ∈ DConicn , such that ∀α ∈ R all the sets {x : f (x) ≤ α}
are finite. Since dom( f ) is discrete and the sets {x : f (x) ≤ α} are finite, then the sets Mi ( f )
are uniquely defined, for any i ≥ 1. The sets Mi ( f ) are finite and form the unique partition
of dom( f ):

dom( f ) =
⋃
i≥1

Mi ( f ).

Let z(i) be some representative of the set Mi ( f ) for i ≥ 1.

Theorem 3 A function f ∈ DConicn has an extension in terms of Definition 3 if and only if
∀i ≥ 2 the following inclusion is true:

Mi ( f ) ⊆ rel. br(Pi ),

where Pi = conv. hull(M1( f ), M2( f ), . . . , Mi ( f )).
Since Pi = conv. hull(H≤

f (z(i))), the requirement can be reformulated as follows: for all
z ∈ dom( f )\M1( f ) the following inclusions hold

H=
f (z) ⊆ rel. br( conv. hull(H≤

f (z)) ).

Proof Let us show that if ∃i ≥ 2, such that Mi ( f ) ∩ rel. int(Pi ) = ∅, then the extension of
f does not exist. Suppose to the contrary that there is some extension g ∈ Conicn of the
function f . By Note 2, the function g is quasiconvex, and we have

∀i ≥ 1, ∀x ∈ Pi g(x) ≤ g(z(i)). (3)

Without loss of generality we can assume that z(i) ∈ Mi ( f ) ∩ rel. int(Pi ). Let U =
cone(Pi−1|z(i)) ∩ Pi . Since g ∈ Conicn , then g(x) ≥ g(z(i)) for all x ∈ U . By the inequal-
ities (3), we have that U ⊆ H=

g (z(i)). Additionally, U = ∅, because z(i) ∈ rel. int(Pi ).

Suppose that u ∈ U and the ray R = cone(u|z(i)) intersects the set Pi−1 in some point. The
last contradicts to the fact that

∀x ∈ R g(x) ≥ g(z(i)).

Let us show that if the conditions of the theorem are true, then an extension of f exists.
The function g is built by inductive propagation of its values to the sets Pi , for any i ≥ 1. To
this end, we introduce an additional notation Bi = Pi\Pi−1.
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Let g(x) ≡ f (z(1)), for all x ∈ P1. Assuming that g has already been defined for the set
Pi−1, we show how to extend g(x) to the set Pi . Let g(x) = f (z(i)), for all x ∈ rel. br(Bi ).
For any t ≥ 0, we consider the sets

U (t) = rel. int(Bi ) ∩ {x : d(x, Pi−1) = t}, (4)

where d(x, Pi−1) is the l2-distance from the point x to the convex set Pi−1. The sets U (t)
are subsets of the set rel. int(Bi ) that have an equal distance to the boundary of Pi−1. Let

τ = sup
x∈Bi

d(x, Pi−1), (5)

then

rel. int(Bi ) =
⋃

0<t<τ

U (t). (6)

The following formula extends the function g to the sets U (t), for any 0 < t < τ :

g(x) ≡ t f (z(i)) + (τ − t) f (z(i−1))

τ
for any x ∈ U (t). (7)

Then, the formula (6) gives the extension of g to the set Pi .
We show by induction that gi = g|Pi is contained in the class Conicn for any i ≥ 1.

Trivially, g1 ∈ Conicn , because g1 ≡ const . Let gi−1 ∈ Conicn . We need to show that
gi ∈ Conicn . The claim is: ∀y, z ∈ Pi , g(y) ≤ g(z) and y = z we have

∀x ∈ cone(y|z) ∩ Pi g(x) ≥ g(z).

If cone(y|z) ∩ Pi ⊆ Pi−1, then the claim follows from the inductive assumption. In the
opposite case, we have cone(y|z)∩Bi = ∅. There are the only three possible cases: (1) y, z ∈
Pi−1; (2) y ∈ Pi−1, z ∈ Bi ; (3) y, z ∈ Bi .

Case 1: y, z ∈ Pi−1. The following equality holds:

cone(y|z) ∩ Pi = [z, v] ∪ (v, u],
where [z, v] ⊆ Pi−1, (v, u] ⊆ Bi , v ∈ rel. br(Pi−1) and u ∈ rel. br(Bi ). By the
inductive assumption, the claim is true for x ∈ [z, v]. By the definition, values of
g in the segment (v, u] are strongly greater than in the segment [z, v]. So, we need
to show that values of g are not increasing along the segment (v, u]. The distance
d(x, rel. br(Pi−1)) is not decreasing along the segment (v, u). By formulae (4) - (7)
g(x) is not decreasing too. The value g(u) is maximal, because u ∈ rel. br(Bi ).

Case 2: y ∈ Pi−1, z ∈ Bi . The segment [y, z] must intersect the segment rel. br(Pi−1) in
some point v. By the same reasons, values of g(x) are not decreasing along the ray
cone(v|z).

Case 3: y, z ∈ Bi . The case z ∈ rel. br(Bi ) is trivial, because then the intersection of Bi
and cone(y|z) consists of only one point z. Let y ∈ δ(Bi ). By construction, the
inequality g(y) ≤ g(z) is only possible in the case, when z ∈ rel. br(Bi ). Let
y, z ∈ rel. br(Bi ). Let us consider the set

Uz = {x ∈ Pi : d(x, Pi−1) ≤ d(z, Pi−1)}.
By definition,

rel. br(Uz) = {x ∈ Pi : d(x, Pi−1) = d(z, Pi−1)}.
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Let d(v, Pi−1) < d(z, Pi−1) for some point v ∈ cone(y|z) ∩ Pi , then v ∈
rel. int(Uz). Hence, there is a neighborhood B = Bn

2 (v, r) of the point v, such
that B ∩ Uz = B. Since the set Uz is convex, then conv. hull(y, B) ⊆ Uz . But the
point z is in conv. hull(y, B)with some neighborhood. It contradicts to the statement
z ∈ rel. br(Uz). Thus, d(x, Pi−1) ≥ d(z, Pi−1) for ∀x ∈ cone(y|z) ∩ Pi , which
meets the corresponding inequalities for the function g.

Corollary 1 For any function f ∈ DConicn , there is a function g ∈ Conicn , such that

dom(g) = conv. hull(dom( f )),

M1(g) = M1( f ), and

∅ = M2(g) ⊆ M2( f ).

Note 4 It is not hard to see that if it is possible to extend a function f ∈ DConicn to a
function g ∈ Conicn , then the function f can be extended to any convex set M , such that

conv. hull(dom( f )) ⊆ M .

To see this, we can use the scaled distance to the convex set conv. hull(dom( f )).

3 General notes about the conic functionminimization problem

Let D be a discrete set and F be some class of functions. We define the notion of the
generalized discrete minimization functional F(F , D) : F → R as follows.

Definition 4 Let f ∈ F and D ⊆ dom( f ). The functional F(F , D) is determined by the
following equality:

F(F , D)( f ) = min
x∈D f (x). (8)

If F = F(F , D), then the set F will also be denoted by the symbol dom(F).

Note 5 The functional (8) defines someminimization problem.By this reason,wewill simply
call functionals of the type (8) as minimization problems.

To define functions, we will use the comparison oracle. For any pair of points x, y ∈
dom( f ), the oracle checks whether the inequality f (x) ≤ f (y) holds or not.

Let functions f ∈ Conicn and gi ∈ Conicn , for any i ∈ 1 : m, be defined by their compar-
ison oracles, and D be some discrete set. We consider the following constraint minimization
problem:

f (x) → min (9){
gi (x) ≤ 0, for i ∈ 1 : m
x ∈ D.

Let us show that the problem (9) can be reduced to an unconditionalminimization problem
in the class Conicn . We consider the functions

t(x) = max
i∈1:m{gi (x)}

and h(x) = ( (t(x))+, f (x) ), where

(x)+ =
{
x, for x ≥ 0,
0, for x < 0.

123



772 Journal of Global Optimization (2019) 73:761–788

It is easy to see that the optimal points set of the problem (9) coincides with the lexico-
graphical minima set of the problem F(Conicn, D)(h). By properties of functions from
the class Conicn , we have g ∈ Conicn . Having comparison oracles of the functions gi
and f , we can easily construct a lexicographical comparison oracle for the function h. In
an alternative variant of the reduction, we can choose the function h in the following way:
h(x) = max{ f (x), M · (t(x))+}, where M > 0 is a sufficiently large constant. Usually, it is
easy to choose a value for the constant M . For example, if all the functions gi have integral
values, then we can put M = f (x0) for some point x0 ∈ D.

Definition 5 An algorithm to solve the minimization problem F = F(F , D) is an algorithm,
whose atomic operation is a call to the comparison oracle. The input of such algorithm is the
comparison oracle for some function from theF class. The output of the algorithm is some
point from the set MD

1 ( f ).

Definition 6 Let f ∈ dom(F). The symbol τF (A, f ) denotes the number of oracle calls that
an algorithm A takes to solve the problem F( f ). Let

τF (A) = sup
f ∈dom(F)

τF (A, f ), and

τF = inf
A∈A τF (A),

where A is the set of all algorithms that solve the problem F . The symbol τF denotes the
complexity of the problem F .

Definition 7 Any algorithm A for the problem F can be represented by a binary solution
tree, which is said to be algorithm’s protocol or its program. Internal nodes of the protocol
correspond to oracle calls. Each internal node has exactly two children, the first corresponds
to the answer “yes” and the second to the answer “no”. Each path from the root to a leaf
corresponds to some concrete way of computations, where an input is a comparison oracle
for some f ∈ dom(F). Finally, leaves are marked by optimal solutions of the corresponding
problem. It is not hard to see that the value τF (A) coincides with maximal length of paths
from the root to leaves of the protocol A.

Following [43], let us define the notion of a resolving set. It is said that functions f , g
have an equivalent order on points of a set R if ∀x, y ∈ R the inequality f (x) ≤ f (y) holds
if and only if the inequality g(x) ≤ g(y) holds.

Definition 8 Let F = F(F , D) and f ∈ F . A set R f ⊆ dom( f ) is a resolving set for the
function f with respect to the functional F if for any function g ∈ F , such that R f ⊆ dom(g),
the following statement holds:

g and f have an equivalent order on points of R f �⇒ MD
1 ( f ) ∩ MD

1 (g) = ∅.

The next lemma shows the importance of resolving sets, a proof easily follows from the
definition.

Lemma 1 Let F = F(F , D), A be a minimization algorithm of the problem F and f ∈
dom(F). Let p be the path from the root to a leaf in the protocol A that corresponds to the
function f . Let V (p) ⊆ dom( f ) be the set of points, in which the oracle calls were asked
along the path p. Then the set V (p) is resolving for the function f .

Definition 9 The function f ∈ F is non-singular with respect to the problem F = F(F , D)

if for any resolving set R f for f

R f ∩ MD
1 ( f ) = ∅.
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The following theorem gives a non-singularity criteria for the classes Conicn and
DConicn .

Theorem 4 Let D ⊆ R
n be some bounded discrete set and the minimization problem be

defined by the functional F = F(Conicn, D) or by the functional F = F(DConicn, D).
Let, additionally, Y = MD

1 ( f ) and Z = MD
2 ( f ). Then a function f ∈ dom(F) is non-

singular if and only if for any subset T ⊆ Y ∪ Z, such that the points of T are in general
position, and ∀y ∈ Y we have

cone(T |y) ∩ Z = ∅. (10)

Proof Sufficiency. Firstly, let us consider the functional F = F(DConicn, D). Let y ∈ Y
and z ∈ Z . Let us define the function g : D → R as follows:

g(x) =
{
f (x), for x /∈ Z
δ, for x ∈ Z ,

where δ < f (y).
Let R f be a resolving set for f with respect to the problem F . Suppose to the contrary

that Y ∩ R f = ∅. Clearly, f and g have an equivalent order on points of the set R f , and

MD
1 ( f ) ∩ MD

1 (g) = ∅.

To obtain a contradiction, we need to show that g ∈ DConicn . In other words, all the
conditions from Definition 2 are satisfied. Let C = cone(T |p) for T ⊆ dom(g) and p ∈
dom(g). We consider different cases to choose the apex p of the cone C :

Case 1: p ∈ dom(g)\(Y ∪ Z). The conditions from Definition 2 for f are satisfied on C ,
since f ∈ DConicn . In this case, C is the point set of the third and all the next
minima. The values of C have not been changed for g. Therefore, the conditions for
g are satisfied on C .

Case 2: p ∈ Z . The conditions from Definition 2 for f are satisfied on C , since f ∈
DConicn . The values of g have been changed only in the point z, so the conditions
for g are satisfied on C .

Case 3: p ∈ Y . In this case, the cone C is based on points of the set Y ∪ Z with the apex
p ∈ Y . The conditions from Definition 2 for g can be unsatisfied on C only on
points with values less than g(y). The last observation is true only for points of the
set Z , but the theorem’s condition (10) states that C ∩ Z = ∅.

By Corollary 1 of Theorem 3, we can expand the function g to the function ĝ ∈ Conicn ,
such that

dom(ĝ) = conv. hull(dom(g)),

MD
1 (ĝ) = M1(g) = Z .

The last fact gives the sufficiency condition for the functional F = F(Conicn, D).
Necessity. Suppose that the theorem’s condition (10) is not satisfied. The claim is to

construct a resolving set R f for f with the property R f ∩ Y = ∅. Let R f = D\Y . We
consider the function g ∈ dom(F), such that f and g have an equivalent order on points of
the set R f . Since the opposite condition of (10) holds, then there is a coneC , composed from
points of the set Y ∪ Z with an apex from Y , such that z ∈ C for some z ∈ Z . Suppose that
g(y) > g(x) for any x ∈ Z . Then, byDefinitions 1 and 2 of the classesConicn and DConicn ,
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we have g(z) ≥ g(y) > g(x) for any x ∈ Z . The last observation is a contradiction, because
z ∈ Z . Hence, we have g(y) ≤ g(x), for some x ∈ Z . The last fact means that

MD
1 ( f ) = Y ∩ MD

1 (g) = ∅.

Therefore, R f is a resolving set for f with the property R f ∩ Y = ∅. Hence, the function f
is singular.

The next corollary gives a simplified condition of the non-singularity.

Corollary 2 Let F = F(Conicn, D) or F = F(DConicn, D), and f ∈ dom(F). If
|MD

1 ( f )| = |MD
2 ( f )| = 1, or, in other words, the function f has unique points of the

first and second minima on D, then f is non-singular with respect to the functional F .

The following two lemmas are key lemmas to prove lower complexity bounds, which will
be presented in this work.

Lemma 2 Let F = F(F , D). Let T = {Ti } and G = { fi } be finite sequences of sets and
functions, such that Ti ⊆ dom( fi ) and fi ∈ dom(F) for any i ∈ 1 : |T |. Let, additionally,
the following minimality condition holds for any set Ti :

R is a resolving set for fi �⇒ Ti ⊆ R.

Then, τF ≥ log2 |T |.
Proof Let us show that all the functions from G are distinct. Indeed, if a pair fi , f j ∈ G
coincides for i = j , then their resolving sets Ti and Tj will coincide by the minimality
condition.

Let us consider an oracle algorithm A to solve the problem F . We are going to show the
existence of an injective map φ : T → P(A), where P(A) is the set of all paths from the
root to leaves of the algorithm A. Then the resulting estimate τF ≥ log2 |T | directly follows
from the binarity property of A.

Let us consider some function fi ∈ G . By Lemma 1, the set V (pi ) of all points that
the algorithm meats along the path pi ∈ P(A) on the input fi is resolving for fi . By the
minimality condition, Ti ⊆ V (pi ). After a mapping of each set Ti and each function fi to a
path pi we have the resulting function φ, which is, possibly, not injective. Let us show the
existence of an injective map of the same type. Suppose to the contrary that it does not exist.
Then there are sets Ti , Tj ∈ T , for some i = j , and a path p ∈ P(A), such that Ti ⊆ V (p)
and Tj ⊆ V (p). Moreover, there are no other paths p̂ ∈ P(A) with the property Ti ⊆ V ( p̂)
or Tj ⊆ V ( p̂). The last observation contradicts to the binarity property of A.

Let T ⊆ R
n , and

C f (T ) =
⋃

{cone(M |z) : M ∪ {z} ⊆ T , max
x∈M f (x) ≤ f (z)}. (11)

We assume that if |T | ≤ 1, then C f (T ) = ∅.
Lemma 3 Let D ⊆ R

n be a bounded discrete set, F = F(Conicn, D), R be a resolving set
for a function f ∈ dom( f ), and

Z = argmin{ f (x) : x ∈ D\C f (R)}.
If D\C f (R) = ∅, then Z ∩ R = ∅.

123



Journal of Global Optimization (2019) 73:761–788 775

Proof Suppose to the contrary that Z ∩ R = ∅. Let us define the function g : R ∪ {z} → R

as follows:

g(x) =
{

δ, for x = z
f (x), for x = z,

where δ < min{ f (x) : x ∈ D}. We are going to show that g ∈ DConicn . Assume that
T ∪ {p} ⊆ R ∪ {z} and g(x) ≤ g(p) for x ∈ T . Additionally, assume that all the points
in T ∪ {p} are in general position. The claim is to show that the conditions from Definition
2 of the class DConicn are satisfied for any T and p. In other words, for any x ∈ C =
cone(T |p)∩dom(g), we need to show that g(x) ≥ g(p). We consider the following possible
cases:

Case 1: f (p) > f (z) or z /∈ C ∪ T . Since f ∈ Conicn , the conditions from Definition 2
are satisfied for f . So, we have z /∈ C in both cases, and values of the functions f
and g coincide on C . Therefore, the conditions are satisfied for g on C too.

Case 2: f (p) ≤ f (z), z ∈ C . If p = z, then we do not have any restrictions on C , because
g(z) is the minimal value of the function g on D. If p = z, then the case is not
possible by the definition of Z .

Case 3: z ∈ T . Values of the functions f and g coincide onC . The conditions fromDefinition
2 are satisfied for g onC , because they are already satisfied for f due to the inclusion
f ∈ Conicn .

Now,we are going to show that the function g can be extended to the function ĝ ∈ Conicn ,
such that

dom ĝ = conv. hull(dom g),

ĝ(x) = g(x) for x ∈ dom(g).

By Theorem 3, it is possible if and only if ∀x ∈ dom(g)\{z}
H=
g (x) ⊆ rel. br( conv. hull(H≤

g (x)) ).

Since f ∈ Conicn , then, by Theorem 3, the last conditions are satisfied for the points
x ∈ dom(g), f (x) ≥ f (z). Suppose for the sake of contradiction that ∃y ∈ dom(g), such
that f (y) < f (z) and y ∈ rel. int( conv. hull(H≤

g (y)) ).
Since f ∈ Conicn , the last inclusion is not possible for f . Hence,

y ∈ rel. int(conv. hull(P, z))

for some subset P ⊆ H≤
f (y). Therefore, z ∈ cone(P|y) that contradicts to the definition of

Z .
Finally, we have the pair of functions f , ĝ ∈ Conicn , such that f (x) = ĝ(x) for any

x ∈ R, but MD
1 ( f ) ∩ MD

1 (ĝ) = ∅. The last statement contradicts to the fact that R is
resolving for f .

4 Lower bounds of oracle based complexity

In this section, we give lower comparison oracle-based complexity bounds for the following
optimization problems: minimization of a quasiconvex function on any discrete set, mini-
mization of a conic function on the set Bn∞(r) ∩Z

n , minimization of an even conic function
on the set Bn∞(r)∩Z

n\{0}. The same bounds hold for the minimization problems of discrete
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conic functions and even discrete conic functions. The classes of even conic functions and
discrete even conic functions are denoted by the symbols EvenConicn and EvenDConicn
respectively.

The result and a proof of the following theorem may have already been known. But,
we present a proof, because we can not give a correct reference and we want to make the
presentation more complete.

Theorem 5 Let M, D ⊆ R
n be a convex set and a discrete set, respectively, and F =

F(QConvn, M ∩ D). Then τF ≥ |M ∩ D| − 1.

Proof Let us consider the quasiconvex function fz : M → R that is equal to 1 everywhere,
except the point z ∈ M ∩ D, where the function is equal to 0. Let F be the set of such
functions. Clearly, |F | = |M ∩ D|. Any call of the comparison oracle for points from the
set M ∩ D separates the set F into two subsets: the first has the size 1, and the second one
has |M ∩ D| − 1 elements. Hence, we need at least |M ∩ D| − 1 oracle calls. Oracle calls in
points of the set M\D do not give any information about optimal points.

The last theorem gives that it is needed (2�r� + 1)n − 1 oracle calls to minimize a
quasiconvex function in the set Bn∞(r). Hence, it is not possible to build an oracle-based
minimization algorithm with a polynomial on n and r complexity.

4.1 Lower bounds for the class Conicn

Let r ≥ 1 and F denote the functional F(Conicn, Bn∞(r) ∩ Z
n) throughout this subsection.

We introduce a finite family Tn,r of sets T ⊆ Bn∞(r) ∩ Z
n and a finite family Hn,r

of functions hT : T → 0 : (3n − 1). For any T ∈ Tn,r , the function hT is a bijection
between T and 0 : (3n − 1). The family T1,r contains all 2r − 1 possible sets of the type
T = {i − 1, i, i + 1} for any |i | < r . If T = {i − 1, i, i + 1}, then we put h(i) = 0,
hT (i − 1) = 1 , and hT (i + 1) = 2. All possible functions hT , defined in this way, form the
family H1,r .

The family Tn,r is obtained from the family Tn−1,r in the following way. Let T [c] be the
set that is obtained from T by adding a new coordinate with the value c to each element of T .
In otherwords, T [c] = {(x, c) : x ∈ T }. For any integral i , satisfying to the inequality |i | < r ,
and for any triplet (T1, T2, T3) ∈ T 3

n−1,r , we construct a new triplet (T1[i−1], T2[i], T3[i+1])
and put T = T1[i − 1] ∪ T2[i] ∪ T3[i + 1]. All possible sets T that can be obtained in this
way form the family Tn,r . More formally,

Tn,r =
r−1⋃

i=−r+1

{T1[i − 1] ∪ T2[i] ∪ T3[i + 1] : for (T1, T2, T3) ∈ T 3
n−1,r }, (12)

where T [c] = {(x, c) : x ∈ T }.
For any T ∈ Tn,r , the function hT : T → R of the class Hn,r is defined in the following

way. Due to the formula (12), we have T = (T1[i − 1], T2[i], T3[i + 1]), for some triplet
(T1, T2, T3) ∈ T 3

n−1,r , and some value i , satisfying the inequality |i | < r . Then

hT (y) =
⎧⎨
⎩
3n−1 + hT1(x), for y = (x, i − 1),
hT2(x), for y = (x, i),
2 · 3n−1 + hT3(x), for y = (x, i + 1),

(13)
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Fig. 2 The element T = T1[i − 1] ∪ T2[i] ∪ T3[i + 1] (blue points) of the family T2,r built by the triplet
(T1, T2, T3) ∈ T 3

1,r , where T1 = {2, 3, 4}, T2 = {1, 2, 3}, T3 = {6, 7, 8} (green points). The values of the
function hT ∈ H2,r are drawn next to the blue points of T . (Color figure online)

where the functions hTk ∈ Hn−1,r , for any k ∈ 1 : 3, are defined inductively in the same
way. Figure 2 gives an example of a set T ∈ T2,r and a function hT ∈ H2,r defined on this
set.

Let us consider a set T ∈ Tn,r and the function h = hT ∈ Hn,r . Let the sequence
x (1), x (2), . . . , x (|T |) be formed by the points of T , sorted in increasing order of values of the
function hT on them. It follows from definition that the sequence x (1), x (2), . . . , x (|T |) has
the following property:

x (i) /∈ C f (x
(1), x (2), . . . , x (i−1)), for any 2 ≤ i ≤ |T |, (14)

where the set C f (·) is defined by the formula (11). The property (14) directly gives that
hT ∈ DConicn . Due to Corollary 1 and to Note 4 after Theorem 3, the function hT can be
extended to the function fT : Bn∞(r) → R of the class Conicn . The set of all functions,
obtained by this extension process, is denoted by Fn,r . Additionally, Corollary 2 states that
the functions hT and fT are non-singular with respect to the problem F .

Let us show that the families Tn,r andFn,r satisfy to the conditions of Lemma 2 and give
a way to estimate the value of τF .

Theorem 6 The inequality τF ≥ 3n−1 log2(2r − 1) is true, where F = F(Conicn, Bn∞(r) ∩
Z
n). The same result is true for the class DConicn.

Proof The formula for Tn,r gives the equality |Tn,r | = (2r − 1)|T(n−1),r |3, and we have

|Tn,r | = (2r − 1)
3n−1
2 . The claim is to show that the families Tn,r and Fn,r satisfy to the

conditions of Lemma 2. Assuming that it is true, we have the resulting inequalities:

τF ≥ log2 |Tn,r | ≥ 3n − 1

2
log2(2r − 1) ≥ 3n−1 log2(2r − 1).

Let R be a resolving set for fT with respect to the problem F . We will show that the
inclusion T ⊆ R holds. Since the function fT is non-singular, the minimum point of fT
is in R. The property (14) gives a possibility to use Lemma 3. Using this Lemma and the
induction principle, we conclude that T ⊆ R and the theorem follows.
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The problem G = F(DConicn, Bn∞(r) ∩ Z
n) is simpler than the problem F , because

oracle calls on non-integral points are allowed for the problem F . Hence, the same estimate
holds for τG .

4.2 Lower bounds for the class EvenConicn

Let r ≥ 1 and F be the functional F(EvenConicn, Bn∞(r) ∩ Z
n\{0}) until the end of this

subsection. The point 0 is removed from the optimization domain, because it is a trivial
minimum.

Analogously, we consider a finite family Tn,r of sets T ⊆ Bn∞(r) ∩ Z
n and a family

Hn,r of functions hT : T → 0 : (2n − 1). For any T ∈ Tn,r , the function hT is a bijection
between T and 0 : (2n − 1). The family T1,r contains all r − 1 possible sets of the type
T = {i, i + 1} for any 0 < i < r . If T = {i, i + 1}, then we put hT (0) = −1, hT (±i) = 0,
and hT (±(i + 1)) = 1. All possible functions hT , defined this way, form the family H1,r .

The family Tn,r is obtained from the family Tn−1,r in the following way. For any integral
i , satisfying to the inequality 0 < i < r , and for any pair (T1, T2) ∈ T 2

n−1,r , we a construct
new pair (T1[i], T2[i + 1]) and put T = T1[i] ∪ T2[i + 1]. All possible sets T that can be
obtained in this way form the familyTn,r . More formally,

Tn,r =
r−1⋃
i=1

{T1[i] ∪ T2[i + 1] : for (T1, T2) ∈ T 2
n−1,r }, (15)

where T [c] = {(x, c) : x ∈ T }.
For any T ∈ Tn,r , the function hT : T → R of the class Hn,r is defined in the following

way.Due to the formula (15),we have T = (T1[i], T2[i+1]), for somepair (T1, T2) ∈ T 2
n−1,r ,

and some value i , satisfying the inequality 0 < i < r . Then hT (0) = −1 and, for any y = 0,

hT (±y) =
{
hT1(x), for y = (x, i),
2n−1 + hT2(x), for y = (x, i + 1),

(16)

where the functions hTk ∈ Hn−1,r , for any k ∈ {1, 2}, are defined inductively in the same
way.

Let us consider a set T ∈ Tn,r and the function h = hT ∈ Hn,r . Let the sequence
x (1), x (2), . . . , x (|T |) be formed by the points of T , sorted by increasing values of the function
hT on them. It follows fromdefinition that the sequence x (1), x (2), . . . , x (|T |) has the following
property:

x (i) /∈ C f (0, x
(1), x (2), . . . , x (i−1)), for any 2 ≤ i ≤ |T |, (17)

where the set C f (·) is defined by the formula (11).
The property (17) directly gives that hT ∈ EvenDConicn . Due to Corollary 1 and to Note

4 after Theorem 3, the function hT can be extended to the function fT : Bn∞(r) → R of the
class EvenConicn . The set of all functions, obtained by this extension process, is denoted
byFn,r . Additionally, Corollary 2 states that the functions hT and fT are non-singular with
respect to the problem F .

Let us show that the families Tn,r andFn,r satisfy to the conditions of Lemma 2 and give
a way to estimate the value of τF .

Theorem 7 The inequality τF ≥ (2n − 1) log2(r − 1) is true, where F =
F(EvenConicn, Bn∞(r) ∩ Z

n\{0}). The same result is true for the class EvenDConicn.
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Proof The formula (15) gives the recurrence relation |Tn,r | = 2r |T(n−1),r |2, and we have
|Tn,r | = (r−1)2

n−1. The claim is to show that familiesTn,r andFn,r satisfy to the conditions
of Lemma 2. The resulting estimate directly follows from it.

Let R be the resolving set for fT with respect to the problem F . The claim is to prove the
inclusion T ⊆ R. Since the function fT is non-singular, the minimum point of fT is in R.
The property (17) gives a possibility to use Lemma 3. Using this Lemma and the induction
principle, we conclude that T ⊆ R and the theorem follows.

The problem G = F(EvenDConicn, Bn∞(r) ∩ Z
n\{0}) is simpler than the problem F ,

because oracle calls on non-integral points are allowed for the problem F . Hence, the same
estimate holds for τG .

5 Minimization of a conic function in a fixed dimension

In this section, we are going to construct an algorithm based on the comparison oracle for
the conic function integer minimization problem. We assume that an optimal integer point
contains in the ball Bn

2 (a, r), for some integral r ≥ 1. In our work, this problem is denoted
by F(Conicn, Bn

2 (a, r) ∩ Z
n). For the sake of simplicity, we also assume that a minimized

function f ∈ Conicn is defined in every point of Rn , e.g. dom( f ) = R
n .

Our algorithm uses ideas of seminal Lenstra’s paper [30], as well as algorithms [10,11,24,
35,37]. Algorithms of this type are referred to as Lenstra’s type algorithms. Ourminimization
procedure consists of two known ideas. The first idea is based on the concept of “flatness”
fromgeometry of numbers that is also known asKhinchine theorem [28]. If an initial ellipsoid
has a sufficiently small width, e.g. it is flat by some direction, then we can slice the ellipsoid
by relatively small amount of ellipsoids of a lower dimension along this direction. In the
opposite case, when the initial ellipsoid has a sufficiently large width, it contains an integral
point, andwe can apply the second idea. The second idea is the cutting plane technique started
from some initial ellipsoid containing an integral point, which gives us an ellipsoid of a lower
volume that contains an integral point too. Yudin and Nemirovskii [34,41] implemented this
idea for the convex continuous function minimization problem, assuming that the 0th order
oracle is given. We will apply the technique of Yudin and Nemirovskii for the comparison
oracle and conic functions.

Further, we will describe important ideas from geometry of numbers, following [24].

5.1 Lattice widths and the shortest vector problem

Finding flatness directions for branching on hyperplanes is the key technique of Lenstra’s
algorithm. To this end, we need to define the notion of a lattice width of a convex set.

Let P ⊆ R
n be a non-empty closed set and c ∈ R

n . Thewidth of P along c is the number

widthc(P) = max
x∈P

c�x − min
x∈P

c�x .

The lattice width of P is defined as

width(P) = min{widthc(P) : c ∈ Z
n\{0}},

any c that minimizes width(P) is called a flatness direction of P . Clearly, flatness directions
are invariant under translations and dilations.
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Theorem 8 (Khinchin’s flatness theorem [28]) Let P ⊆ R
n be a convex body. Either P

contains an integer point, or width(P) ≤ ω(n), where ω(n) is a constant depending on the
dimension only.

The currently best known bound for ω(n) is O(n4/3 logc n) [38] and it is conjectured that
ω(n) = 	(n) [5]. We will see next that, for the specific case of ellipsoids, we can obtain this
bound.

We write ellipsoids in the form E(A, a) = {x ∈ R
n : (x − a)�A�A(x − a) ≤ 1} = {x ∈

R
n : ||x − a||A�A ≤ 1}, where ||x ||B = √

x�Bx , A ∈ R
n×n is a non-singular matrix and

a ∈ R
n .

Note 6 Let c ∈ Z
n be a flatness direction for E = E(A, 0). Then for any β ∈ R, c is a

flatness direction for 1
β
E = E( 1

β
A, 0) with

1

β
width(E) = width(E(

1

β
A, 0)).

5.2 The shortest lattice vector problem (SVP) and the closest lattice vector problem
(CVP)

Let A ∈ Q
m×n and a ∈ Q

n , where m, n are positive integers. The SVP and CVP for the l2
norm can be formulated as follows, respectively:

min
x∈�(A)\{0} ||x ||2,
min

x∈�(A)
||x − a||2,

where �(A) = {At : t ∈ Z
n} is the lattice induced by columns of the matrix A.

Due to the papers [12,32] the SVP and the CVP are hard to approximate within a con-
stant factor and a factor nc/ log log n , respectively. The first polynomial-time approximation
algorithm for the SVP was proposed by Lenstra, Lenstra, and Lovász in [31]. Shortly after-
wards, Fincke and Pohst in [16,17], Kannan in [25,26] described the first exact SVP and
CVP solvers. Kannan’s solver has a computational complexity of 2O(n log n) in a dependence
on the dimension n. The first SVP and CVP solvers that achieve the complexity 2O(n) were
proposed by Ajtai, Kumar, Sivakumar [2,3], Micciancio and Voulgaris [33]. The previously
discussed solvers are used for the Euclidean norm. Recent results for general norms are pre-
sented in [7,10,11,15]. The paper of Hanrot, Pujol, Stehlé [21] gives a good survey and deep
analysis about SVP and CVP solvers.

Theorem 9 (Kannan [21,26]) There are deterministic nn/2+o(n) poly(size(A), size(a))-time
and poly(n, size(A), size(a))-space algorithms to solve the SVP and the CVP.

Theorem 10 (Micciancio and Voulgaris [21,33]) There are deterministic 22n+o(n)

poly(size(A), size(a))-time and 2n+o(n) poly(size(A), size(a))-space algorithms to solve the
SVP and the CVP.

Kannan firstly observed that the SVP could be used to minimize the number of branching
directions in his Lenstra’s type algorithm [25,26]. We follow Eisenbrand in presenting this
in the context of flatness directions [14].
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Note 7 For an ellipsoid, a flatness direction can be computed by solving the SVP over the
lattice �((A−1)�). To see this, consider the width along a direction c of the ellipsoid E =
E(A, 0):

widthc(E) = max
x∈E c�x − min

x∈E c�x

= max
x∈Bn

2 (1)
c�A−1x − min

x∈Bn
2 (1)

c�A−1x = 2||c�A−1||2.

Finding the minimum lattice width is then the SVP over the lattice �((A−1)�).

5.3 Results from geometry of numbers

In this subsection, we again follow [24]. Geometry of numbers produces a small bound on
the lattice width of an ellipsoid not containing an integer point. By considering our case of
ellipsoids, we can produce an O(n) bound. Using properties of LLL-reduced bases, Lenstra
originally observed that this value is not exceed 2O(n2) [30]. For an arbitrary lattice, the
product of the length of a shortest vector in a lattice and the covering radius of the dual
lattice is bounded by a constant f (n) depending only on the dimension. Using the Fourier
transform applied to a probability measure on a lattice, Banaszczyk showed that this function
is bounded by 1

2n.

Theorem 11 (Banaszczyk [4]) Let � ⊂ R
n be a lattice. Then SV (�)μ(�∗) ≤ f (n) ≤ 1

2n.

If we assume that a specific ellipsoid does not contain a lattice point, then the covering
radius of the associated lattice is greater than one. Since the lattice width of an ellipsoid is
simply twice the length of a shortest vector, we obtain the following inequality for ellipsoids.

Theorem 12 (Eisenbrand [14]) If E ⊂ R
n is an ellipsoid that does not contain an integer

point, then width(E) ≤ 2 f (n).

Thus a convenient bound follows directly from previous theorems.

Corollary 3 (Hildebrand and Köppe [24]) Let E ⊂ R
n be an ellipsoid that does not contain

an integer point, then width(E) ≤ n.

The paper [37] contains a very simple proof of the following lemma.

Theorem 13 (Oertel [37]) Let K ⊂ R
n be a bounded convex set. If vol(K ) < 1, then there

is a translation t ∈ R
n, such that (t + K ) ∩ Z

n = ∅.
Using results of Lemmas 3 and 13 we have the following corollary.

Corollary 4 Let E ⊂ R
n be an ellipsoid and vol(E) < 1, then width(E) ≤ n.

5.4 Cuts in ellipsoids based on the comparison oracle of a conic function

Starting from this moment, we follow [34, P. 342–348] and [41]. Let MI = M ∩Z
n , for any

set M ⊆ R
n .

Let a ∈ R
n and ||a||2 = 1, then the rotation cone around a ray a with an angle φ is denoted

by the symbol

C(a, φ) = {x ∈ R
n : (x, a) ≥ ||x ||2 cosφ}, for 0 ≤ φ ≤ π

2
.
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A cone C is said to be a φ-angle cone, if C(a, φ) is included to some translation of C , for
some a.

Lemma 4 (Yudin and Nemirovskii [34], p. 345) Let W = Bn
2 (r), a ∈ R

n and ||a||2 = 1.
If cosφ < 1/n, then the set W\C(a, φ) can be included to an ellipsoid with the volume

βn(φ) vol(W ) and the center −rγ (φ)a, where

γ (φ) = 1 − n cosφ

1 + n
,

β(φ) = 2(sin
φ

2
)
n−1
n (cos

φ

2
)
n+1
n

n( n−1
n+1 )

1
2n

√
n2 − 1

.

For φ = φn = arccos
( 1
2n

)
we have

β(φn) = 1 − dn
n2

, dn > 0,

lim
n→∞ dn = 1/8, γ (φn) = 1

2(n + 1)
.

Note 8 [Yudin and Nemirovskii [34], p. 345] The proposition of Lemma 4 is true if the value
ofβ(φn) is changed to β̂(φn) = 1

2 (1+β(φn)) and the coneC(a, φn) is moved to any position,
such that its apex is included to a ĝ(n)r -neighborhood of the center of W .

It was also noticed in [34] that ĝ(n) ≥ ĉ
n , where ĉ is absolute constant.

The proof of the following lemma is actually given in [34, p. 345], but we present a proof
based on our notation.

Lemma 5 Let W = Bn
2 (r) for some integral r ≥ 1, φn = arccos

( 1
2n

)
, f ∈ Conicn and

W ⊆ dom( f ). Then, there is a polynomial-time oracle-based algorithm that computes points
x (1), x (2), . . . , x (n+1) ∈ W , such that a cone C = cone(x (1), . . . , x (n)|x (n+1)) is a φn-angle
cone, 0 /∈ C and f (x) ≥ f (0), for any x ∈ C .

Proof Let S be a regular simplex inscribed to W and s(1), s(2), . . . , s(n+1) be the vertices of
S. Using a polynomial number of calls to the comparison oracle of f , we can find a maximal
vertex of S. Suppose that it is s(1). Let p(1) = s(1) be the apex of the regular pyramid P1
defined as follows: P1 has n + 1 faces and vertices, the height of P1 is collinear to the radius
vector p(1), the angles between the height and the faces are equal to φ, if v is vertex of P1,
then the radius vector v is orthogonal to the edge p(1) − v. Let us suppose that the apex p(1)

of the pyramid P1 has maximal value of the function f between all vertices of P1. Then, we
output the cone cone(V |p(1)), where V is the set of vertices of P1 except p(1). In the opposite
case, let p(2) = p(1) be the vertex of the pyramid P1 with the maximal value of f . In the
next step of our iterative process, we build a regular pyramid P2 with the apex p(2) by the
same rules as for P1. The iterative process finishes at the moment, when the apex p(k) of a
pyramid Pk becomes a vertex with a maximal value of the function f between other vertices
of Pk . After it we output the cone cone(V |p(k)), where V is the set of vertices of Pk except
p(k).

Let us show that the process is finite.Definitely, by the constructionwehave that ||p(k)||2 =
cosk(ψ)||p(1)||2 = cosk(ψ) r , where ψ is the angle between the height and edges emerging
from the apex p(k) of the pyramid Pk . Clearly, the size of cos(ψ) polynomially depends
on the size of cos(φn) = 1

2n . Hence, after a polynomial on n and r number of steps we
will have ||p(k)||2 ≤ 1

n r and p(k) ∈ S. By Note 2, the function f is quasiconvex, so,
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Fig. 3 An example for construction of the pyramids P1, P2, P3. The apexes are p(1), p(2), p(3), respectively,
the initial simplex is S (red), the angle between heights and faces of the pyramids is chosen to be equal π/3.
(Color figure online)

f (p(k)) ≤ f (s(1)) = f (p(1)). The last inequality contradicts to the fact that the sequence
f (p(k)) is strictly increasing.
It is needed to note that faces of the pyramid Pk can have irrational coefficients. So,we need

to round them to rational values with a sufficient accuracy. It can be easily done by choosing
the angle φ between the height and faces of Pk slightly bigger than φn = arccos

( 1
2n

)
.

Let us show that the cone C = cone(V |p(k)) satisfies to all of the required properties.
Clearly, by construction, C is φn-angle cone and 0 /∈ C , because the point 0 is always
included in the cone spanned by edges of the pyramid Pk , for each k. Let us show that
f (x) > f (0), for any x ∈ C . We can assume that k > 1, because in the opposite case the
property is trivial by the quasiconvexity of f . Since k > 1, we have p(k) /∈ S. By equivalent
definition of the class Conicn from Theorem 1, we have f (x) ≥ f (p(k)), for any x ∈ C .
Since f (p(k)) > f (p(1)) = f (s(1)), we have f (p(k)) > f (0), by the quasiconvexity of f .

Figure 3 is an illustration of the first three steps of this construction, when the pyramids
P1, P2, P3 are constructed. It can be shown that after two additional steps the final pyramid
will be included in S.

Lemmas 4, 5 give us the main tool to construct ellipsoids of a lower volume.

Corollary 5 Let W = Bn
2 (r) for some integral r ≥ 1, f ∈ Conicn and W ⊆ dom( f ).

Let, additionally, z ∈ Z
n and ||z||2 ≤ ĉ

2n r . Then there is a polynomial-time comparison
oracle-based algorithm to construct an ellipsoid E with the following properties:

(1) vol(E) = β̂(φn)
n
vol(W ), where the values φn , β̂(φn), ĉ are defined after Lemma 4;

(2) E ∩ MWI
1 ( f ) = ∅.

Proof Consider a ballG = Bn
2 (z, ĉ

2n r). Clearly,G ⊆ Bn
2 ( ĉn r). Using Lemma 5, we construct

a φn-angle cone C = cone(x (1), . . . , x (n)|x (n+1)), such that x (1), x (2), . . . , x (n+1) ∈ G,
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z /∈ C and f (x) ≥ f (z) for any x ∈ C . By Lemma 4 and Note 8 after it, we can inscribe the
set W\C into the desired ellipsoid E .

5.5 The conic function integer minimization algorithm

Since the class of conic functions is invariant under affine maps (see Sect. 2), we can assume
that the initial problem is defined in zero-centered Bn

2 (r) for some integral r ≥ 1.

Theorem 14 Let F = F(Conicn, Bn
2 (r) ∩ Z

n), for some integral r ≥ 1 and f ∈ Conicn
be a function defined everywhere on R

n. Then the problem F( f ) can be solved by
an algorithm with the bit-complexity Tbit (n, r) = 2O(n)n2n poly(log r) and the oracle-
complexity Toracle(n, r) = (2n2)n+O(1) log r . The space complexity of the algorithm is
2n+o(n) poly(log r).

Proof Consider the following algorithm:
Input: An ellipsoid W and the comparison oracle for the function f .
Output: A point from the set WI that minimizes values of f .
1: repeat
2: Construction of a scaled ellipsoid. Assuming that W = E(A, a), construct a scaled

ellipsoid Ŵ = E( ĉ
2n A, a).

3: Computing width and flat direction of W . Compute the width w and a flat direction
c ∈ Z

n of the ellipsoid Ŵ using Note 7 and Theorem 10.
4: α := max

x∈Ŵ
c�x and β := min

x∈Ŵ
c�x .

5: if w > n then
6: Find an integral point inside W . Compute z as a solution of the CVP in the lattice

Z
n with respect to the norm || · ||A�A using Theorem 10. Since Ŵ > n, then, by

Corollary 3, Ŵ ∩ Z
n = ∅, and we have z ∈ Ŵ .

7: Construct an ellipsoid of a lower volume thanW .After themap x → A−1x wehave
W → E(I , Aa), Ŵ → E( ĉ

2n I , Aa), z → A−1z and the comparison oracle of the
function f (x) transforms to an oracle for the function f (A−1x). Applying Corollary
5 to the ellipsoid E(I , Aa) and the point A−1z, we construct an ellipsoid E of the
volume β̂n(φn) vol(Bn

2 (1)) that contains the point A−1z. Suppose that E = E(B, b),
for B ∈ Q

n×n and b ∈ Q
n . After the reverse transform x → Ax and E → AE ,

we have the resulting ellipsoid E = E(BA, A−1b) of a lower volume than W that
contains the integral point z.

8: W := E (A := BA, a := A−1b).
9: until w > n.
10: Find an appropriate Z

n-lattice basis. Since the flat direction c is a primitive vector,
then we can compute a unimodular matrix Q in a polynomial time, such that c�Q = en .

11: for k ∈ Z : �β 2n
ĉ � ≤ k ≤ �α 2n

ĉ � do
12: Assuming that W = E(A, a), let Ŵ := E(AQ, Q−1a).
13: Recursion.Repeat the algorithmwith an ellipsoid Ŵ∩{x : xn = k} and the comparison

oracle for the function f

(
Q

(
x
k

))
.

To solve the initial problem, we need to run this algorithm with the input ellipsoid B =
Bn
2 (r) and the comparison oracle for the function f .
The algorithm is correct due to the following invariant statements:
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(1) Each time, when we construct an ellipsoid E of a lower volume in Step 7, we always
have E ∩ MBI

1 ( f ) = ∅, due to Lemma 5;
(2) In Step 13, if x ∈ W ∩ Z

n , then c�x = k, for some k ∈ Z, such that �β 2n
ĉ � ≤ k ≤

�α 2n
ĉ �. The last fact follows from the lattice width definition.
Let v be a volume of the initial ellipsoid E = E(A, a).
Let us discuss the data encoding in the algorithm. For the ellipsoid E = E(A, a) we

encode the matrix A in the form A = α Ā, where α ∈ Q and Ā ∈ Z
n×n , the same encoding

is true for the vector a. Then, size(A) = size(α) + n2 + ∑
i, j�log2(1 + | Āi, j |)�, where

size(α) = �log2(1 + |p|)� + �log2(1 + |q|)�, for α = p
q . Using this encoding, it can be

shown that the size of the matrix A and the vector a in the lines 7-8, 12 increases only
on an additive factor poly(n) and some constant multiplicative factor. We will show that the
algorithmhas poly(n) log v iterations in the lines 1−9, so, we have s′ = poly(n) log v+O(s),
where s = size(A) + size(a) is the initial ellipsoid size and s′ is the size before recursion in
the line 13.

Consider the time-complexity and the iterations number of the Repeat-Until cycle in the
lines 1-9.Due toLemma5, the volumeof the ellipsoidW decreaseswith a speedof a geometric
progression. Hence, after at most poly(n) log v iterations we will have vol(W ) < 1. Due to
Lemma 4, it gives that width(W ) ≤ n. So, the cycle in the lines 1-9 has at most poly(n) log v

iterations and the same number of calls to the oracle. The operations in the lines 2,4,7 can
be done in poly(n, s) time without calls to the oracle. Due to Note 7 and to Theorem 10,
the complexity of steps 3,6 is equivalent to the complexity of solving the SVP and the
CVP problems, which is 2O(n) poly(s) Therefore, the total bit-complexity of the cycle is
2O(n) poly(n, s) log v and the total oracle-complexity is poly(n) log v.

The unimodular matrix Q in Step 10 can be computed using any polynomial Hermite
Normal Form computation algorithm for the matrix consisted from only one line c�, see for
example [14] or [39]. Finally, the cycle in Steps 11-13 consists of at most 2n2

ĉ recursive calls
of the same algorithm.

Let T̂bi t (n, v, s) be the bit-complexity of the algorithm starting from an initial ellipsoid
E = E(A, a), such that v = vol(E) and s = size(A) + size(a). Then, the following
inequality holds

T̂bi t (n, v, s) ≤ 2O(n) poly(n, s) log v + 2n2

ĉ
T̂bi t (n − 1, v, s′),

where s′ = poly(n) log v + O(s). Hence, Tbit (n, v, s) = 2O(n)n2n poly(n, s, log v). Since

Tbit (n, r) = T̂bi t
(
n, rn vol(Bn

2 (1)), O(n2 + log r)
)
,

we have Tbit (n, r) = 2O(n)n2n poly(log r).
Let T̂oracle(n, v) be the oracle-complexity of the algorithm starting from an initial ellipsoid

E with the volume v. Then, we have

T̂oracle(n, v) ≤ poly(n) log(v) + 2n2

ĉ
T̂oracle(n − 1, r).

Since

Toracle(n, r) = T̂oracle
(
n, rn vol(Bn

2 (1))
)
,

we have Toracle(n, r) = (2n2)n poly(n) log r .
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Note 9 If it is critical to have a polynomial space-complexity constraint to solve the consid-
ered problem, then we can use the Kannan’s SVP and CVP solvers [25,26] instead of the
solvers of Micciancio and Voulgaris [33], see Theorems 9, 10. It gives

Tbit (n, r) = n2.5n+o(n) poly(log r),

the oracle-complexity Toracle(n, r) states the same.

5.6 Examples of concrete problems that can be expressed by conic functions

In this section, we show that integer minimization of a quasiconvex polynomial with quasi-
convex polynomial constraints can be expressed by the language of conic functions. Using
the result of Theorem 14, the last fact repeats the main result of the work [24] of Hildebrand
and Köppe.

Consider the problem

f (x) → min (18){
gi (x) ≤ 0, for i ∈ 1 : m,

x ∈ Bn
n (r) ∩ Z

n,

where f and gi be quasiconvex polynomials. It has been shown (see the problem (9)) that this
problem is equivalent to the problem F(h(x), Bn

2 (r) ∩ Z
n), where h(x) = ( (t(x))+, f (x) )

and t(x) = max{gi (x) : 1 ≤ i ≤ m}. The complexity of the lexicographical order ora-
cle for the function h(x) is O(m d M poly(n, log r)), where d and M are the maximal
degree and the number of monomials in a sparse encoding of the polynomials respectively.
Using the Theorem 14, we have an algorithm for the problem (18) with bit-complexity
2O(n)n2n m d M (log r)O(1), which repeats the main result of the paper [24].

Additionally, our tools can be helpful to design FPT-algorithms for some combinatorial
optimization problems. See papers [8,19] for details.

Let us present another example of a problem that can be expressed using this language.
Let a, b be two positive integers, the problem to compute Greatest Common Divisor (GCD)
of two integers can be formulated as follows:

|ax1 − bx2| → min (19){
x ∈ Z

2\{0} .

Clearly, the optimal point of this problem contains in the ball of the radius r = √
a2 + b2.

Since f (x) = |ax1 − bx2| is an even conic function, the GCD problem is equivalent to
the even conic function minimization problem. The paper [40] contains an algorithm for
such problems in the dimension 2 based on calls to the 0th order oracle with the orcle-based
complexity be O(log r). It can be shown that the algorithm of the paper [40], applied to the
GCD problem, give us complexity O(s2), for s be binary encoding length of input, which
matches the Euclid’s algorithm complexity.
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