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Abstract
In the present paper we construct an example of 4-dimensional flows on S3×S1 whose saddle periodic orbit
has a wildly embedded 2-dimensional unstable manifold. We prove that such a property has every suspension
under a non-trivial Pixton’s diffeomorphism. Moreover we give a complete topological classification of these
suspensions.
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1 Introduction and statement of results

Qualitative study of dynamical systems reveals various topological constructions naturally emerged in the
modern theory. For example, the Cantor set with cardinality of continuum and Lebesgue measure zero as an
expanding attractor or an contracting repeller. Also, a curve in 2-torus with an irrational rotation number, which
is not a topological submanifold but is an injectively immersed subset, can be found being invariant manifold of
the Anosov toral diffeomorphism’s fixed point.

Another example of linkage between topology and dynamics is the Fox-Artin arc [4] appeared in work by
D. Pixton [9] as the closure of a saddle separatrix of a Morse-Smale diffeomorphism on the 3-sphere. A wild
behaviour of the Fox-Artin arc complicates the classification of dynamical systems, there is no combinatorial
description as Peixoto’s graph [8] for 2-dimensional Morse-Smale flows.

It is well known that there are no wild arcs in dimension 2. They exist in dimension 3 and can be realized as
invariant sets for discrete dynamics, unlike regular 3-dimensional flows, which do not possess wild invariant sets.
The dimension 4 is very rich. Here appear wild objects for both discrete and continuous dynamics. Although
there are no wild arcs in this dimension, there are wild objects of co-dimension 1 and 2. So, the closure of
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Fig. 1 The phase portrait of a diffeomorphism of class P

Fig. 2 The phase portrait of a non-trivial diffeomorphism of class P

2-dimensional saddle separatrix can be wild for 4-dimensional Morse-Smale system (a diffeomorphism or a
flow). Such examples have been recently constructed by V. Medvedev and E. Zhuzoma [6]. T. Medvedev
and O. Pochinka [7] have shown that the wild Fox-Artin 2-dimension sphere appears as closure of heteroclinic
intersection of Morse-Smale 4-diffeomorphism.

In the present paper we prove that the suspension under a non-trivial Pixton’s diffeomorphism provides a
4-flow with wildly embedded 3-dimensional invariant manifold of a periodic orbit. Moreover, we show that
there are countable many different wild suspensions. In more details.

Denote by P the class of the Morse-Smale diffeomorphisms of 3-sphere S3 whose non-wondering set con-
sists of the fixed source α , the fixed saddle σ and the fixed sinks ω1, ω2. Class P diffeomorphism phase portrait
is shown in Figure 1.

As the Pixton’s example belongs to this class we call it the Pixton class. That example is characterized
by the wild embedding of the stable manifold W s

σ , namely its closure is not locally flat at α . We call such
diffeomorphism non-trivial (see Figure 2).

Let P t be a set of flows which are suspensions on Pixton’s diffeomorphisms. By the construction the
ambient manifold for every such flow f t is diffeomorphic to S3× S1 and the non-wandering set consists of
exactly four periodic orbits Oα , Oσ , Oω1 , Oω2 . Let W s

Oσ
denote stable manifold of the saddle orbit. In the

present paper we prove the following theorems.

Theorem 1. If W s
σ is a wild for f ∈P then W s

Oσ
is a wild for f t ∈P t .

Corollary 2. (Existence theorem) There is a flow f t with saddle orbit Oσ such that cl(W s
Oσ

) is wild.

Theorem 3. Two flows f t , f ′t ∈P t are topologically equivalent iff the diffeomorphisms f , f ′ ∈P are topolog-
ically conjugated.

The complete classification of diffeomorphisms from the class P has been done by Ch. Bonatti and V.
Grines [1]. They proved that a complete invariant for Pixton’s diffeomorphism is an equivalent class of the
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embedding of a knot in S2× S1. In section 4 we briefly give another idea to classify such systems. It was
described in [5] and led to complete classification on Morse-Smale 3-diffeomorphisms in [2].

Acknowledgement: The authors are partially supported by Laboratory of Dynamical Systems and Applica-
tions NRU HSE, of the Ministry of science and higher education of the RF grant ag. No. 075-15-2019-1931.
The auxiliary facts was implemented in the framework of the Basic Research Program at the National Research
University Higher School of Economics (HSE University) in 2019.

2 Auxiliary facts

2.1 Dynamical concepts

Diffeomorphism f : Mn→Mn of smooth closed connected orientable n-manifold (n≥ 1)Mn is called Morse-
Smale diffeomorphism ( f ∈MS(Mn)) if:

1. Non-wandering set Ω f is finite and hyperbolic;
2. Stable and unstable manifolds W s

p, W u
q intersect transversally for any periodic points p,q.

Two diffeomorphisms f , f ′ are called topologically conjugated if there exists a homeomorphism h : Mn→
Mn such that f h = h f ′.

Let f : Mn → Mn be a diffeomorphism. Let ϕ t be a flow on the manifold Mn×R generated by the unite
vector field parallel to R and directed to +∞, that is

ϕ
t(x,r) = (x,r+ t).

Let g : Mn×R→Mn×R be a diffeomorphism given by the formula g(x,r) = ( f (x),r−1). Let G = {gk, k ∈Z}
and W = (Mn×R)/G. Denote pW : Mn×R→W the natural projections. It is verified directly that gϕ t = ϕ tg.
Then the map f t : W →W given by the formula

f t(x) = pW (ϕ
t(p−1

W
(x)))

is a well-defined flow on W which is called the suspension of f .
When f ∈MS(Mn) the non-wandering set of the suspension f t consist of a finite number of periodic orbits

composed by pW (Ω f ×R). The obtained flow is so-called non-singular, what means it has no singular points.
Two flows f t , f ′t are called topologically equivalent if exists a homeomorphism h : W →W which maps the

trajectories of f t to trajectories of f ′t and preservs orientation on the trajectories.

2.2 Topological concepts

A closed subset X of a PL-manifold N is said to be tame if there is a homeomorphism h : N→ N such that
h(X) is a subpolyhedron; the other are called wild.

For example, Fox-Artin arc is wild (see [4]).
Let A be a closed subset of a metric space X . A is called locally k-co-connected in X at a ∈ A (k-LCC at a)

if each neighbourhood U of a in X contains a smaller neighbourhood V of a such that each map ∂ Ik+1→V \A
extends to a map Ik+1→U \A.

We say that A is locally k-co-connected (k-LCC in X) if A is k-LCC at a for each a ∈ A.
For example, Fox-Artin 2-sphere is not 1-LCC (see Exercise 2.8.1 [3]).
Let e : Mm→Nn be a topological embedding of m-dimensional manifold Mm with a boundary in n-manifold

Nn (n≥ m). e is called locally flat at x ∈Mm (and e(Mm) is locally flat at e(x)) if there exist a neighbourhood
U of e(x) ∈ Nn and a homeomorphism h of U onto Rn such that:

(1) h(U ∩ e(Mm)) = Rm ⊂ Rn when x ∈ int Mm or
(2) h(U ∩ e(Mm)) = Rm

+ ⊂ Rn when x ∈ ∂Mm.
Since tameness implies local flatness for embeddings of manifolds in all co-dimensionals except two, we

will say that e : Mm→ Nn,m 6= n−2 is wild at e(x) when e(Mm) is fails to be locally flat at e(x).
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Fig. 3 The complete invariants for trivial and non-trivial Pixton’s diffeomorphisms

Proposition 4 (Proposition 1.3.1 [3]). Suppose the manifold Mn−1 is locally flatly embedded in the n-manifold
Nn. Then Mn−1 is k-LCC in Nn for all k ≥ 1.

Proposition 5 (Proposition 1.3.6 [3]). Suppose Y is a locally contractible space and A ⊂ X. Then A is k-LCC
in X iff A×Y is k-LCC in X×Y .

Notice that any manifold is a locally contractible space.

3 Wildness of the stable manifold of the saddle periodic orbit for the suspension

Proof of Theorem 1.
Let f be a non-trivial Pixton’s diffeomorphism. Then the closure of the stable manifold W s

σ of the saddle
point σ is a wild 2-sphere in S3 and it is not 1-LCC at a source α . By the construction the circle σ × S1 in
S3× S1 coincides with the saddle periodic orbit Oσ for the suspension f t of the diffeomorphism f . Moreover,
the closure of stable separatrice W s

Oσ
of Oσ coincides with cl(W s

σ )×S1 and it is a 3-manifold homeomorphic to
S2×S1. Due to Proposition 5 the set cl(W s

Oσ
) is not 1-LCC in S3×S1. Thus, by Proposition 4, W s

Oσ
is wild.

4 Topological classification of suspensions

Firstly we give a brief idea of the topological classification of diffeomorphisms from class P .

4.1 Classification of diffeomorphisms from P

Let f ∈P and Vf = W u
α \α . Denote by V̂f the orbit space with respect to f in Vf and by p f : Vf → V̂f

the natural projection. According to [5], the space V̂f is diffeomorphic to S2× S1 and the projection p f is a
covering map which induces an epimorphism η f : π1(V̂f )→ Z. Let L̂s

f = p f (W
s
σ \σ). According to [5], L̂s

f is a
homotopically non-trivial 2-dimensional torus in V̂f (see Figure 4).

Proposition 6 (Theorem 4.5 [5]). Diffeomorphisms f , f ′ ∈P are topologically conjugated iff the tori L̂s
f , L̂

s
f ′

are equivalent (that is there is a homeomorphism ĥ : V̂f → V̂f ′ such that ĥ(L̂s
f ) = L̂s

f ′ and η f = η
f ′ ĥ∗).

4.2 Proof of the sufficiency of Theorem 3

Let f , f ′ ∈P . Recall the notion of the suspensions of f , f ′.
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Let ϕ t be a flow on the manifold S3×R generated by the unite vector field parallel to R and directed to +∞,
that is

ϕ
t(x,r) = (x,r+ t).

Let g,g′ : S3×R→ S3×R be diffeomorphisms given by the formulas g(x,r) = ( f (x),r−1), g′(x,r) = ( f ′(x),r−
1). Let G = {gk, k ∈ Z}, G′ = {g′k, k ∈ Z} and W = (S3×R)/G,W ′ = (S3×R)/G′. Since f , f ′ preserve
orientation of S3, W,W ′ are diffeomorphic to S3×S1. Denote pW : S3×R→W, p

W ′ : S3×R→W ′ the natural
projections. It is verified directly that gϕ t = ϕ tg, g′ϕ t = ϕ tg′. Then maps f t : W →W, f ′t : W ′ →W ′ given
by the formulas f t(x) = pW (ϕ

t(p−1
W

(x))), f ′t(x) = p
W ′ (ϕ

t(p−1
W ′

(x))) are well-defined flows on W,W ′ which are
called the suspensions of f , f ′, respectively, that is f t , f ′t ∈P t .

Now let f , f ′ ∈P be topologically conjugate by the homeomorphism h : S3→ S3. Define a homeomorphism
H̃ : S3×R→ S3×R by the formula

H̃(x,r) = (h(x),r), (x,r) ∈ S3×R.

Directly verifies that H̃g = g′H̃, then H̃ can be projected as a homeomorphism H : W →W ′ by the formula

H = p
W ′ H̃ p−1

W
.

Since H̃ϕ t = ϕ ′tH̃, then H f t = f ′tH. Thus H is a required homeomorphism which realizes an equivalency of
the suspensions f t and f ′t .

4.3 Proof of necessity of Theorem 3

Let suspensions f t , f ′t be topologically equivalent by means of a homeomorphism H : S3× S1 → S3× S1.
Let us prove that then the diffeomorphisms f , f ′ are topologically conjugate.

For this aim recall that the diffeomorphisms f , f ′ in the basins of sources α,α ′ are topologically conjugate
by homeomorphisms hα : W u

α →R3, hα ′ : W u
α ′ →R3 with the linear extension a : R3→R3 given by the formula

a(x1,x2,x3) = (2x1,2x2,2x3).

Let Sr = {(x1,x2,x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 2r,r ∈ R}, Sr

α = h−1
α (Sr) and Sr

α ′ = h−1
α ′ (S

r). Define cylinders
Σ̃, Σ̃′ ⊂ S3×R by the formulas

Σ̃ = {(x,r) ∈ S3×R : x ∈ Sr
α ,r ∈ R}, Σ̃

′ = {(x,r) ∈ S3×R : x ∈ Sr
α ′ ,r ∈ R}.

It follows from the definition of suspension that Σ̃, Σ̃′ are sections for trajectories of ϕ t , ϕ ′t passing through
Vϕ t ,Vϕ ′t , where Vϕ t = W u

Oα
\Oα and Vϕ ′t = W u

O
α ′
\Oα ′ and W u

Oα
,W u

O
α ′

are unstable manifolds of orbits Oα ,Oα ′

of flows ϕ t , ϕ ′t respectively. Let Vf t = W u
Oα

,Vf ′t = W u
O

α ′
. Then Σ = pW (Σ̃), Σ′ = p

W ′ (Σ̃
′) are homeomorphic to

S2×S1 and are sections for trajectories of flows f t , f ′t in Vf t ,Vf ′t , respectively.
Since H realizes an equivalence of the flows f t , f ′t then H(Σ) is also a section for trajectories of the flows

f ′t in Vf ′t . Thus we can get Σ′ from H(Σ) by a continuous shift along the trajectories, that is there is a home-
omorphism ψ : Vf ′t → Vf ′t which preserves the trajectories of f ′t in Vf ′t and such that ψ(H(Σ)) = Σ′. Let
hΣ = ψH|Σ : Σ→ Σ′.

Then the homeomorphism hΣ has a lift h
Σ̃

: Σ̃→ Σ̃′ which is a homeomorphism such that hΣ = p
W ′hΣ̃

p−1
W

. Let
us introduce the canonical projection q : S3×R→ S3 by the formula q(x,r) = x and define a homeomorphism
h : Vf →Vf ′ by the formula

hq|
Σ̃
= qh

Σ̃
.

By the construction the homeomorphism h conjugates f |Vf with f ′|Vf ′ . Since H(W s
Oσ

) =W s
O

σ ′
then h(W s

σ \σ) =

W s
σ ′ \σ ′. Let us define a homeomorphism ĥ : V̂f → V̂f ′ by the formula

ĥp f = p
f ′h.
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Fig. 4 The vector field and Σ̃ on S3×R

Then ĥ(L̂s
f ) = L̂s

f ′ and η f = η
f ′ ĥ∗. Thus, by Proposition 6, the diffeomorphisms f , f ′ are topologically conju-

gated.
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