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1 Introduction

In the seminal paper [38] Seiberg and Witten found ‘exact solution’ to 4d N = 2 super-

symmetric gauge theory in the strong coupling regime. More strictly, the IR effective cou-

plings were constructed geometrically, from the period integrals on a complex curve, whose

moduli are determined by the condensates and bare couplings of the UV gauge theory.

Shortly after, it has been also realized [21] that natural language for the Seiberg-Witten

theory is given by classical integrable systems. In such context the pure supersymmetric

gauge theories (with only N = 2 vector supermultiplets) correspond to the Toda chains,

while integrable systems for the gauge theories with fundamental matter multiplets are

usually identified with classical spin chains of XXX-type.

– 1 –



J
H
E
P
1
0
(
2
0
1
9
)
1
0
0

The next important step was proposed in [37], where this picture has been lifted to

5d. Then it has been shown that transition from 4d to 5d (actually — four plus one

compact dimensions) results in ‘relativization’ of the integrable systems [30] (in the sense

of Ruijsenaars [36]). In the simplest case of SU(2) pure Yang-Mills theory, or affine Toda

chain with two particles, instead of the Hamiltonian

H4d = p2 + eq + Ze−q, (1.1)

corresponding to 4d theory, one has to consider

H5d = ep + e−p + eq + Ze−q, (1.2)

or the Hamiltonian of relativistic Toda chain, which describes effective theory for 5d pure

SU(2) Yang-Mills.1 It has been also shown that 5d theories with fundamental matter

correspond to XXZ-type spin chains (see e.g. [28] and references therein).

Relativistic Toda chains lead to natural relation of this story with the integrable sys-

tems on the Poisson submanifolds in Lie groups, or more generally to the cluster integrable

systems — recently discovered class of integrable systems of relativistic type [13, 17, 26].

Direct relation between cluster integrable systems and 5d gauge theories has been proposed

in [1]. It was shown there that for the case of Newton polygons with single internal point,

dynamics of discrete flow is governed by q-Painlevé equations and their bilinear form is

solved by Nekrasov 5d dual partition functions (for other examples of 5d gauge theories

the same phenomenon was considered in [2, 3, 24]).2

Cluster integrable systems. Any convex polygon ∆ with vertices in Z2 ⊂ R2 can be

considered as a Newton polygon of polynomial f∆(λ, µ), and equation

f∆(λ, µ) =
∑

(a,b)∈∆

λaµbfa,b = 0 (1.3)

defines a plane (noncompact) spectral curve in C××C×. The genus g of this curve is equal

to the number of integral points strictly inside the polygon ∆.

According to [13, 17] a convex Newton polygon ∆, modulo action of SA(2,Z) =

SL(2,Z) n Z2, defines a cluster integrable system, i.e. an integrable system on X-cluster

Poisson variety X of dimension dimX = 2S, where S is area of the polygon ∆. The Poisson

structure can be encoded by quiver Q with 2S vertices. Let εij be the number of arrows

from i-th to j-th vertex (εji = −εij) of Q, then logarithmically constant Poisson bracket

has the form

{xi, xj} = εijxixj , {xi} ∈
(
C×
)2S

. (1.4)

1The slightly misleading term ‘relativistic’ appears here due to formal similarity of momentum depen-

dence to the rapidities of a massive relativistic particle in 1 + 1 dimensions.
2Other relations between 5d supersymmetric gauge theories and cluster integrable systems (involving

exact spectrum of quantized cluster integrable systems, BPS counting and toric Calabi-Yau quantization)

were discussed in [15, 19, 35] correspondingly. They seem to be related to our case and we are going to

return to these issues elsewhere.
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The product of all cluster variables
∏
i xi is a Casimir for the Poisson bracket (1.4). Setting

it to be
q =

∏
i

xi = 1 (1.5)

and fixing values of other Casimirs, corresponding to the boundary points of Newton poly-

gon I ∈ ∆̄ (their total number is B−3, since equation (1.3) is defined modulo multiplicative

renormalization of spectral parameters λ, µ and f∆(λ, µ) itself), one obtains symplectic leaf.

The properly normalized coefficients, corresponding to the internal points, are integrals

of motion in involution

{fa,b(x), fc,d(x)} = 0, (a, b), (c, d) ∈ ∆ (1.6)

w.r.t. the Poisson bracket (1.4). By Pick theorem one has

2S − 1 = (B − 3) + 2g (1.7)

where g is the number of internal points (or genus of the curve (1.3)), or the number of

independent integrals of motion. So the number of independent integrals of motion is half

of the dimension of symplectic leaf, and the system is integrable. One of distinguished

features of the cluster integrable systems is that their integrals of motion are the Laurent

polynomials of (generally — fractional powers) in the cluster variables.

There are several different ways to get explicit form of the spectral curve equation (1.3):

• Compute the dimer partition function (with signs) for a bipartite graph on a torus.

One possible form of it is a characteristic equation

detD(λ, µ) = 0 (1.8)

for the Kasteleyn-Dirac operator on a bipartite graph Γ ⊂ T2, depending on two

‘quasimomenta’ λ, µ ∈ C×;

• Alternatively, one can get the same equation (1.3) as a Lax-type equation of a spectral

curve, with the Lax operator coming from affine Lie group construction, identifying

cluster variety with a Poisson submanifold in the co-extended affine group.

Short exposition of the first construction of cluster integrable system, relevant for this

paper, is contained appendix B.

Classical integrable chains. Integrability of classical glM chains of XXZ type is based

on the that their M ×M Lax matrices satisfy the following classical RLL relation

{L(λ)⊗ L(µ)} = κ[r(λ/µ), L(λ)⊗ L(µ)] (1.9)

with the classical (trigonometric) r-matrix3

r(λ) = −λ
1/2 + λ−1/2

λ1/2 − λ−1/2

∑
i 6=j

Eii ⊗ Ejj +
2

λ1/2 − λ−1/2

∑
i 6=j

λ−
1
2
sijEij ⊗ Eji. (1.10)

3See details of derivation of Lax matrix from quantum algebra and notations in appendix A.
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Figure 1. From left to right Newton polygons for: Toda chain on three sites, gl2 XXZ spin chain

on three sites, gl2 spin chain on three sites with cyclic twist matrix.

A classical chain of trigonometric type can be defined by the monodromy operator

T (µ) = LN (µ/µN ) . . . L1(µ/µ1) ∈ End(CM ) (1.11)

where M is called ‘rank’ of the chain. Integrability is guaranteed by classical RTT-relation

{T (λ)⊗ T (µ)} = κ[r(λ/µ), T (λ)⊗ T (µ)] (1.12)

for the monodromy operator that follows from (1.9), and gives rise to the integrals of

motion, which can be extracted from the spectral curve equation (1.3) given explicitly by

the formula

f∆(λ, µ) = det(λQ− T (µ)) = 0 (1.13)

where Q — diagonal twist matrix with the constant entities. Relativistic Toda system can

be considered as certain degenerate case of generic XXZ chain of rank M = 2 (of length N

for N particles).

Examples of Newton polygons. In what follows we mostly consider cluster integrable

systems, corresponding to the Newton polygons of the following types:

• Quadrangles with four boundary points, where all internal points are located along

the same straight line, as on figure 1, left. This is the case of relativistic Toda chains,

studied in [1]. The corresponding gauge theory is 5d N = 1 Yang-Mills theory with

SU(N) gauge group (for N − 1 internal points) without matter multiplets, possibly

with the Chern-Simons term of level |k| ≤ N — in such case quadrangle is not a

parallelogram.

• “Big” rectangles (modulo SA(2,Z) transform). For the N×M rectangle (see figure 1,

center) this can be alternatively described as a glN spin chain on M sites (cf. with [4]),

or vice versa. The corresponding 5d gauge theories are given by linear quivers theories

with the SU(N) gauge group at each of M − 1 nodes: see figure 2.

• “Twisted rectangles”, or just the parallelograms, which are not SA(2,Z)-equivalent

to the previous class (see figure 1, right), they can be alternatively formulated as spin

chains with nontrivial twists. Gauge theory counterpart for this class of polygons is

not yet known, except for the twisted glN chain on one site, leading back to the basic

class of Toda chains.
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SU(N)i−1SU(N)1

mf

Figure 2. Linear quiver which defines multiplets for N = 1 gauge theory. Circles are for gauge

vector multiplets, boxes are for hypermultiplets.

For all these families the spectral curve of an integrable system, determined by equa-

tion (1.3) is endowed with a pair of meromorphic differentials
(
dλ
λ ,

dµ
µ

)
with the fixed

2πiZ-valued periods. One can also use this pair to introduce (the SL(2,Z)-invariant for

our family) 2-form dλ
λ ∧

dµ
µ on C××C×, whose ‘pre-symplectic’ form is the SW differential.

Structure of the paper. The main aim is to extend the correspondence between 5d

theories and cluster integrable systems to wider class of models. We find isomorphism

between the classes of glN XXZ-like spin chains on M sites, corresponding to 5d SU(N)

linear quiver gauge theories (see figure 2) [4], and cluster integrable systems with N ×M
rectangular Newton polygons.

We start from the brief overview of classical XXZ spin chains. We illustrate with

the simple example of relativistic Toda chain, how Lax operators naturally arise from the

Dirac-Kasteleyn operator of cluster integrable system. Then we do this for the general case

of XXZ spin chain of arbitrary length and rank. Spectral (or fiber-base) duality arises as

an obvious consequence of the structure of considered bipartite graph. Spin chains with

additional cyclic permutation twist matrix arise in the cluster context naturally as well.

Then we explain structure of large subgroup of cluster mapping class group GQ. We

show that in case of general rank and length of chain it contains subgroup (4.1) which

act in autonomous q = 1 limit by permutations of inhomogeneities and diagonal twist

parameters of spin chain. We also discuss issue of deautonomization and propose a way to

define action of GQ on zig-zags in q 6= 1 case. Then we derive bilinear equations for the

action of generators of GQ on A-cluster variables.

2 Spin chains

2.1 Relativistic Toda chain

Let us start with the case of relativistic Toda chain, which is known to be related to

Seiberg-Witten theory in 5d without matter [30]. Relativistic Toda chains arise naturally

on Lie groups [12], and therefore have cluster description. A typical bipartite graph of affine

relativistic Toda is shown in figure 3. For the Toda system with N particles it has 2N

vertices, 4N edges and 2N faces. Corresponding Newton polygon is shown in figure 1, left.

The cluster Poisson bracket (1.4) for the Toda face variables is

{x×i , x
×
j } = {x+

i , x
+
j } = 0, {x×i , x

+
j } = (δi,j+1 + δi+1,j − 2δi,j)x

×
i x

+
j , i, j ∈ Z/NZ (2.1)

– 5 –
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Figure 3. Left: bipartite graph for the Toda chain. Center, right: zig-zag paths α, β, γ, δ.

where in the non-vanishing r.h.s. one can immediately recognize the Cartan matrix of ŝlN .

This Poisson bracket has obviously two Casimir functions, which can be chosen, say, as4

q =
∏
j

(x×j x
+
j ), κ1/κ2 =

∏
j

x+
j . (2.2)

However, in what follows we are going to use the edge variables (see appendix B for

details), which do not have any canonical Poisson bracket, e.g. since they are not gauge

invariant, when treated as elements of C×-valued gauge connection on the graph. Hence,

following [26], we fix the gauge and parameterize all edges by 2N exponentiated Darboux

variables ξk, ηk
{ξi, ηj} = δijξiηj , {ξi,κa} = {ηi,κa} = 0, (2.3)

so that the face variables are expressed, as a products of oriented edge variables (see figure 3,

left) by

x×i =
ξi+1

ξi
(κ2/κ1)δiN , x+

i =
ηi
ηi+1

(κ1/κ2)δiN . (2.4)

In terms of the edge variables (2.3) the monodromies over zig-zag paths (see figure 3,

middle, right) can be expressed as follows

α = ζ/κ1, β = κ2/ζ, γ = κ1ζ, δ = 1/κ2ζ, ζ =

N∏
k=1

√
ξk
ηk
. (2.5)

In the autonomous limit q = 1, there is a single independent Casimir — diagonal twist

of monodromy operator κ1/κ2 or coupling of the affine Toda chain. Reduction from four

zig-zags α, β, γ, δ to single Casimir κ1/κ2 is a reminiscence of the freedom λ→ aλ, µ→ bµ

and the fact that αβγδ = 1.

The Dirac-Kasteleyn operator here can be read of the left picture at figure 3, and is

given by N ×N matrix:5

D(λ, µ) =
N∑
i=1

(
(ξi + µ−1ηi)Eii − κδiN1

√
ξiηiEi,i+1 + κ−δiN2 µ−1

√
ξiηiEi+1,i

)
(2.6)

4Only the ratio of κ’s is actually independent Casimir, but we introduce both of them for convenience

in what follows.
5The spectral parameters or quasimomenta λ and µ appear due to intersection of the edge with the blue

and purple cycles in H1(T2,Z), and minuses arise due to discrete spin structure.
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Figure 4. Extended and deformed bipartite graph for the Toda chain.

where we have additionally defined

EN,N+1 = λEN,1, EN+1,N = λ−1E1,N (2.7)

and it almost coincides here [9] with the standard N ×N formalism for the spectral curve

of relativistic Toda chain

det D(λ, µ) = 0 ⇔ ∃ D(λ, µ)ψ = 0 (2.8)

with Baker-Akhiezer function ψ ∈ CN .

Now, to illustrate what is going to be done for the spin chains, let us rewrite this

equation in terms of the well-known 2 × 2 formalism for Toda chains, but not quite in

a standard way. In order to do that, we first add an additional black (white) vertex

to each top (bottom) edge in left figure 3, and draw it in deformed way as in figure 4.

Such operation obviously does not change the set of dimer configurations, and new dimer

partition function differs from the old one only by total nonvanishing factor.

The Dirac-Kasteleyn matrix, read from the figure 4, can be written in the block form

D(λ, µ) =
N∑
i=1

(
Eii ⊗Ai + Ei,i+1 ⊗ CiQδi,N

)
=

=
N∑
i=1

(
(ξi + µ−1ηi)Eii ⊗ E11 + Eii ⊗ E12 +

√
ξiηiEii ⊗ E21−

−κδi,N1

√
ξiηiEi,i+1 ⊗ E11 − µκ

δi,N
2 Ei,i+1 ⊗ E22

)
(2.9)

with

Ai =

(
ξi + µ−1ηi 1√

ξiηi 0

)
, Ci =

(
−
√
ξiηi 0

0 −µ

)
, Q =

(
κ1 0

0 κ2

)
. (2.10)

The first factor in the tensor product corresponds to the number of the particle (or of the

‘site’), arising naturally in the framework of 2 × 2 formalism for Toda systems and spin

chains below, while the second — to position of a vertex inside the ‘site’. For the ‘extended’

– 7 –
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(compare to (2.6)) operator (2.9) one gets the same equation (2.8), but now with ψ ∈ C2N ,

which can be written as:

ψ =
N∑
i=1

ei ⊗

(
ψi,1
ψi,2

)
=

N∑
i=1

ei ⊗ ψi. (2.11)

For the coefficients of this expansion (2.8) gives{
ψk+1 = Lk(µ)ψk

ψN+1 = λQψ1

(2.12)

or the system of finite-difference equations on Baker-Akhiezer functions with the quasi-

periodic boundary conditions, where the 2 × 2 Lax matrix

Li(µ) = −C−1
i (µ)Ai(µ) = µ−

1
2

 µ
1
2

√
ξi
ηi

+ µ−
1
2

√
ηi
ξi

µ
1
2√
ηiξi

µ−
1
2
√
ξiηi 0

 (2.13)

is equivalent to the standard Lax matrix for relativistic Toda chain (see e.g. [26]) up to

conjugation by permutation matrix, and redefinition of the variables

ξ 7→ η, η 7→ ξ−1, µ 7→ µ−1. (2.14)

This Lax operator satisfies classical RLL relation

{Li(λ)⊗ Lj(µ)} = δij [r(λ/µ), Li(λ)⊗ Lj(µ)] (2.15)

with the classical (trigonometric) r-matrix (1.10).6 Compatibility condition of (2.12) gives

spectral curve equation in the form

det(λQ− LN (µ) . . . L1(µ)) = 0 (2.16)

where Q = diag(κ1,κ2) is extra twist matrix,7 and inhomogeneities {µi}, which appear in

the case of generic XXZ chain, are absorbed here into redefinition of dynamical variables.

2.2 Spin chains of XXZ type

Let us now apply the same arguments, which we used for the Toda chain, to the following

class of chains: the rank M chains on N cites of XXZ-type, which means that the Poisson

structure (2.15) is defined by trigonometric r-matrix. Such systems naturally arise in

q → 1 limit of Uq(glM ), see appendix A. We claim that such classical spin chain can be

alternatively described as cluster integrable systems, constructed from ‘big rectangles’ of

the size N ×M .

For a cluster integrable system with such Newton polygon (see figure 5, left) one gets

a bipartite graph, drawn at figure 6. According to [17] this graph is drawn on torus T2, i.e.

left side is glued with the right side, and top — with the bottom, we will call such graphs

as N ×M ‘fence nets’.

6Up to numeric rescaling, see appendix A for discussion.
7Note that constant diagonal matrices Q satisfy [r,Q ⊗ Q] = 0, and therefore can be also used in

construction of monodromy operators.
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x+
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x+
22

x×22
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31
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32
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Figure 5. Left: Newton polygon for (N,M) = (3, 2). Zig-zags from figure 6 as elements of torus

first homology group are drawn by colored arrows. Right: Poisson quiver. It is drawn on the torus,

so vertices lying on left-right and up-down sides have to be identified.

The cluster coordinates x×ia, x
+
ia, now associated with the faces of graph at figure 6,

satisfy the following Poisson bracket relations

{x×ia, x
+
jb} = (−δijδab + δi,j+1δab + δijδa+1,b − δi,j+1δa+1,b)x

×
iax

+
jb,

{x×ia, x
×
jb} = {x+

ia, x
+
jb} = 0, i, j ∈ Z/NZ, a, b ∈ Z/MZ

(2.17)

with two kinds of indices living ‘on circles’: i, j enumerating rows of bipartite graph and

a, b enumerating columns. Corresponding quiver is drawn at figure 5, right. As in Toda

case, ‘fixing’ a gauge, we pass now to the edge variables

x×ia =
η2
ia

ξ2
ia

, x+
ia =

ξiaξi+1,a−1

ηi+1,aηi,a−1
(σi+1/σi)

δa,1(κa−1/κa)δi,N (2.18)

with the Poisson bracket

{ξia, ηjb} =
1

2
δijδabξiaηjb, i, j ∈ Z/NZ, a, b ∈ Z/MZ . (2.19)

Extra parameters in (2.18) are the Casimir functions of the bracket (2.17), together with

ζhi =

M∏
b=1

ξib
ηib
, ζva =

N∏
j=1

ξja
ηja

, {x×, ζh,v} = {x+, ζh,v} = 0. (2.20)

It is useful to re-express them via the zig-zag variables (see the zig-zag paths on figure 6,

middle and right)

αi = σi/ζ
h
i , βi = 1/ζhi σi, i = 1, . . . , N

γa = ζva/κa, δa = ζvaκa, a = 1, . . . ,M .
(2.21)

– 9 –
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These formulas relate convenient generators of the center of cluster Poisson algebra with

inhomogeneities {µk = 1/σkζ
h
k = βk}, twists {κa}, ‘on-site’ Casimirs ζhi = (αiβi)

1
2 and

‘projections of spins’8 ζva = (γaδa)
1
2 of the chain.

Our main statement here is that the classical spin variables (for definition see ap-

pendix A) associated with single site of the chain could also be expressed via the edge

variables ξ, η by

eS
0
a = z2

a, Sab =
1

2
z−2
b (z2

a + z−2
a )

τa
τb
, a < b, Sab = −1

2
z2
a(z2

a + z−2
a )

τa
τb
, a > b, (2.22)

where9

za =
√
ξa/ηa, τa =

√
ξaηa

M∏
b=1

z
sgn(b−a)
b (2.23)

and the ‘site index’ i = 1, . . . , N is omitted here. Spin-variables cannot be directly expressed

through the cluster variables in a natural way, but rather as a product of edge variables

over some non-closed paths. However it is possible to express cluster variables via the spin

variables on two adjacent sites by

x×i,a = e−2(S0
a)i , x+

i,a = −
e(S0

a)i+1+(S0
a−1)i(S+

a−1)i+1(S−a−1)i

cosh (S0
a−1)i+1 cosh (S0

a)i

(
σi+1

σi

)δa,1 (κa−1

κa

)δi,N
(2.24)

where index outside brackets of spin variables enumerates number of site. This relation

will be discussed in details elsewhere [20].

The spectral curve again can be given by determinant of the Dirac-Kasteleyn operator,

which is the weighted adjacency matrix of the bipartite graph. For generic (N,M) system

it has the form:

D(λ, µ) =

N∑
i=1

M∑
a=1

ξia(Ei,i ⊗ Ea,a − κδi,1a σ
δM,a
i Ei,i−1 ⊗ Ea+1,a)+

+ ηia(κ
δ1,i
a Ei,i−1 ⊗ Ea,a + σ

δM,a
i Ei,i ⊗ Ea+1,a)

(2.25)

where the summand Eij ⊗ Eab is corresponding to the edge between black and white

vertices10 (i, a)→ (j, b), and those matrices Eij which get out of fundamental domain are

promoted to the elements of the ‘loop algebra’, with the ‘loop’ parameters (λ, µ):

E1,0 ≡ λE1,N , EM+1,M ≡ µE1,M . (2.26)

Remark 2.1. The operator (2.25) as an element of End(CN )[[λ−1]] ⊗ End(CM )[[µ−1]]

can be naturally embedded into tensor product of evaluation representations of the loop

algebras g̃lN ⊗ g̃lM , i.e.

D(λ, µ) =
N∑
i=1

M∑
a=1

ξia(hi ⊗ ha − κδi,1a σ
δM,a
i fi−1 ⊗ fa) + ηia(κ

δ1,i
a fi−1 ⊗ ha + σ

δM,a
i hi ⊗ fa)

(2.27)

8Notice that spin’s projections are not originally the Casimir functions for spin’s brackets, but rather

‘trivial’ integrals of motion — like the total momentum of particles in Toda chains.
9This is basically standard bosonization formulas for the spin variables, cf. for example with [5, 29].

10Signs ‘−’ in D arise in a standard way [17] due to choice of Kasteleyn marking or discrete spin structure

on T2.
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x+
21

ξ21 η21

ξ21η21
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2,2

x×22

x+
22

ξ22

3,1

3,1

x×31

x+
31

ξ31 η31

ξ31η31

3,2

3,2

x×32

x+
32

ξ32

η22

σ2η22

σ2ξ22

η32

σ3η32

σ3ξ32

κ1η11

η11

κ1ξ11 κ2η12

σ1η12

σ1κ2ξ12

1,1

1,1

1,2

1,2

2,1

2,1

2,2

2,2

3,1

3,1

3,2

3,2

β1

α1

β2

α2

β3

α3

1,1

1,1

1,2

1,2

2,1

2,1

2,2

2,2

3,1

3,1

3,2

3,2

γ1 δ1 γ2 δ2

Figure 6. Left: bipartite graphs with labeled edges and faces: each edge, crossing purple cycle

has to be multiplied by µ, each edge, crossing blue cycle — by λ. Center: horizontal zig-zag paths.

Right: vertical zig-zag paths.

for two evaluation representations g̃lK → End(CK)[[ζ]]:

ei = Ei,i+1, 1 ≤ i ≤ K − 1, e0 = eK = ζEK,1
fi = Ei+1,i, 1 ≤ i ≤ K − 1, f0 = fK = ζ−1E1,K

hi = Eii, 1 ≤ i ≤ K.
(2.28)

Let us now, breaking M ↔ N symmetry, collect the terms, corresponding to Eii and

Ei,i−1 in the first tensor factor, i.e. rewrite (2.25) as

D(λ, µ) =

N∑
i=1

Ei,i ⊗Ai + Ei,i−1 ⊗ Ci(Q)δ1,i (2.29)

with

Ai =
M∑
b=1

(
ξibEb,b+ηibσ

δM,b
i Eb+1,b

)
, Ci =

M∑
b=1

(
ηibEb,b−ξibσ

δM,b
i Eb+1,b

)
, Q =

M∑
b=1

κbEbb .

(2.30)

From the spectral curve equation detD(λ, µ) = 0 one finds for

ψ =
N∑
i=1

ψiei =
N∑
i=1

M∑
a=1

ψiaei ⊗ ea ∈ CMN : D(λ, µ)ψ = 0 (2.31)

that

Aiψi + Ci(Q)δi,1ψi−1 = 0, i = 1, . . . , N, ψ0 ≡ λψN . (2.32)

Solving these equations recursively for the vectors ψi =
M∑
a=1

ψiaea, one finally gets

(
λQ− (−1)NC−1

1 A1 . . . C
−1
N AN

)
ψN = 0 (2.33)
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with consistency condition

det
(
λQ− L1

(
σ1ζ

h
1µ
)
. . . LN

(
σNζ

h
Nµ
))

= 0 (2.34)

of the form (1.13), with the Lax matrices

Li

(
σiζ

h
i µ
)

= −C−1
i Ai, i = 1, . . . , N. (2.35)

Hence, the spectral curve detD(λ, µ) = 0 is represented in the form (1.11), common for

the classical integrable chains with inhomogeneities µi = 1/σiζ
h
i = βi and twist Q =∑

a κaEaa =
∑

a

√
δa/γaEaa. There are also two sets of Casimirs related to spin variables:

total projections of spin ζva =
∏
i e
S0
ia and single non-trivial on-site Casimirs ζhi . The Lax

operators (2.35) on different sites satisfy classical RLL-relations

{Li(µ)⊗ Lj(µ′)} =
1

2
δij [r(µ/µ

′), Li(µ)⊗ Lj(µ′)] (2.36)

which coincide with (A.36) arising from the classical limit of Uq(glM ) with q = e−~ and

κ = 1
2 in (A.25), see appendix C for details. In such way one gets explicit formulas (with

the sign-factors (A.3))

(Li)ab(µ) =
1

µ
1
2 − µ−

1
2

{
a = b, µ

1
2 z−2
ia + µ−

1
2 z2
ia

a 6= b, µ−
sab
2 (z2

ib + z−2
ib ) τibτia

, (2.37)

for the Lax operators (2.35) on the sites i ∈ 1, . . . , N in terms of variables introduced

in (2.23).

Comparing L-operator (2.37) with (A.37) one comes to the formulas (2.22), expressing

the ‘spin operators’ on each site in terms of the edge variables. Expressions (2.22) satisfy

all the relations of the classical limit of Uq(glM ) with κ = 1
2 . Note that this Lax operator

is belonging to the lowest rank Kirillov orbit.

Remark 2.2. An equivalent construction of the cluster integrable systems is based on

the Poisson submanifolds or double Bruhat cells in P̂GL
]
, endowed with the usual r-

matrix Poisson structure [11, 13]. For the family of systems we consider here, given by

the SA(2,Z)-orbit of rectangular N ×M Newton polygons, one gets in such way a double

Bruhat cell of P̂GL
]
(N +M), given by the word

u = (sMsM . . . s1s1Λ)N (2.38)

in the co-extended double Weyl group W̃ (A
(1)
K × A

(1)
K ) (here with K = N + M) with the

generators si, si,Λ satisfying relations

s2
i = 1, (sisi+1)3 = 1, sisj = sjsi, for |i− j| > 1

s̄2
i = 1, (s̄is̄i+1)3 = 1, s̄is̄j = s̄j s̄i, for |i− j| > 1

ΛK = 1, Λsi+1 = siΛ, Λs̄i+1 = s̄iΛ .

i, j = 1, . . . ,K

(2.39)
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22

x+
21

x×32

x×31

x+
32

x+
31

Figure 7. Thurston diagram in the (3, 2) case, which appears from u = (s2s̄2s1s̄1Λ)3.

We are not going to repeat here all steps of the construction in detail, and just present

the main ingredient — the Thurston diagram for (2.38), drawn for (N,M) = (3, 2) at

figure 7. The corresponding bipartite graph (see figure 7) differs from the discussed above

‘fence-net’ by additional horizontal twist of the cylinder by 2π, which does not affect

an integrable system, since it corresponds to the SL(2,Z) transformation of the spectral

parameters (λ, µ)→ (λ, µλ−1).

Example. SU(2) theory with Nf = 4. The most well-known case of the system

we consider here corresponds to the five-dimensional supersymmetric gauge theory with

the SU(2) gauge group and Nf = 4 fundamental multiplets. The corresponding Newton

polygon is a square with sides of length N = M = 2 (see figure 8), and as a spin chain this

is just common XXZ-model on two sites with the Lax operator11 (see e.g. [28])

L(µ) =

(
µeS

0 − µ−1e−S
0

2S−

2S+ µe−S
0 − µ−1eS

0

)
, Q =

(
κ 0

0 κ−1

)
. (2.40)

Spectral curve for the system is given by

det (L (µ/µ1)L (µ/µ2)Q− λ) = 0. (2.41)

The Poisson brackets of spin operators are given by classical trigonometric r-matrix and

written as:

{S0, S±} = ±S±, {S+, S−} = sinh 2S0 (2.42)

for the S-variables on the same site, and zero for the variables on the different sites. Such

bracket has one natural Casimir function

K = −ζh − (ζh)−1 =
1

2
cosh 2S0 + S+S−. (2.43)

11This form is slightly different from (A.44) arising from the classical limit of Uq(gl2). However, in 2× 2

case these two forms are equivalent.
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Figure 8. Newton polygon for (N,M) = (2, 2).

As a cluster integrable system it lives on X-variety with the quiver corresponding to

A
(1)
3 -type system from figure 2 in [1], and its deautonomization leads to the Painlevé VI

equation, solvable by conformal blocks, or equivalently topological strings amplitudes [24].

We derive Lax operator for this system from Kasteleyn operator in details in the next

example, which is simply generalization of this example to three sites.

Example. SU(3) theory with Nf = 6. This case is corresponding to the word

u = (22̄11̄Λ)3 in double Weyl group of P̂GL
]
(5). Bipartite graph is drawn on figure 6.

Kasteleyn operator is 6× 6 matrix

D =

bw 11 12 21 22 31 32

11 ξ11 µσ1η12 0 0 λκ1η11 −λµκ2σ1ξ12

12 η11 ξ12 0 0 −λκ1ξ11 λκ2η12

21 η21 −µσ2ξ22 ξ21 µσ2η22 0 0

22 −ξ21 η22 η21 ξ22 0 0

31 0 0 η31 −µσ2ξ32 ξ31 µσ2η32

32 0 0 −ξ31 η32 η31 ξ32

=

A1 0 λC1Q

C2 A2 0

0 C3 A3

 .

(2.44)

Spectral curve is given by condition

detD(λ, µ) = 0 ⇔ ∃ ψ =

ψ1

ψ2

ψ3

 : D(λ, µ)ψ = 0 ⇔


λQψ3 = L1(σ1ζ

h
1µ)ψ1

ψ1 = L2(σ2ζ
h
2µ)ψ2

ψ2 = L3(σ3ζ
h
3µ)ψ3

(2.45)

Li(µ) =
1

µ
1
2 − µ−

1
2

 µ−
1
2
ξi1
ηi1

+ µ
1
2
ηi1
ξi1

µ
1
2
ηi2
ξi1

(
ξi2
ηi2

+ ηi2
ξi2

)
µ−

1
2
ξi1
ηi2

(
ξi1
ηi1

+ ηi1
ξi1

)
µ−

1
2
ξi2
ηi2

+ µ
1
2
ηi2
ξi2

 (2.46)

ζhi =
ξi1ξi2
ηi1ηi2

, Q =

(
κ1 0

0 κ2

)
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which could be rewritten using monodromy operator(
λQ− T 2×2

3 (µ)
)
ψ3 = 0 ⇔ det

(
λQ− T 2×2

3 (µ)
)

= 0,

T 2×2
3 (µ) = L1(σ1ζ

h
1µ)L2(σ2ζ

h
2µ)L3(σ3ζ

h
3µ).

(2.47)

Lax operator (2.46) is of gl2 type, so can be mapped to (A.44). To transform it in sl2
form (2.40) we have to apply transformations like (A.46)

µ 7→ −µ ξ1ξ2

η1η2
, then L(µ) 7→

(√
ξ1ξ2

η1η2
µ

1
2 −

√
η1η2

ξ1ξ2
µ−

1
2

)(
µ−1/2 0

0 1

)
· L(µ) ·

(
µ1/2 0

0 1

)
(2.48)

so it becomes

L(µ) =

 µ
1
2

√
η1ξ2
ξ1η2
− µ−

1
2

√
ξ1η2
η1ξ2

√
ξ2η2
ξ1η1

(
ξ2
η2

+ η2
ξ2

)
−
√

ξ1η1
ξ2η2

(
ξ1
η1

+ η1
ξ1

)
µ

1
2

√
ξ1η2
η1ξ2
− µ−

1
2

√
η1ξ2
ξ1η2

 . (2.49)

Defining classical sl2 spin variables by

S− =
1

2

√
ξ2η2

ξ1η1

(
ξ2

η2
+
η2

ξ2

)
, S+ = −1

2

√
ξ1η1

η2ξ2

(
ξ1

η1
+
η1

ξ1

)
, eS

0
=

√
ξ1η2

η1ξ2
(2.50)

we see that Lax operator (2.49) coincides with the (2.40) up to replacement µ1/2 → µ and

S0 7→ −S0. The latter is a consequence of the fact that (2.49) is coming from q = e−~

prescription, but (2.40) — from the usual q = e~. Poisson brackets of spin variables coming

from edge variables bracket {ξi, ηj} = 1
2δijξiηj are

{S0, S±} = ±1

2
S±, {S+, S−} =

1

2
sinh 2S0 (2.51)

which differs from (2.42) by factor 1/2, appearing from κ = 1
2 in the prescription for the

classical limit of commutators (A.25). For details see appendix A. Spectral curve (2.41)

could be obtained from (2.34) by transformation λ 7→ λ(κ1κ2)−
1
2 with identification of

parameters κ = (κ1/κ2)
1
2 , µi = (κ1κ2)

1
2 (σiζ

h
i )−1.

3 Dualities and twists

3.1 Spectral duality

For some integrable chains special kind of duality could be observed both on the classical

and on the quantum level: namely system with N -dimensional auxiliary space on M sites

share Hamiltonians with some other system with M -dimensional auxiliary space on N sites.

Under duality spectral parameter which monodromy operator depends on, and spectral

parameter of characteristic equation exchange, so this duality is often called spectral duality

(however, sometimes referred as ‘level-rank’ or ‘fiber-base’ duality, see [29] and references

therein).
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In the case of our interest, system doesn’t change its type: XXZ classical spin chain of

glM type on N sites is dual to the XXZ chain of the glN type on M sites [5, 29]. Looking

at M ×N fence-net bipartite graph, it becomes obvious: graph keeps its structure under

90-degree rotation. On the level of Kasteleyn operator, this corresponds to exchange of

factors in tensor product, and using different expressions for spin variables.

SU(2) theory with Nf = 4 and one bi-fundamental multiplet. We start discus-

sion of spectral duality in our context from simplest non-trivial example. Let us consider gl3
spin chain on two sites, which is dual to gl2 chain on three sites, considered in section 2.2.

To derive dual Lax operators, we should permute some rows and columns of Kasteleyn oper-

ator (2.44), which is exchanging of factors in tensor product End(C2⊗C3) = End(C3⊗ C2):

D =

11 21 31 12 22 32

11 ξ11 0 λκ1η11 µσ1η12 0 −λµκ2σ1ξ12

21 η21 ξ21 0 −µσ2ξ22 µσ2η22 0

31 0 η31 ξ31 0 −µσ3ξ32 µσ3η32

12 η11 0 −λκ1ξ11 ξ12 0 λκ2η12

22 −ξ21 η21 0 η22 ξ22 0

32 0 −ξ31 η31 0 η32 ξ32

=

(
Ã1 µQ̃C̃2

C̃1 Ã2

)
.

(3.1)

Spectral curve is given by condition

detD(λ, µ) = 0 ⇔ ∃ ψ̃ =
(
ψ̃1 ψ̃2

)
: ψ̃D(λ, µ) = 0 ⇔

{
ψ̃2 = ψ̃1L̃1(κ1ζ

v
1λ)

µψ̃1Q̃ = ψ̃2L̃2(κ2ζ
v
2λ)

(3.2)

L̃k(λ) =
1

λ
1
2−λ−

1
2


λ−

1
2
ξ1k
η1k

+λ
1
2
η1k
ξ1k

λ
1
2
η1k
ξ2k

(
ξ1k
η1k

+η1k
ξ1k

)
λ

1
2
η1kη2k
ξ2kξ3k

(
ξ1k
η1k

+η1k
ξ1k

)
λ−

1
2
ξ2k
η1k

(
ξ2k
η2k

+η2k
ξ2k

)
λ−

1
2
ξ2k
η2k

+λ
1
2
η2k
ξ2k

λ
1
2
η2k
ξ3k

(
ξ2k
η2k

+η2k
ξ2k

)
λ−

1
2
ξ2kξ3k
η1kη2k

(
ξ3k
η3k

+η3k
ξ3k

)
λ−

1
2
ξ3k
η2k

(
ξ3k
η3k

+η3k
ξ3k

)
λ−

1
2
ξ3k
η3k

+λ
1
2
η3k
ξ3k


(3.3)

ζvk =
ξ1kξ2kη3k

η1kη2kη3k
, Q̃ =

 σ1 0 0

0 σ2 0

0 0 σ3

 (3.4)

which could be rewritten using monodromy operator

ψ̃1

(
µQ̃− T̃ 3×3

2 (λ)
)

= 0 ⇔ det
(
µQ̃− T̃ 3×3

2 (λ)
)

= 0, T̃ 3×3
2 (λ) = L̃1(κ1ζ

v
1λ)L̃2(κ2ζ

v
2λ).

(3.5)
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It is indeed spectral dual to the curve (2.47). One can check by direct calculation that

(1− κ1ζ
v
1λ)(1− κ2ζ

v
2λ) det

(
µQ̃− T̃ 3×3

2 (λ)
)

=

= (1− σ1ζ
h
1µ)(1− σ2ζ

h
2µ)(1− σ3ζ

h
3µ) det

(
λQ− T 2×2

3 (µ)
)
.

(3.6)

General case. If the order of factors in tensor product in (2.29) had been chosen in the

other way, we would get M matrices Ak and Ck of size N ×N :

D(λ, µ) =

M∑
m=1

Ãm⊗Em,m+(Q̃)δM,mC̃m⊗Em+1,m (3.7)

Ãm =

N∑
n=1

ξnmEn,n+ηnmκδ1,nm En,n−1, C̃m =

N∑
n=1

ηnmEn,n−ξnmκδn,1
m En,n−1, Q̃ =

N∑
n=1

σnEnn.

(3.8)

Again, we present spectral curve as condition

∃ ψ̃ =

N∑
n=1

M∑
m=1

ψ̃nmen ⊗ em ∈ CMN : ψ̃D(λ, µ) = 0 (3.9)

which gives for the spectral curve

det(L̃1(κ1ζ
v
1λ) . . . L̃M (κMζvMλ)− µQ̃) = 0, L̃k(κkζvkλ) = −ÃkC̃−1

k . (3.10)

Using variables (2.23) we can write dual Lax operator

(L̃m)ij(λ) =
1

λ
1
2 − λ−

1
2

{
i 6= j, λ−

sij
2 (z2

im + z−2
im ) τ̃imτ̃jm

i = j, λ
1
2 z−2
im + λ−

1
2 z2
im

, τ̃nm = wnm

N∏
i=1

z−sinim . (3.11)

We can relate them to L-operators (2.37) of the same size

L(z, w, µ) = L̃(z → z−1, w, λ→ µ−1)>. (3.12)

Noting that for the classical r-matrix

r(a−1)> = −r(a) (3.13)

where transposition is taken in each tensor multiplier, we can deduce from (2.36) that

{L̃(λ)⊗ L̃(µ)} =
1

2
[L̃(λ)⊗ L̃(µ), r(λ/µ)]. (3.14)

To obtain explicit relation for the dual spectral curves, we have to come back to the

Kasteleyn operator of the system, and consider its determinant. In terms of M ×M blocks
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Ak, Ck defined by ((3.8)) spectral curve is given by

det D(λ, µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 0 . . . 0 λC1Q

C2 A2 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . AN−1 0

0 0 . . . CN AN

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∏
i

(detCi)·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C−1
1 A1 0 . . . 0 λQ

1 C−1
2 A2 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . C−1
N−1AN−1 0

0 0 . . . 1 C−1
N AN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(3.15)

= . . . =
∏
i

(detCi)·

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 λQ

1 1 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . 1 0

0 0 . . . 1 (−1)NTM×MN

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

TM×MN = L1 . . . LN , Lk = −C−1
k Ak,

and subtracting consequentially lines from first to last

det D(λ, µ) = (−1)NM det (C1 . . . CN ) det(TM×MN (µ)− λQ). (3.16)

Acting in the same way, we get for the dual spectral curve

det D(λ, µ) = (−1)NM det
(
C̃1 . . . C̃M

)
det(T̃N×NM (λ)− µQ̃), (3.17)

T̃N×NM = L̃1 . . . L̃M , L̃k = −ÃkC̃−1
k

so, precise relation between curves is

det (C1 . . . CN ) det(TM×MN (µ)− λQ) = det
(
C̃1 . . . C̃M

)
det(T̃N×NM (λ)− µQ̃) . (3.18)

Note that the relation of pre-factors is Casimir of the bracket

det (C1 . . . CN )

det
(
C̃1 . . . C̃N

) =
µ
N
2

λ
M
2

(
σ1 . . . σN
κ1 . . .κM

)1/2

N∏
n=1

(σnζ
h
nµ)−1/2 − (σnζ

h
nµ)1/2

M∏
m=1

(κmζvmλ)−1/2 − (κmζvmµ)1/2

. (3.19)

3.2 Twisted chains

A diagonal twist matrix is not the only one, commuting with r-matrices. A cyclic twist

QΛ(λ) =

N∑
i=1

Ei+1,i =

N−1∑
i=1

Ei+1,i + λE1,N (3.20)

also satisfies [r(λ/µ), QΛ(λ) ⊗ QΛ(µ)] = 0. In terms of bipartite graphs it corresponds to

the twist on a cycle of the torus, where the bipartite graph is drawn on, or the gluing
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a)

3, 2 3, 1 3, 2 3, 1

1, 2 1, 1 1, 2 1, 1

2, 2 2, 1 2, 2 2, 1

3, 2 3, 1 3, 2 3, 1

1, 2 1, 1 1, 2 1, 1

b)

3, 1 3, 2 3, 1 3, 2

1, 2 1, 1 1, 2 1, 1

2, 2 2, 1 2, 2 2, 1

3, 2 3, 1 3, 2 3, 1

1, 1 1, 2 1, 1 1, 2

c)

1 1 1

2 2 2

3 3 3

1 1 1

d)

2 1 3

3 2 1

1 3 2

2 1 3

Figure 9. Examples of twisted gl2 chains. Dashed lines bound fundamental domains. We use

different notations for zig-zags here, comparing to the pictures above. Edges crossed by red arrows

belong to γ2 zig-zag, orange arrows are for α1. a, b) XXZ chain of rank two and its twisted

cousin. Note that the twisted twice chain is equivalent up to SL(2,Z) transformation λ → λµ to

the untwisted chain, as Q2
Λ = µ1, like in remark 2.2. c, d) Making Toda chain by twisting glN

chain dual to gl1 chain.

condition for the sides of fundamental domain, see figure 6. Such twist also changes a

Poisson quiver, even though the edge variables are not affected themselves.

The twist of a bipartite graph results further in change of the zig-zag’s structure.

Several parallel zig-zags now join into ‘longer sequences’ with non-trivial winding so that

rectangle Newton polygon undergoes a ‘shear shift’ — see examples on figure 9.

In the context of such transformations one can expect nontrivial consequences for

spectral duality. Consider the trivial case of glN chain on a single site, which is dual to

rank 1 chain on N sites, and apply the cyclic twist along the longer side of a bipartite

graph. In original picture this is just a multiplication of a single N ×N Lax operator by

cyclic permutation matrix. However in the dual setup, this results in passing from trivial

gl1 chain to the Toda chain on the same number of sites, which can be verified by comparing

figure 9 and figure 3. After such procedure the number of Casimirs drops by 2N − 2, while

number of Hamiltonians jumps from 0 to N − 1.

For supersymmetric theories such transformation turns the theory of a single SU(N)

hypermultiplet with only SU(N)×SU(N) flavor symmetry into pure SU(N) gauge theory.

4 Discrete dynamics

The cluster mapping class group GQ consists of sequences of mutations and permutations of

quiver vertices, which maps quiver to itself, but acts in general non-trivially to the cluster
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variables (see appendix B for details). As a simplification one can restrict the action of

GQ to the set of Casimirs of the Poisson bracket. Each monomial Casimir maps to the

monomial in Casimir functions. When the necessary for integrability condition
∏
i xi = 1

is relaxed to
∏
i xi = q (which is called as deautonomization), these flows act on the set of

Casimirs, inducing non-trivial q−dynamics.

In [1] the cluster mapping class groups for the quivers, corresponding to Newton poly-

gons with a single internal point, were identified with the symmetry groups of q-Painlevé

equations.12 Passing from X-cluster to A-cluster variety, the q-Painlevé equations acquire

bilinear form for the tau-functions, and can be solved via the dual Nekrasov partition

functions for 5d supersymmetric SU(2) gauge theories [1, 3, 6, 24], which is a natural ‘5d

uplift’ of ‘4d’ isomonodromic/CFT correspondence [18]. In [2] the cluster description was

further applied to discrete dynamics of relativistic Toda chains of arbitrary lengths, where

the solutions of non-autonomous versions are given by SU(N) partition functions with the

|k| ≤ N Chern-Simons terms. Recently, cluster realization of generalized q-Painlevé VI

system was also observed in [33]. Note that for q = 1 case with trivial Casimirs solution of

discrete dynamics for arbitrary bipartite graph can be written in terms of θ-functions [10].

Below in this section we discuss the cluster mapping class groups and non-autonomous

bilinear equations, arising for generic rectangle Newton polygons. We present their explicit

construction in the example, which will illustrate the following results:

Structure of the group GQ. For the SA(2,Z)-class of N × M rectangular Newton

polygon, the MCG GQ always contains a subgroup of the form

W̃
(
A

(1)
N−1 ×A

(1)
N−1

)
× W̃

(
A

(1)
M−1 ×A

(1)
M−1

)
o Z ⊂ GQ (4.1)

where W̃
(
A

(1)
N−1 ×A

(1)
N−1

)
is a co-extended double Weyl group (2.39).

The generators of each subgroup are naturally labeled by intervals on sides of a Newton

polygon, or subset of ’parallel’ zig-zag paths (in the same homology class) on a bipartite

graph:

W̃
(
A

(1)
N−1 ×A

(1)
N−1

)
: {sαi,αi+1}, {sβi,βi+1

}, i ∈ Z/NZ

W̃
(
A

(1)
M−1 ×A

(1)
M−1

)
: {sγa,γa+1}, {sδa,δa+1}, a ∈ Z/MZ

(4.2)

where subscripts α, β, γ, δ label the corresponding group of paths, see figure 6 middle and

right. The group being extended by the additional generator ρ contains lattice of the rank

2N + 2M − 3 of q−difference flows of integrable system.

Moreover, in special cases there is an obvious symmetry enhancement: for example,

for N = M an additional ‘external’ generator appears, which rotates the whole picture

by π/2. However, sometimes this enhancement is more essential: if any of the sides is of

length 2, two rest Weyl groups can be ‘glued’ together by additional permutation, so the

known subgroup of GQ becomes

W̃
(
A

(1)
2N−1

)
× W̃

(
A

(1)
1 ×A

(1)
1

)
⊂ GQ . (4.3)

12Such relation for particular cases was earlier mentioned in [6, 22, 31, 32].
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This enhancement is closely related to the fact that spectral curves with the N × 2 rectan-

gular Newton polygon can be mapped to the curves with the triangular Newton polygon

with the integer sides 2N × 2× 2 (see e.g. (3.70) in [19]). If both N = M = 2 one finds the

extra enhancement from W̃ (A
(1)
1 ×A

(1)
1 )× W̃ (A

(1)
1 ×A

(1)
1 ) to W̃ (D

(1)
5 ), see below.

Action on spin chain Casimirs. Inhomogeneities, total spins, on-site Casimirs and

twists of spin chain are permuted under the action of different components of GQ.

Inhomogeneities are given by single zig-zags µi = βi, while on-site Casimirs are given

by products of zig-zags ζhi = (αiβi)
1
2 . So the well defined transformation of them, which

‘permutes sites’ of spin chain are products of primitive permutations

sαi,αi+1sβi,βi+1
: µi 7→ µi+1, µi+1 7→ µi, ζhi 7→ ζhi+1, ζ

h
i+1 7→ ζhi . (4.4)

Permutations of twists κa = (δa/γa)
1
2 and projections of spins ζva = (γaδa)

1
2 by

products

sγa,γa+1sδa,δa+1 : κa 7→ κa+1, κa+1 7→ κa, ζva 7→ ζva+1, ζ
v
a+1 7→ ζva (4.5)

can be viewed as an action of the Weyl group by permutations on the maximal torus of

Lie group.

Bilinear equations. Equations defining the action of each single generator of GQ on

A-cluster variables (τ×ij , τ
+
ij ) could be rewritten in the form of bilinear equations. Evo-

lution of coefficients can be encapsulated into the transformations of frozen variables

{uαi ,uβi ,uγa ,uδa}, which are evolving in the same way as Casimirs in X -variables.

For example τ -variables τ̄×k,a, τ̄
+
k,a transformed under the action of generator sβi,βi+1

satisfy bilinear equations

(uβi+1
− q

1
N uβi)(uδuγa)

1
N τ+

i−1,aτ
×
i+1,a = u

1
M
βi+1

τ̄+
i,aτ
×
i,a − q

1
NM u

1
M
βi
τ̄×i,aτ

+
i,a

(uβi+1
− q

1
N uβi)(uδ/uδa)

1
N τ+

i−1,a+1τ
×
i+1,a = u

− 1
M

αi τ̄×i,aτ
+
i,a+1 − q

1
NM u

− 1
M

αi τ̄+
i,a+1τ

×
i,a

(4.6)

for all a ∈ Z/MZ, where uδ =
∏
a uδa . Frozen variables are transforming as

sβi,βi+1
: uβi 7→ q−

1
N uβi+1

, uβi+1
7→ q

1
N uβi . (4.7)

Bilinear equations for the action of generators sαi,αi+1 , sγa,γa+1 , sδa,δa+1 are similar.

4.1 Structure of GQ

Now we present generators of GQ in terms of the quiver mutations13 {µ×ij , µ
+
ij} (in the ver-

tices, initially assigned with {x×ij , x
+
ij}) and permutations of the vertices {s×,+ij,kl}. Consider

for simplicity the (3, 2)-example, which already illustrates how the explicit formulas look

like in generic case. Here 2(N +M) = 10 generators (4.2) can be realized as

sβ1,β2 = s×,+12,12µ
+
11µ
×
11µ
×
12µ

+
12µ
×
11µ

+
11 sα3,α1 = s×,+12,31µ

+
32µ
×
11µ
×
12µ

+
31µ
×
11µ

+
32

sβ2,β3 = s×,+22,22µ
+
21µ
×
21µ
×
22µ

+
22µ
×
21µ

+
21 sα1,α2 = s×,+22,11µ

+
12µ
×
21µ
×
22µ

+
11µ
×
21µ

+
12

sβ3,β1 = s×,+32,32µ
+
31µ
×
31µ
×
32µ

+
32µ
×
31µ

+
31 sα2,α3 = s×,+32,21µ

+
22µ
×
31µ
×
32µ

+
21µ
×
31µ

+
22

(4.8)

13For the definitions on cluster algebras see appendix B.
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and

sδ2,δ1 = s×,+31,31µ
+
21µ
×
21µ

+
11µ
×
11µ
×
31µ

+
31µ
×
11µ

+
11µ
×
21µ

+
21

sγ1,γ2 = s×,+21,12µ
+
22µ
×
31µ

+
32µ
×
11µ
×
21µ

+
12µ
×
11µ

+
32µ
×
31µ

+
22

sδ1,δ2 = s×,+32,32µ
+
22µ
×
22µ

+
12µ
×
12µ
×
32µ

+
32µ
×
12µ

+
12µ
×
22µ

+
22

sγ2,γ1 = s×,+22,11µ
+
21µ
×
32µ

+
31µ
×
12µ
×
22µ

+
11µ
×
12µ

+
31µ
×
32µ

+
21

(4.9)

which are sequences of mutations in the vertices along zig-zags in the forward and then back-

ward directions. One can check that each generator here is involution i.e. s2 = 1, and acts by

rational transformation on X-cluster variables: e.g. for sβ2,β3 = s×,+22,22µ
+
21µ
×
21µ
×
22µ

+
22µ
×
21µ

+
21

one can explicitly write:

x×31 7→ x×31 · x
+
22x
×
21

[x×22, x
+
21, x

×
21]

[x×21, x
+
22, x

×
22]
, x×32 7→ x×32 · x

+
21x
×
22

[x×21, x
+
22, x

×
22]

[x×22, x
+
21, x

×
21]
,

x+
21 7→

1

x×21

· [x+
21, x

×
21, x

+
22]

[x+
22, x

×
22, x

+
21]
, x+

22 7→
1

x×22

· [x+
22, x

×
22, x

+
21]

[x+
21, x

×
21, x

+
22]
,

x×21 7→
1

x+
22

· [x×21, x
+
22, x

×
22]

[x×22, x
+
21, x

×
21]
, x×22 7→

1

x+
21

· [x×22, x
+
21, x

×
21]

[x×21, x
+
22, x

×
22]
,

x+
11 7→ x+

11 · x
×
21x

+
21

[x+
22, x

×
22, x

+
21]

[x+
21, x

×
21, x

+
22]
, x+

12 7→ x+
12 · x

×
22x

+
22

[x+
21, x

×
21, x

+
22]

[x+
22, x

×
22, x

+
21]
,

(4.10)

while all the other variables remain unchanged. Here we have used the notation

[x1, x2, .., xn] = 1+x1+x1·x2+. . .+x1·. . .·xn = 1+x1(1+x2(. . .+xn−1(1+xn) . . .)). (4.11)

Notice also that the result of zig-zag mutation sequences actually do not depends on the

point of the ‘zig-zag strip’ one starts with the first mutation and direction of the jumps

along/across given zig-zag. Note that the [ ]-function possesses nice ‘inversion’ property

[x1, . . . , xn] = x1 . . . xn · [x−1
n , . . . , x−1

1 ] (4.12)

which allows to write equivalently, for example

x×21 7→
1

x+
22

· [x×21, x
+
22, x

×
22]

[x×22, x
+
21, x

×
21]

=
1

x+
21

· [(x×22)−1, (x+
22)−1, (x×21)−1]

[(x×21)−1, (x+
21)−1, (x×22)−1]

. (4.13)

Each set of permutations szi,zi+1 with similar z constitute affine Weyl group of A(1)-type.

The groups for different z are commuting, so they satisfy usual relations
s2
zi,zi+1

= 1,

(szi,zi+1szi+1,zi+2)3 = 1

szi,zi+1szj ,zj+1 = szj ,zj+1szi,zi+1 , |i− j| > 1

z = α, β with i, j ∈ Z/3Z

s2
zi,za+1

= 1 z = γ, δ with i, j ∈ Z/2Z.
szi,zi+1sz′j ,z′j+1

= sz′j ,z′j+1
szi,zi+1 , z, z′ = α, β, γ, δ such that z 6= z′.

(4.14)
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There are two more ‘external’ automorphisms preserving bipartite graph

Λh : x×ia 7→ x×i,a−1, x
+
ia 7→ x+

i,a−1

Λv : x×ia 7→ x×i−1,a, x
+
ia 7→ x+

i−1,a

(4.15)

which satisfy obvious relations

ΛhΛv = ΛvΛh, Λ2
h = 1, Λ3

v = 1, (4.16)

Λhsza,za+1 = sza−1,zaΛh, for z = γ, δ, Λhszi,zi+1 = szi,zi+1Λh, for z = α, β, (4.17)

Λvszi,zi+1 = szi−1,ziΛv, for z = α, β Λvsza,za+1 = sza,za+1Λv, for z = γ, δ, (4.18)

and promote affine Weyl groups to extended affine Weyl groups. There is also one more

generator of infinite order

ρ = s+×µ+ : µ+ =
∏
i,a
µ+
ia, s

+× : x+
ia 7→ x×ia, x×ia 7→ x+

i−1,a+1, (4.19)

satisfying relations

ρ sαi−1,αi = sαi,αi+1 ρ, ρ sβi,βi+1
= sβi,βi+1

ρ, ρ sγi,γi+1 = sγi−1,γi ρ, ρ sδi,δi+1
= sδi,δi+1

ρ,

(4.20)

so the cluster mapping class group contains

W̃
(
A

(1)
2 ×A

(1)
2

)
× W̃

(
A

(1)
1 ×A

(1)
1

)
o Z ⊂ GQ. (4.21)

We conjecture that for general rectangular N ×M Newton polygon, cluster mapping class

group contains subgroup (4.1). Construction of generators for general N and M is straight-

forward, by ‘jumps over zig-zags’ as in example.

In the case N = M there is also an additional ‘external’ generator Rπ/2 of order 4,

which rotates bipartite graph by π/2

Rπ/2 : x×i,a 7→ x+
−a,i, x+

i,a 7→ x×1−a,i. (4.22)

In the case N = 2K or M = 2K there is another additional ‘external’ generator, which

flips the rectangle.

Discrete flows. The group GQ contains lattice L of discrete flows of rank B − 3, where

B = 2N + 2M is the number of boundary integral points of Newton polygon. It consists of

four pairwise commuting lattices contained in two copies of W (A
(1)
N−1) = ZN−1oW (AN−1)

and two copies of W (A
(1)
M−1) = ZM−1 o W (AM−1), and generator (ρ)lcm(N,M) where

lcm(N,M) is the least common multiple of N and M . The lattice is generated by ele-

ments Tzi,zi+1 which take pair of adjacent strands, wind them up in opposite directions

over cylinder and put on the initial places, if one imagine W (A
(1)
N−1),W (A

(1)
M−1) as a groups

acting by permutations of strands on cylinder. For (3, 2) example β-piece of GQ can be

presented as W (A
(1)
2 ) = Z2 oW (A2) with Z2 and W (A2) generated by

Tβ1,β2 = sβ1,β2sβ2,β3sβ3,β1sβ2,β3 , Tβ2,β3 = sβ2,β3sβ3,β1sβ1,β2sβ3,β1 (4.23)
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and by

sβ1,β2 , sβ2,β3 (4.24)

correspondingly.

One can find a homomorphism of the lattice L of the shifts (4.23) into the group of

discrete flows G′∆ (defined as in [13] to be an additive group of integral valued functions on

boundary vertices of Newton polygon modulo sub-group A generated by the restrictions

from Z2 to the boundary of Newton polygon of affine functions f(i, j) = ai + bj + c).

For the case of rectangular Newton polygons one can easily finds that G′∆ = ZB−3. Em-

bedding of L to G′∆ actually comes from consideration of the action of GQ on zig-zags

presented in the next section, and results in the image ZB−3. However, the factor is

G′∆/L = Z/lcm(N,M)Z⊕ Z/NZ⊕ Z/MZ. The non-trivial index appears due to the func-

tions on the corners of Newton polygon. It can be also seen that the image of generator

(ρ)lcm(N,M) coincides with the image of generator τ from [13].

4.2 Monomial dynamics of Casimirs

According to [17] the lattice of Casimir functions xγ is generated by zig-zag paths14

Z = {γ ∈ H1(Γ,Z) | ε(γ, ·) = 0}. (4.25)

As the skew-symmetric form ε is intersection form on dual surface, this condition is equiv-

alent to being trivial in dual surface Ŝ homologies. In order to be expressed in terms of

cluster variables {x×ij , x
+
ij} Casimir should be also trivial in torus homologies, i.e. we are

interested in subset

C = {γ ∈ H1(Γ,Z) | [γ] = 0 ∈ H1(Ŝ,Z), [γ] = 0 ∈ H1(T2,Z)}. (4.26)

As zig-zags and faces are drawn on torus Z,F ⊂ H1(Γ,Z), they are constrained by
∏
i xzi =

1, where the product goes over all zig-zag paths and
∏
i xfi = 1, where the product goes

over all faces of bipartite graph on torus. To obtain non-trivial q-dynamic these constraints

have to be relaxed to
∏
i xfi = q 6= 1 so that xγ now is an element of extension H1(Γ̃,Z) =

H1(Γ,Z)⊕Q2
〈ω,ω̂〉 with the relations

∑
i fi = ω,

∑
i zi = ω̂. In multiplicative notations this

reads ∏
i

xfi = q,
∏
i

xzi = q̂ (4.27)

where we have additionally defined q = xω, q̂ = xω̂. Introduction of q 6= 1 can be considered

by lifting of bipartite graph to universal cover of T2 which is R2.

Any variable xγ , γ ∈ C can be expressed via face variables xfi , which are cluster

variables, and can be mutated by usual rules (B.2). However, there is no generic rule

for mutation of variable associated with a single zig-zag, except for mutation in four-

valent vertex identified with a ‘spider move’ [17]. We propose here the generic rule for

transformation of zig-zags15 under the action of generators (4.7), namely, for the N ×M
14For details on definitions see appendix B.
15We abuse notations, denoting xz = z for zig-zags.
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rectangle:

sαi,αi+1 : αi 7→ q
1
N αi+1, αi+1 7→ q−

1
N αi,

sβi,βi+1
: βi 7→ q−

1
N βi+1, βi+1 7→ q

1
N βi,

sγa,γa+1 : γa 7→ q
1
M γa+1, γa+1 7→ q−

1
M γa,

sδa,δa+1 : δa 7→ q−
1
M δa+1, δa+1 7→ q

1
M δa,

(4.28)

where i = 1, . . . , N , a = 1, . . . ,M . The group GQ acts on the elements of C, embedded in

multiplicative lattice generated by zig-zags, precisely as Coxeter groups of AK−1-type act

on the root lattices embedded into ZK (cf. [23, 33]).

These rules basically come just from consistency with mutation transformations for the

elements of C. There is a two-parametric family of transformations for zig-zag variables

z 7→ za[z]Ab[z]B , if [z] = ([z]A, [z]B)− class of z in H1(T2,Z) (4.29)

which do not affect C, since C consists of the combinations of zig-zags with zero class in

torus homology. This ambiguity is fixed using the ‘locality assumption’ that zig-zags not

adjacent to the transformed faces are not changed.

Let us now demonstrate, how formulas (4.28) come for (N,M) = (3, 2) from consis-

tency with transformations of C, where one can introduce the following over-determined

set of generators

Zβ1,α1 = x×11x
×
12, Zβ2,α2 = x×21x

×
22, Zβ3,α3 = x×31x

×
32,

Zα1,β2 = (x+
11x

+
12)−1, Zα2,β3 = (x+

21x
+
22)−1, Zα3,β1 = (x+

31x
+
32)−1 (4.30)

Zγ1,δ1 = (x×11x
×
21x
×
31)−1, Zδ1,γ2 = x+

12x
+
22x

+
32,

Zγ2,δ2 = (x×12x
×
22x
×
32)−1, Zδ2,γ1 = x+

11x
+
21x

+
31

(4.31)

satisfying

Zβ1,α1Zβ2,α2Zβ3,α3Zγ1,δ1Zγ2,δ2 = 1

Zα1,β2Zα2,β3Zα3,β1Zδ1,γ2Zδ2,γ1 = 1

Zβ1,α1Zβ2,α2Zβ3,α3(Zα1,β2Zα2,β3Zα3,β1)−1 = q = 1.

(4.32)

so that the number of independent Casimirs is seven. In the autonomous limit, these

Casimirs reduce to Zz,z′ = z · z′, where z, z′ correspond to zig-zags {α, β, γ, δ}, expressed

via the edge variables. The transformation, for example, sβ1,β2 acts by

sβ1,β2 :

Zβ1,α1 7→ Zα1,β2 , Zβ2,α2 7→
Zβ2,α2Zβ1,α1

Zα1,β2

, Zβ3,α3 7→ Zβ3,α3 ,

Zα1,β2 7→ Zβ1,α1 , Zα2,β3 7→ Zα2,β3 , Zα3,β1 7→
Zα3,β1Zα1,β2

Zβ1,α1

(4.33)

and substituting here Zz,z′ = z · z′ one finds that the action of sβ1,β2 reduces just to

permutation of β1 and β2, the same is true for the other generators sz1,z2 .
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For q 6= 1 consider the generators Tβi,βi+1
(4.23) which act trivially on C at all in the

autonomous limit. One gets now

Tβ1,β2 :
Zβ1,α1 7→ q−1Zβ1,α1 , Zβ2,α2 7→ qZβ2,α2

Zα1,β2 7→ qZα1,β2 , Zα3,β1 7→ q−1Zα3,β1

(4.34)

where q =
∏
i,j x

×
ijx

+
ij . Again, after expressing the Casimirs via zig-zags, the action of

Tβ1,β2 is equivalent to β1 7→ q−1β1, β2 7→ qβ2. These formulas suggest that at q 6= 1 one

can express generators of C via zig-zags and q by16

Zβ1,α1 = q
1
6β1α1, Zβ2,α2 = q

1
6β2α2, Zβ3,α3 = q

1
6β3α3,

Zα1,β2 = q−
1
6α1β2, Zα2,β3 = q−

1
6α2β3, Zα3,β1 = q−

1
6α3β1

(4.35)

Zγ1,δ1 = q−
1
4 γ1δ1, Zδ1,γ2 = q

1
4 δ1γ2, Zγ2,δ2 = q−

1
4 γ2δ2, Zδ2,γ1 = q

1
4 δ2γ1 (4.36)

which are consistent with constraints (4.32) with q 6= 1 if one assumed17 α1α2α3β1β2β3

· γ1γ2δ1δ2 = q̂ = 1. Comparison of transformation (4.33) with (4.35) and (4.36) leads to

the formulas (4.28) for (N,M) = (3, 2). The action of remaining generators is defined by

Λh : αi 7→ αi, βi 7→ βi, γa → γa+1, δa 7→ δa+1,

Λv : αi 7→ αi+1, βi → βi+1, γa 7→ γa, δa 7→ δa,

ρ : αi 7→ q−
1
N αi−1, βi 7→ βi, γa → q

1
M γa+1, δa 7→ δa.

(4.39)

Remark 4.1. Specialities of N = 2 or M = 2 case.

It is well known (see e.g. [19], eq. (3.70)) that spectral curves with a Newton polygon being

2×N rectangle can be mapped to the ‘triangle ones’ with the catheti of lengths 2 and 2N

(see figure 10) just by change of variables. Namely, equation

S(λ, µ) = P+
N (µ)λ2 + PN (µ)λ+ P−N (µ) = 0 (4.40)

under λ 7→ P−N (µ) · λ−1 than S(λ, µ) 7→ λ2P−N (µ)−1S(λ, µ) turns into

S(λ, µ) = λ2 + PN (µ)λ+ P+
N (µ)P−N (µ) = 0. (4.41)

16The fractional powers of q in these formulas can be restored using the ‘magnetic flux’ interpretation for

q 6= 1 in non-autonomous case. This interpretation is also consistent with the fact that zig-zags with the

different orientations collect fluxes of different signs.
17One can incorporate q̂ 6= 1 consistently modifying formulas (4.30) and (4.31) by

Zβ1,α1 = q̂
1
5 x×11x

×
12, Zβ2,α2 = q̂

1
5 x×21x

×
22, Zβ3,α3 = q̂

1
5 x×31x

×
32,

Zα1,β2 = q̂
1
5 (x+11x

+
12)−1, Zα2,β3 = q̂

1
5 (x+21x

+
22)−1, Zα3,β1 = q̂

1
5 (x+31x

+
32)−1

(4.37)

Zγ1,δ1 = q̂
1
5 (x×11x

×
21x
×
31)−1, Zδ1,γ2 = q̂

1
5 x+12x

+
22x

+
32,

Zγ2,δ2 = q̂
1
5 (x×12x

×
22x
×
32)−1, Zδ2,γ1 = q̂

1
5 x+11x

+
21x

+
31 .

(4.38)

However, as a meaning of this extension is not clear, we will assume q̂ = 1 in the following.
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Figure 10. Transformation from rectangle to triangle for (3, 2) case.

For a corresponding cluster integrable system the Poisson quiver from figure 5 can be

transformed into the form drawn at figure 11 — more common for ‘triangular’ polygons,18

studied in detail in [33]. This correspondence results in the ‘enhancement’ of the symmetry

group:19 a pair of commuting Weyl groups A
(1)
N−1×A

(1)
N−1 is now embedded into larger group

A
(1)
2N−1 with the generators

sαiβi+1
= s+,+

i1,i2 µ
+
i1µ

+
i2, sβiαi = s×,×i1,i2 µ

×
i1µ
×
i2, i = 1, . . . , N . (4.42)

Embedding A
(1)
N−1 ×A

(1)
N−1 → A

(1)
2N−1 is provided by

sβi,βi+1
= sβiαisαiβi+1

sβiαi , sαi,αi+1 = sαiβi+1
sβi+1αi+1

sαiβi+1
(4.43)

and commutativity of sαi,αi+1 and sβi,βi+1
just follows form the relations on ‘elementary’

generators sβiαi , sαiβi+1
. The generators of A

(1)
2N−1 also commute with sδi,δi+1

, sγi,γi+1 . The

generator ρ is also absorbed. Now it is not a primitive one, but can be presented as a

composition

ρ = ΛhΛ̃v

N∏
i=1

sαi,βi+1
(4.44)

where we used ‘root’ from Λv

Λ̃v : x×ia 7→ x+
i−1,a, x+

ia 7→ x×i,a, so Λv = (Λ̃v)
2 (4.45)

so there are no extra ‘dimensions’ in the lattice of the flows.

The action of the enhanced group on Casimirs can be constructed in a way similar to

generic case. For example, for the generator sα1,β2 in (N,M) = (3, 2) case from

sα1,β2 :

Zβ1,α1 7→
Zβ1,α1

Zα1,β2

Zα1,β2 7→
1

Zα1,β2

, Zβ2,α2 7→
Zβ2,α2

Zα1,β2

Zγ1,δ1 7→ Zα1,β2Zγ1,δ1 , Zδ1,γ2 7→ Zα1,β2Zδ1,γ2 , Zγ2,δ2 7→ Zα1,β2Zγ2,δ2 , Zδ2,γ1 7→ Zα1,β2Zδ2,γ1

(4.46)

one gets for the zig-zags

sα1,β2 : α1 7→ q
1
6β−1

2 , β2 7→ q
1
6α−1

1 , γaδa 7→ q−
1
6α1β2γaδa (4.47)

18For generic triangular Newton polygon each node of quiver is connected to six arrows (and corresponding

dimer lattice is hexagonal). However, in 2 × 2N case a partial cancelation happens: the arrows directed

from x×i1 to x×i2 annihilate the arrows from x×i2 to x×i1, and the same happens with x+
i1 and x+

i2, so only four

arrows at each node remain.
19We are grateful to Y. Yamada for clarification of this point.
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x+
31

x+
32

x×32

x×31

x+
21

x+
22

x×22

x×21

x+
11

x+
12

x×12

x×11

Figure 11. Quiver for (3, 2) case represented in ‘triangular’ form.

sα1,α2sα2,α1

sβ1,β2sβ2,β1

sγ1,γ2 sγ2,γ1

sδ1,δ2 sδ2,δ1

sα1,α2

sα1,β2

sβ1,β2

sγ1,γ2

sγ1,δ1

sδ1,δ2

Figure 12. Symmetry enhancement from W
(
A

(1)
1 ×A

(1)
1 ×A

(1)
1 ×A

(1)
1

)
to W (D

(1)
5 ).

which contains now ‘inversion’ of zig-zag, since αi and βi correspond to the opposite classes

in H1(T2,Z). Generally, for the action of A
(1)
5 on zig-zags one gets

sαiβi+1
: αi 7→ q

1
6β−1

i+1, βi+1 7→ q
1
6α−1

i , γaδa 7→ q−
1
6αiβi+1γaδa

sβiαi : αi 7→ q−
1
6β−1

i , βi 7→ q−
1
6α−1

i , γaδa 7→ q
1
6αiβiγaδa.

(4.48)

Remark 4.2. Further enhancement for N = M = 2 ‘small square’.

The group GQ for this case can be identified with the q-Painlevé VI symmetry group

W (D
(1)
5 ) (see e.g. [1]). It corresponds naively to the ‘double’ symmetry enhancement

A
(1)
1,α ×A

(1)
1,β → A

(1)
3,α,β , A

(1)
1,γ ×A

(1)
1,δ → A

(1)
3,γ,δ (4.49)

but it turns out moreover that generators of the ‘new’ extended groups do not commute.

For example the generators sα1β2 and sδ1γ2 satisfy

(sα1,β2sγ1,δ1)3 = 1 (4.50)

and this non-commutativity results in gluing of Dynkin quivers as shown on figure 12.

Another cluster realization of W
(
D

(1)
5

)
has been proposed in [1], given by generators

s0 = s+,+
11,22, s1 = s+,+

12,21, s2 = s+,+
11,12µ

+
11µ

+
12

s5 = s×,×21,12, s4 = s×,×11,22, s3 = s×,×11,21µ
×
11µ
×
21

(4.51)

in terms of mutations of the same bipartite graph. In our notation this generators are

s0 = sα1β2sδ1γ1sγ1γ2sδ1γ1sα1β2 , s1 = sα1β2sδ1γ1sδ1δ2sδ1γ1sα1β2 , s2 = sα1β2

s5 = sγ1δ1sα1β2sβ1β2sα1β2sγ1δ1 , s4 = sγ1δ1sα1β2sα1α2sα1β2sγ1δ1 , s3 = sγ1δ1 .
(4.52)

Two presentations can be mapped one to another by conjugation by sα1β2sγ1δ1sα1β2 .
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4.3 Towards bilinear equations

Let us finally turn to the issue of bilinear equations for the cluster tau-functions or A-

cluster variables. We postpone rigorous discussion of this issue for a separate publication,

but demonstrate here, how Hirota bilinear equations can arise in the systems, corresponding

to rectangle Newton polygons.

The simplest example of bilinear equations is provided by spider moves, or mutations

in a four-valent vertex of the Poisson quiver, see also figure 15 in appendix for the transfor-

mation of corresponding piece of a bipartite graph. Such transformation induce the only

change in τ -variables, which (for all unit coefficients)

τ0 7→ τ̄0 =
τ1τ3 + τ2τ4

τ0
or τ0τ̄0 = τ1τ3 + τ2τ4 (4.53)

obviously leads to bilinear equation. However, there is no a priori reason to get bilinear

equations from generic action by an element of GQ. For example, a single mutation in a

six-valent vertex rather leads to relation, which symbolically has form

τ τ̄ = τ3 + τ3 (4.54)

instead of bilinear. Sometimes one can get nevertheless a bilinear relation for a sequence

of mutations without no a priori reason for them to hold, see e.g. section 2.8 of [2]. We

are going to show in this section that the same happens for the transformations, induced

by the zig-zag permutations (e.g. {sβi,βi+1
} or {sγa,γa+1}), constructing their explicit action

on tau-variables.

For A-cluster algebras20 the role of Casimir functions is played by ‘coefficients’ [14],

taking values in some tropical semi-field P, see also discussion in [2]. For the case of

rectangle Newton polygons we label the generators of P by zig-zags (together with q), i.e.

P = Trop(q, {uαi ,uβi}i=1,...,N , {uγa ,uδa}i=1,...,M ) (4.55)

so that the coefficients are expressed by

y×ia = q
1

NM
(uαiuβi)

1
M

(uγauδa)
1
N

, y+
ia = q

1
NM

(uγauδa−1)
1
N

(uαiuβi+1
)

1
M

. (4.56)

The action of transformations szi,zi+1 on coefficients in this basis is equivalent to the action

on generators of P like in (4.28) on zig-zags, i.e.

sαi,αi+1 : uαi 7→ q
1
N uαi+1 , uαi+1 7→ q−

1
N uαi ,

sβi,βi+1
: uβi 7→ q−

1
N uβi+1

, uβi+1
7→ q

1
N uβi ,

sγa,γa+1 : uγa 7→ q
1
M uγa+1 , uγa+1 7→ q−

1
M uγa ,

sδa,δa+1 : uδa 7→ q−
1
M uδa+1 , uδa+1 7→ q

1
M uδa .

(4.57)

Coefficients could be encoded by ‘frozen’ vertices of quiver. This suggests principle that

we assign frozen variables to faces of dual surface, corresponding to zig-zag variables, while

mutable variables — to faces of original torus.

20For the definition of A-cluster algebra with coefficients and transition from X to A-cluster algebra see

appendix B.3.
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Let us now present an example of the action of the generator sβ1,β2 on τ -variables in

(N,M) = (3, 2) case. An explicit computation gives

τ̄+11
τ+11

τ̄×11
τ×11

τ̄+12
τ+12

τ̄×12
τ×12


=



u
1
2
β2

q
1
12 (uβ1uβ2)

1
2 q

2
12 u

1
2
β1

q
3
12 uβ1

q
3
12 u

1
2
β1

uβ2 q
1
12 u

1
2
β2
q

2
12 (uβ1uβ2)

1
2

q
2
12 u

1
2
β1

q
3
12 uβ1 u

1
2
β2

q
1
12 (uβ1uβ2)

1
2

q
1
12 u

1
2
β2
q

2
12 (uβ1uβ2)

1
2 q

3
12 u

1
2
β1

uβ2


· C ·



τ+31τ
×
21

τ+11τ
×
11

τ+32τ
×
21

τ+12τ
×
11

τ+32τ
×
22

τ+12τ
×
12

τ+31τ
×
22

τ+11τ
×
12


(4.58)

where C = diag

(
(uγ1uδ)

1
3 ,u

1
2
α1(uδ/uδ1)

1
3 , (uγ2uδ)

1
3 ,u

1
2
α1(uδ/uδ2)

1
3

)
, uδ = uδ1uδ2 . The

main point is that the matrix in the r.h.s. is nicely invertible so that these equations can

be rewritten in bilinear form

(uβ2 − q
1
3 uβ1)(uδuγ1)

1
3 τ+

31τ
×
21 = u

1
2
β2
τ̄+

11τ
×
11 − q

1
12 u

1
2
β1
τ̄×11τ

+
11

(uβ2 − q
1
3 uβ1)(uδ/uδ1)

1
3 τ+

32τ
×
21 = u

− 1
2

α1 τ̄
×
11τ

+
12 − q

1
12 u
− 1

2
α1 τ̄

+
12τ
×
11

(uβ2 − q
1
3 uβ1)(uδuγ2)

1
3 τ+

32τ
×
22 = u

1
2
β2
τ̄+

12τ
×
12 − q

1
12 u

1
2
β1
τ̄×12τ

+
12

(uβ2 − q
1
3 uβ1)(uδ/uδ2)

1
3 τ+

31τ
×
22 = u

− 1
2

α1 τ̄
×
12τ

+
11 − q

1
12 u
− 1

2
α1 τ̄

+
11τ
×
12

. (4.59)

This is actually a generic phenomenon for the zig-zag generators: the same happens, for

example, for the generator sδ1,δ2 from another component of GQ. One gets explicitly for

the transformation of A-cluster variables

t1 = C1 · C2 · t2, (4.60)

where

t1 =

(
τ̄+
32

τ+
32

τ̄×32

τ×32

τ̄+
22

τ+
22

τ̄×22

τ×22

τ̄+
12

τ+
12

τ̄×12

τ×12

)T

t2 =

(
τ+
31τ
×
31

τ+
32τ
×
32

τ+
21τ
×
31

τ+
22τ
×
32

τ+
21τ
×
21

τ+
22τ
×
22

τ+
11τ
×
21

τ+
12τ
×
22

τ+
11τ
×
11

τ+
12τ
×
12

τ+
31τ
×
11

τ+
32τ
×
12

)T (4.61)

C1 =



uδ2 q
1
12 u

2
3

δ2
q

2
12 (uδ1u

2
δ2

)
1
3 q

3
12 (uδ1uδ2)

1
3 q

4
12 (u2

δ1
uδ2)

1
3 q

5
12 u

2
3

δ1

q
5
12 uδ1 u

2
3

δ2
q

1
12 (uδ1u

2
δ2

)
1
3 q

2
12 (uδ1uδ2)

1
3 q

3
12 (u2

δ1
uδ2)

1
3 q

4
12 u

2
3

δ1

q
4
12 (u2

δ1
uδ2)

1
3 q

5
12 u

2
3

δ1
uδ2 q

1
12 u

2
3

δ2
q

2
12 (uδ1u

2
δ2

)
1
3 q

3
12 (uδ1u

2
δ2

)
1
3

q
3
12 (u2

δ1
uδ2)

1
3 q

4
12 u

2
3

δ1
q

5
12 uδ1 u

2
3

δ2
q

1
12 (uδ1u

2
δ2

)
1
3 q

2
12 (uδ1uδ2)

1
3

q
2
12 (uδ1u

2
δ2

)
1
3 q

3
12 (uδ1uδ2)

1
3 q

4
12 (u2

δ1
uδ2)

1
3 q

5
12 u

2
3

δ1
uδ2 q

1
12 u

2
3

δ2

q
1
12 (uδ1u

2
δ2

)
1
3 q

2
12 (uδ1uδ2)

1
3 q

3
12 (u2

δ1
uδ2)

1
3 q

4
12 u

2
3

δ1
q

5
12 uδ1 u

2
3

δ2


(4.62)

C2 = diag
(

(uα/uα3
)

1
2 u

1
3
γ2 , (uαuβ3

)
1
2 , (uα/uα2

)
1
2 u

1
3
γ2 , (uαuβ2

)
1
2 , (uα/uα1

)
1
2 u

1
3
γ2 , (uαuβ1

)
1
2

)
(4.63)
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with uα = uα1uα2uα3 . Again, inverting matrix C1 we end up with the set of bilinear

equations 

(uδ2 − q
1
2 uδ1)(uα/uα3)

1
2 τ+

31τ
×
31 = u

− 1
3

γ2 τ̄
+
32τ
×
32 − q

1
12 u
− 1

3
γ2 τ̄

×
32τ

+
32

(uδ2 − q
1
2 uδ1)(uαuβ3)

1
2 τ+

21τ
×
31 = u

1
3
δ2
τ̄×32τ

+
22 − q

1
12 u

1
3
δ1
τ̄+

22τ
×
32

(uδ2 − q
1
2 uδ1)(uα/uα2)

1
2 τ+

21τ
×
21 = u

− 1
3

γ2 τ̄
+
22τ
×
22 − q

1
12 u
− 1

3
γ2 τ̄

×
22τ

+
22

(uδ2 − q
1
2 uδ1)(uαuβ2)

1
2 τ+

11τ
×
21 = u

1
3
δ2
τ̄×22τ

+
12 − q

1
12 u

1
3
δ1
τ̄+

12τ
×
22

(uδ2 − q
1
2 uδ1)(uα/uα1)

1
2 τ+

11τ
×
11 = u

− 1
3

γ2 τ̄
+
12τ
×
12 − q

1
12 u
− 1

3
γ2 τ̄

×
12τ

+
12

(uδ2 − q
1
2 uδ1)(uαuβ1)

1
2 τ+

31τ
×
11 = u

1
3
δ2
τ̄×12τ

+
32 − q

1
12 u

1
3
δ1
τ̄+

32τ
×
12

. (4.64)

It remains yet unclear, how to derive bilinear equations systematically for compositions

of elements of GQ. We are going to return to this issue together with discussion of their

solutions elsewhere.

5 Conclusion

In this paper we have presented extra evidence that cluster integrable systems provide

convenient framework for the description of 5d super-symmetric Yang-Mills theory. It has

been shown that cluster integrable systems with the Newton polygons SA(2,Z)-equivalent

to the N ×M rectangles are isomorphic to the XXZ-like spin chains of rank M on N sites

(or vice versa) on the ‘lowest orbit’. Due to special symmetry of the Kasteleyn operators,

defining spectral curves of these systems, it turns to be possible to express the Lax operators

of spin chain in terms of the X-cluster variables. Inhomogeneities and twists of the chain

can be expressed via (part of) the zig-zag paths on the Goncharov-Kenyon bipartite graphs.

Rectangle Newton polygons generally correspond to linear quiver gauge theories [4]

so that inhomogeneities, ‘on-site’ Casimirs and twists define the fundamental and bi-

fundamental masses together with the bare couplings on the Yang-Mills side. The pro-

posed cluster description possesses obvious symmetry between the structure in horizontal

and vertical directions so that one gets a natural spectral (or fiber-base or length-rank)

duality, interchanging also the rank and length of spin chains. Shear shift of one side of a

Newton polygon to the shape of N ×M parallelogram results in the multiplication of the

monodromy operator of the spin chain by the cyclic twist matrix.

We have found that the cluster mapping class group GQ for the ‘spin-chain class’ always

contains a subgroup isomorphic to

W̃
(
A

(1)
N−1,α ×A

(1)
N−1,β

)
× W̃

(
A

(1)
M−1,γ ×A

(1)
M−1,δ

)
o Z (5.1)

whose generators act on zig-zag paths by permutations. Moreover, their action on the A-

cluster variables gives rise to the q−difference bilinear relations. The symmetry enhance-

ment happens in the case N = 2 (or M = 2) and results in ‘gluing’ of two copies of A
(1)
N−1
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into A
(1)
2N−1. If both N = M = 2 the symmetry W̃

(
A

(1)
1 ×A

(1)
1

)
× W̃

(
A

(1)
1 ×A

(1)
1

)
o Z

enhances to the D
(1)
5 symmetry group of q-PVI equation.

Our first results in this direction actually produce more question than give answers.

The following obvious questions (at least!) can be addressed for the further investigations:

• Trivial rank-N spin chain on a single site once twisted becomes spectrally dual to

relativistic Toda chain, see section 3.2. Can we similarly identify the spectral duals

of the twisted chains of arbitrary lengths and twists, whose Newton polygons are

generic parallelograms — or even extend this to generic four-gons? This question is

also very interesting on the gauge-theory side, where by now only the hyperelliptic

case of ‘generalized Toda’ (four boundary points and all internal points are lying on

one line — pure SU(N) theory with the CS term) was studied in [2].

• We have derived in section 4.3 the bilinear relations, coming out of the action of

a single ‘permutation’ generator of GQ on A-cluster variables, acting by transposi-

tions on zig-zags. Is there any systematic principle to derive bilinear equations for

compositions of such transformations?

• In [1, 2, 6, 7, 24] and [27] the solutions for q-difference bilinear equations and their

degenerations, arising from certain cluster integrable systems, were found in terms of

Fourier-transformed Nekrasov functions for the corresponding 5d gauge theories. As

partition functions for the 5d linear quiver gauge theories are well known, a natural

further step is to show that they solve the bilinear equations found here (and their

hypothetical generalizations!).
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A From quantum to classical spin chains

We start with brief overview of the generalities of R-matrix formalism for the quantum

XXZ-like spin chain, following [25, 34], and then turn to the details of their classical limit,

presenting explicit formulas for the rank 2 and 3 cases.
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A.1 Quantum XXZ spin chain

Quantum glM spin chain of XXZ type can be defined using quantum monodromy matrix

T (u), satisfying so-called RTT -relations:

R(u, v) · (T (u)⊗ 1) · (1⊗ T (v)) = (1⊗ T (v)) · (T (u)⊗ 1) ·R(u, v). (A.1)

Here T (u) =
∑M

i,j=1Eij ⊗ Tij(u) (two-sided formal series in spectral parameter u, as we

consider double of RTT algebra) acts in the product of ‘auxiliary’ space V = CM (Eij ∈
End(V ) — standard matrix units), and ‘quantum’ Hilbert space of the chain H, Tij(u) ∈
End(H). The trigonometric R-matrix, R ∈ End(V ⊗ V ), is given by:

R(u, v) =

M∑
i=1

Eii ⊗ Eii +

√
u/v −

√
v/u

q
√
u/v − q−1

√
v/u

∑
i 6=j

Eii ⊗ Ejj+ (A.2)

+
q − q−1

q
√
u/v − q−1

√
v/u

∑
i 6=j

(u/v)−
1
2
sijEij ⊗ Eji

with the sign-factors

sij =


+1, i > j

−1, i < j

0, i = j

. (A.3)

The integrals of motion of the chain come from the coefficients of expansion of the transfer

matrix T (u) = trV T (u) =
∑

k∈Z u
kHk. Their commutativity immediately follows from

the RTT -relations (A.1):

0 = [T (u), T (v)] =

+∞∑
m,n=−∞

umvn[Hm, Hn] ⇒ [Hm, Hn] = 0. (A.4)

For the higher-rank case M > 2 this does not provide the complete set of commuting

Hamiltonians, one has to add higher transfer matrices, or take the coefficients of the so-

called quantum spectral curve equation

S(λ, µ) = detq (T (µ)− λ · 1) =
∑
i,j

Hijλ
iµj (A.5)

with the quantum determinant is defined by

detqF (u) =
∑
σ

(−1)sign(σ)F1,σ(1)(u)F2,σ(2)(uq) . . . FM,σ(M)(uq
M ) . (A.6)

The center of the RTT algebra (A.1) ([Tij(u), Ck] = 0 ∀i, j) is generated by quantum

determinant of T -operator: detqT (u) =
∑
Cku

k.

A seminal statement, proven in [8], claims that the algebra defined by (A.1) is iso-

morphic to the quantum affine algebra Uq(ĝlM ). More precisely, there is an isomorphism

between the algebra, generated by modes of the currents

L±(z) =

+∞∑
k=0

M∑
i,j=1

Eij ⊗ L±i,j [±k]z∓k (A.7)
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satisfying the RTT -relations (A.1)

R(u, v) · (L±(u)⊗ 1) · (1⊗ L±(v)) = (1⊗ L±(v)) · (L±(u)⊗ 1) ·R(u, v) (A.8)

together with

R
(
uq

c
2 , vq−

c
2

)
· (L+(u)⊗ 1) · (1⊗ L−(v)) = (1⊗ L−(v)) · (L+(u)⊗ 1) ·R

(
uq−

c
2 , vq

c
2

)
L+
j,i[0] = L−i,j [0] = 0, L+

k,k[0]L−k,k[0] = 1, 1 ≤ i < j ≤M, 1 ≤ k ≤M
(A.9)

and quantum affine algebra Uq(ĝlM ) with the central extension c. Hence, different in-

tegrable systems, constructed from trigonometric RTT -relations can be identified with

different representations of Uq(ĝlM ).

Among these are spin chains on N sites, exploiting the co-product property that if

T1(u) and T2(v) both satisfy RTT -relations, and act in different quantum spaces, then so

does T = T1(u)T2(v), where the product is taken over the common auxiliary space. To

construct a chain of length N , one has to associate an L-operator in some representation

πk of the Uq(ĝlM ) with each site of the chain, and construct quantum monodromy matrix,

taking product in the common auxiliary space

T (u) = L(N)(u/uN ) . . . L(1)(u/u1)Q (A.10)

where uk ∈ C are so-called inhomogeneities, L(k)(u) = πk(L
+)(u) and Q ∈ End(V ) —

a ‘twist’ matrix, having trivial quantum space. Such approach allows to construct many

non-trivial integrable systems by assigning to each site a simple representation of Uq(ĝlM ).

Conventional way to do so in case of zero central charge, is to apply first evaluation homo-

morphism Evz : Uq(ĝlM )→ Uq(glM )

Evz(L+
i,j [0]) = L+

i,j , i ≤ j, Evz(L+
i,j [0]) = 0 , i ≥ j,

Evz(L−i,j [0]) = 0 , i ≤ j, Evz(L−i,j [0]) = L−i,j , i ≥ j,

Evz(L±i,j [±k]) = z±kL+
i,j , i ≤ j, k > 0 Evz(L±i,j [±k]) = z±kL−i,j , i ≥ j, k > 0,

L+
iiL
−
ii = 1.

(A.11)

Positive and negative currents could be collected to:

Evz(L+(u)) =
1√

u/z −
√
z/u

(√
u

z
L+ +

√
z

u
L−
)

= Lev(u/z)

Evz(L−(u)) = − 1√
u/z −

√
z/u

(√
u

z
L+ +

√
z

u
L−
)

= −Lev(u/z)

, L± =

M∑
i,j=1

Eij ⊗ L±ij .

(A.12)

Homomorphism Evz is well defined only for positive or negative sub-algebra at once as

geometrical progression for L+(u) converges if u/v < 1 and for L−(u) if u/v > 1. But

luckily we need only positive part for our purposes. Note also that L+ as a matrix is upper
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triangular, while L− — lower triangular. If we substitute Lev into RTT relation we can

decompose it by degrees of spectral parameters, and get for L±

R+ · (L± ⊗ 1) · (1⊗ L±) = (1⊗ L±) · (L± ⊗ 1) ·R+ (A.13)

R+ · (L+ ⊗ 1) · (1⊗ L−) = (1⊗ L−) · (L+ ⊗ 1) ·R+ (A.14)

where we used that R(u, v) can be represented as(
q
√
u/v − q−1

√
v/u

)
·R(u, v) =

√
u

v
R+ +

√
v

u
R− (A.15)

with

R+ = q
M∑
i=1

Eii ⊗ Eii +
∑
i 6=j

Eii ⊗ Ejj + (q − q−1)
∑
i<j

Eij ⊗ Eji (A.16)

R− = q−1
M∑
i=1

Eii ⊗ Eii +
∑
i 6=j

Eii ⊗ Ejj − (q − q−1)
∑
i>j

Eij ⊗ Eji (A.17)

and relations

PR±P =
(
R∓
)−1

, R+ −R− = (q − q−1)P (A.18)

where P =
∑

i,j Eij ⊗Eji — permutation matrix. The situation here is similar to the one,

which was in the affine context: RTT algebra, now without spectral parameters, generated

by matrix elements of L± satisfying (A.13)–(A.14) is isomorphic to the quantum group

Uq(glM ) in the Drinfeld-Jimbo definitions, if we put

L+
i,j =


(q − q−1)ejiq

hj i < j

qhi i = j

0 i > j

, L−i,j =


0 i < j

q−hi i = j

(q−1 − q)q−hieji i > j

(A.19)

where ei,j — generators of Uq(glM ), corresponding to the roots, hk — to the Cartan sub-

algebra [8, 16]. Generators, corresponding to the simple roots ei = ei,i+1, fi = ei+1,i satisfy

relations which are deformation of the usual glM relations

qhaeb = qδab−δa,b+1ebq
ha , qhafb = qδa,b+1−δabfbq

ha (A.20)

[ea, fb] = δab
qhaq−ha+1 − q−haqha+1

q − q−1
, qhaqhb = qhbqha (A.21)

and q-deformed Serre relations

f2
afa−1 − (q + q−1)fafa−1fa + fa−1f

2
a = 0, f2

a−1fa − (q + q−1)fa−1fafa−1 + faf
2
a−1 = 0

(A.22)

e2
aea−1 − (q + q−1)eaea−1ea + ea−1e

2
a = 0, e2

a−1ea − (q + q−1)ea−1eaea−1 + eae
2
a−1 = 0.

(A.23)

Non-simple roots could be expressed using recurrence relation

ea,c = ea,beb,c − qeb,cea,b , ec,a = ec,beb,a − q−1eb,aec,b , a < b < c. (A.24)

Algebra Uq(glM ) plays here role of deformation of the usual algebra of spin variables.

So considering any representation of Uq(glM ), we construct L-operators satisfying RTT

relation, and consequently — integrable spin chain of XXZ type.
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A.2 Classical XXZ spin chain

Classical limit of the quantum spin chain appears when we replace algebra of quantum

operators in the limit ~ → 0 by some commutative Poisson algebra of classical dynamical

variables. Poisson bracket is coming from the usual prescription

{A,B} = lim
~→0

κ

~
[Â, B̂]. (A.25)

Quantum parameter can be introduced as q = e~. Additional parameter κ ∈ C× provides

us with the family of non-isomorphic Poisson algebras. Classical r-matrix appears as a

first order of the expansion R(u, v, e~)→ 1⊗ 1 + ~ r(u, v) +O(~2), and looks

r(u, v) = −
√
u/v +

√
v/u√

u/v −
√
v/u

∑
i 6=j

Eii⊗Ejj +
2√

u/v −
√
v/u

∑
i 6=j

(u/v)−
1
2
sijEij ⊗Eji . (A.26)

Note that we don’t assume any dependence of u and v on ~. This gives for the RLL relation

{L(u)⊗L(v)} = κ[L(u)⊗L(v), r(u/v)], {L(u)⊗L(v)} =
∑
ijkl

{Lij(u)⊗Lkl(v)} Eij ⊗Ekl

(A.27)

with the classical L-operator

Lcl+(u) = lim
~→0

Lev(u, q = e~) = (A.28)

=
1

u
1
2−u− 1

2

 M∑
i=1

(
u

1
2 eS

0
i +u−

1
2 e−S

0
i

)
Eii+2u

1
2

∑
i<j

Sjie
S0
jEij−2u−

1
2

∑
i>j

Sjie
−S0

iEij

 .

For classical limit of Uq(glM ), we assume

hi = S0
i /~, eij = Sij/~ (ei = ei,i+1 = S+

i /~, fi = ei+1,i = S−i /~). (A.29)

Their Poisson brackets and classical limit of Serre relations are

{S0
a, S

±
b }=±κ(δab−δa,b+1)S±b , {S+

a , S
−
b }=κδab sinh(S0

a−S0
a+1), (A.30)

{S+
a , {S+

a , S
+
a−1}}=κ(S+

a )2S+
a−1, {S+

a−1, {S
+
a−1, S

+
a }}=κ(S+

a−1)2S+
a (A.31)

{S−a , {S−a , S−a−1}}=κ(S−a )2S−a−1, {S−a−1, {S
−
a−1, S

−
a }}=κ(S−a−1)2S−a (A.32)

{S0
a, S

0
b }= 0. (A.33)

Generators, corresponding to non-simple roots are coming from

κ−1{Sab, Sbc} = Sac + SabSbc, a < b < c (A.34)

κ−1{Sab, Sbc} = Sac − SabSbc, a > b > c . (A.35)

Different Poisson algebra appears, if we put q = e−~. R-matrix is tending to R(u, v) →
1⊗ 1− ~ r(u, v) +O(~2) with the same r-matrix. Classical RLL equation changes sign to

{L(u)⊗ L(v)} = κ[r(u/v), L(u)⊗ L(v)]. (A.36)
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L-operator, represented through the classical Uq(glM ) generators becomes

Lcl−(u) = lim
~→0

Lev(u, q = e−~) = (A.37)

=
1

u
1
2−u− 1

2

 M∑
i=1

(
u

1
2 e−S

0
i +u−

1
2 eS

0
i

)
Eii−2u

1
2

∑
i<j

Sjie
−S0

jEij+2u−
1
2

∑
i>j

Sjie
S0
iEij

 .

It is different from the Lcl+(u) only by the change of signs near generators

Lcl+(u;Sij , S
0
i ) = Lcl−(u;−Sij ,−S0

i ). (A.38)

Together, this results in that the only relations which change are

κ−1{Sab, Sbc} = Sac − SabSbc, a < b < c (A.39)

κ−1{Sab, Sbc} = Sac + SabSbc, a > b > c . (A.40)

The general recipe to turn expressions from one algebra to another is to invert sign at all

the simple generators, and at all the brackets. As a product of L-operators in both cases

q = e±~ satisfies classical RTT equation, we can construct classical monodromy matrix

T (u) = L(N)(u/uN ) . . . L(1)(u/u1)Q. (A.41)

Commuting Hamiltonians of the classical XXZ spin chain are coefficients of the classical

spectral curve

S(λ, µ) = det(T (µ)− λ) = detT (µ) + . . .+ (−λ)n−1 TrT (µ) + (−λ)n (A.42)

where the Casimir functions are generated by det T (µ).

Example. Classical limit of Uq(gl2). Algebra Uq(gl2) has rank 2 and has 4 generators

— S0
1 , S

0
2 , S12 = S+

1 , S21 = S−1 . Poisson brackets in the both cases q = e±~ are similar

{S0
1 , S

0
2} = 0, {S0

1 , S
±
1 } = ±κS±1 , {S0

2 , S
±
1 } = ∓κS±1 , {S+

1 , S
−
1 } = κ sinh(S0

1 − S0
2) .

(A.43)

Lax operators are

Lcl±(u) =
1

u
1
2 − u−

1
2

(
u

1
2 e±S

0
1 + u−

1
2 e∓S

0
1 ±2u

1
2S−1 e

±S0
2

∓2u−
1
2S+

1 e
∓S0

2 u
1
2 e±S

0
2 + u−

1
2 e∓S

0
2

)
. (A.44)

Casimirs are generated by

detLcl±(u) =
1

(u
1
2 − u−

1
2 )2

(
ue±S

0
+ u−1e∓S

0
+ 2(cosh(S0

1 − S0
2) + 2S+

1 S
−
1 )
)
. (A.45)

So there are two independent Casimirs — total projection of the spin S0 = S0
1 + S0

2 and

‘square’ of the spin (or quadratic Casimir) C2 = cosh(S0
1 − S0

2) + 2S+
1 S
−
1 . If their values

are fixed, the resulting symplectic leaf is 2-dimensional. Coordinates S0
1 − S0

2 and S+
1 /S

−
1
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could be chosen on it, for example. Form usual for sl2 chain appears if we transform Lax

operator by

u 7→ u e∓(S0
1+S0

2), then L(u) 7→ (u
1
2 − u−

1
2 )

(
u−1/2 0

0 1

)
· L(u) ·

(
u1/2 0

0 1

)
. (A.46)

Introducing variables

S̃0 =
1

2

(
S0

1 − S0
2

)
, S̃+ = S+

1 e
±S̃0

, S̃− = S−1 e
∓S̃0

. (A.47)

Lax operators becomes

Lcl±(u) =

(
u

1
2 e±S̃

0
+ u−

1
2 e∓S̃

0 ±2S̃−

∓2S̃+ u
1
2 e∓S̃

0
+ u−

1
2 e±S̃

0

)
. (A.48)

New variables satisfy almost the same relations

{S̃0, S̃±} = ±κS̃0, {S̃+, S̃−} = κ sinh(2S̃0). (A.49)

Note that only in 2 × 2 case it is possible to eliminate spectral parameter from the off-

diagonal elements of matrix.

Example. Classical limit of Uq(gl3). Algebra Uq(gl3) has rank 3 and 9 generators.

In the classical limit, generators corresponding to the simple positive roots are S12 =

S+
1 , S23 = S+

2 . If q = e~, only non-simple positive root S13 can be defined using relation

κ−1{S+
1 , S

+
2 } = S+

1 S
+
2 + S13. (A.50)

Substituting this into Serre relations

{S+
1 , {S

+
1 , S

+
2 }} = κ2(S+

1 )2S+
2 , {S+

2 , {S
+
2 , S

+
1 }} = κ2(S+

2 )2S+
1 (A.51)

we can get two remaining brackets

{S+
1 , S13} = −κS+

1 S13, {S+
2 , S13} = κS+

2 S13 . (A.52)

Analogously, S21 = S−1 , S32 = S−2 , S31 are negative generators, with the brackets

κ−1{S−1 , S
−
2 } = S−1 S

−
2 − S31 (A.53)

{S−1 , S31} = −κS−1 S31, (A.54)

{S−2 , S31} = κS−2 S31 . (A.55)

Cartan part has got three commuting generators S0
1 , S

0
2 , S

0
3 . Their Poisson brackets with

other generators are

{S0
1 , S

±
1 } = ±κS±1 , {S

0
2 , S

±
1 } = ∓κS±1 , {S

0
3 , S

±
1 } = 0

{S0
1 , S

±
2 } = 0, {S0

2 , S
±
2 } = ±κS±2 , {S

0
3 , S

±
2 } = ∓κS±2

{S0
1 , S

±
3 } = ∓κS±3 , {S

0
2 , S

±
3 } = 0, {S0

3 , S
±
3 } = ±κS±3 .

(A.56)
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Or generally

{S0
k , Sij} = κ (δik − δjk)Sij . (A.57)

For the Poisson brackets between positive and negative simple roots we have got

{S+
1 , S

−
1 } = κ sinh

(
S0

1−S0
2

)
, {S+

2 , S
−
2 } = κ sinh

(
S0

2−S0
3

)
, {S+

3 , S
−
3 } = κ sinh

(
S0

3−S0
1

)
(A.58)

{S±1 , S
∓
2 } = 0, {S±2 , S

∓
3 } = 0, {S±3 , S

∓
1 } = 0 . (A.59)

Finally, for non-simple roots using Jacobi identity

{S13, S
−
1 } = −κS+

2 e
S0
1−S0

2 , {S13, S
−
2 } = κS+

1 e
S0
3−S0

2 (A.60)

{S31, S
+
1 } = −κS−2 e

S0
1−S0

2 , {S31, S
+
2 } = κS−1 e

S0
3−S0

2 (A.61)

{S13, S31} = κ sinh(S0
1 − S0

3) . (A.62)

In agreement with the general prescription, the relations, which are being changing, if we

choose q = e−~, are

κ−1 {S+
1 , S

+
2 } = −S+

1 S
+
2 + S13, {S+

1 , S13} = κS+
1 S13, {S+

2 , S13} = −κS+
2 S13

(A.63)

κ−1 {S−1 , S
−
2 } = −S−1 S

−
2 − S31, {S−1 , S31} = κS−1 S31, {S−2 , S31} = −κS−2 S31

(A.64)

{S13, S
−
1 } = −κS+

2 e
−S0

1+S0
2 , {S13, S

−
2 } = κS+

1 e
−S0

3+S0
2 (A.65)

{S31, S
+
1 } = −κS−2 e

−S0
1+S0

2 , {S31, S
+
2 } = κS−1 e

−S0
3+S0

2 . (A.66)

The Lax operator is

Lcl+(u) =
1

u
1
2 − u−

1
2


u

1
2 eS

0
1 + u−

1
2 e−S

0
1 2u

1
2S−1 e

S0
2 2u

1
2S−31e

S0
3

−2u−
1
2S+

1 e
−S0

2 u
1
2 eS

0
2 + u−

1
2 e−S

0
2 2u

1
2S−2 e

S0
3

−2u−
1
2S+

13e
−S0

3 −2u−
1
2S+

2 e
−S0

3 u
1
2 eS

0
3 + u−

1
2 e−S

0
3

 (A.67)

which gives generating function of the Casimirs:

C(u) = detLcl+(u) =
1

(u
1
2 − u−

1
2 )3

(
u3/2e−S

0
+ u1/2e−S

0
C+

3 + u−1/2eS
0
C−3 + u−3/2eS

0
)

where

S0 = S0
1 + S0

2 + S0
3 (A.68)

C+
3 = e2S0

1 + e2S0
2 + e2S0

3 + 4eS
0
1+S0

2S12S21 + 4eS
0
1+S0

3S13S31+ (A.69)

+ 4eS
0
2+S0

3S23S32 + 8eS
0
1+S0

3S32S21S13

C−3 = e−2S0
3 + e−2S0

2 + e−2S0
1 + 4e−S

0
1−S0

2S12S21 + 4e−S
0
1−S0

3S13S31+ (A.70)

+ 4e−S
0
2−S0

3S23S32 − 8e−S
0
1−S0

3S12S23S31

note that if we pass from Lcl+ to Lcl−, Casimirs would change S0 → −S0, C±3 → C∓3 .
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B Cluster integrable system

Here we remind some basics of the cluster classical integrable systems, which have two

equivalent constructions:

• A combinatorial way [17] assigns to a convex Newton polygon a bipartite graph Γ

on torus T2. The cluster variables {xi} are then just monodromies of C×-valued

connection around the faces of Γ. The spectral curve of integrable system is given by

dimer’s partition function on Γ ⊂ T2.

• A group theory construction exploits the Poisson submanifolds or double Bruhat

cells, parameterized by cyclically irreducible words in (W × W )] (the co-extended

double affine Weyl group of P̂GL(N)) [13]. The structure of cluster Poisson variety

is coming from restriction of standard trigonometric r-matrix bracket [11], while the

integrals of motion are given by Ad-invariant functions on the Poisson submanifold.

B.1 X -cluster variety

X -cluster variety is defined by the set of split toric charts (C×)d assigned with d×d integer-

valued and skew-symmetric exchange matrix ε. Such a pair is called seed or cluster seed.

Coordinate functions xi ∈ C× on these charts are Poisson variables with the logarithmically

constant Poisson bracket

{xi, xj} = εijxixj . (B.1)

The matrix ε can be encoded by quiver Q — an oriented graph, whose vertices are labeled

by cluster variables, and number of arrows from vertex i to j is equal21 to εij . Generally

the Poisson bracket (B.1) has Casimir functions Z(x), {Z, xi} = 0 for any xi, the number

of independent Casimir functions coincides with the dimension of kernel of ε.

The cluster seeds are glued together by special coordinate birational transformations —

mutations µk : ({xi}, ε)→ ({x′i}, ε′), assigned to each vertex of the quiver Q or variable xk:

xi 7→ x′i =

{
x−1
i , i = k

xi
(
1 + xsgn εik

k

)εik , i 6= k
(B.2)

εij 7→ ε′ij =

{
−εij , i = k or j = k,

εij +
εik|εkj |+εkj |εik|

2 , otherwise
. (B.3)

The transformation of exchange matrix can be easily reformulated as transformation of

corresponding quiver. Mutations are the Poisson maps, i.e.

{x′i, x′j} = ε′ijx
′
ix
′
j , (B.4)

Collection of seeds glued by mutations is called X -cluster variety.

Denote by GQ the stabilizer of the quiver Q — the group consisting of composition of

mutations and permutations of the vertices, which maps quiver Q to itself: such transfor-

mations nevertheless generate non-trivial maps of the cluster variables {xi}. This group is

called the mapping class group of X -cluster variety.

21The arrows from any vertex to itself are forbidden and any two opposite arrows should be annihilated.
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B.2 From bipartite graph to cluster integrable system

X -cluster variety from bipartite graph. For a bipartite graph Γ ↪→ T2 embedded

in torus (without self-intersections) the vertices are divided into black and white subsets

B,W ⊂ C0(Γ) so that the black vertices are connected only with the white ones and

visa versa. We chose orientation of edges from black to white, and assume that graph is

connected and all 2-valent vertices are contracted.

The coordinates X = {xγ ∈ C× | γ ∈ H1(Γ,Z)} of GK integrable system are multi-

plicative functions on H1(Γ,Z), considered as an Abelian group, i.e. xγ1xγ2 = xγ1+γ2 . Any

element γ ∈ H1(Γ,Z) can be decomposed as

γ = nAγA + nBγB +
∑
i

kifi, nA, nB, ki ∈ Z (B.5)

where γA, γB form a basis in H1(T2,Z), while F = {fi} = {∂Bi} is the set of faces or

boundaries of the disks T2\Γ = tiBi with the orientation induced from surface, generating

H1(Γ,Z)/H1(T2,Z) modulo single relation
∑

k fk = 0. Therefore, there is an exact sequence

0→ Z→ F→ H1(Γ,Z)→ H1(T2,Z)→ 0 . (B.6)

The set of face variables {xf |f ∈ F} are coordinates on the toric chart on XΓ, these are the

X-cluster variables, transforming rationally under the cluster mutations or ‘spider moves’

of bipartite graph. Relation
∑

k fk = 0 can be relaxed, this results in deautonomization

q =
∏
i xfi 6= 1 of cluster integrable system and leads to non-trivial q-dynamics.

Exchange matrix of the cluster seed is given by intersection form on the dual surface

Ŝ, obtained from Γ by gluing disks, which become faces of Ŝ, to zig-zag paths Z,22 and

forgetting structure of the torus. Embedding π̂ : Γ ↪→ Ŝ allows to consider any cycle

γ ∈ H1(Γ,Z) as an element of H1(Ŝ,Z), which is equipped with non-degenerate skew-

symmetric intersection form 〈· , ·〉 : H1(Ŝ,Z) × H1(Ŝ,Z) → Z, which defines the Poisson

bracket on X by

{xγ , xγ′} = 〈π̂γ, π̂γ′〉xγxγ′ . (B.7)

Intersection form computed on faces F give exchange matrix of cluster seed εij = 〈fi, fj〉.
Effective way of writing this matrix is the following: for each black vertex, draw arrows in

the clockwise direction between each pair of consecutive faces, which have this vertex as a

corner. Then matrix element εij is equal to the alternated number of arrows from fi to fj ,

see figure 13.

Classes of zig zag paths in H1(T2,Z) are in one to one correspondence with the bound-

ary intervals of Newton polygon ∆, and this correspondence is the simple way to build ∆

by bipartite graph. They are trivial in H1(Ŝ,Z) so that the variables xz, corresponding to

the zig-zag paths z ∈ H1(Γ,Z) are Casimir functions of the bracket (B.7), i.e.

{xz, xγ} = 0, z ∈ Z, ∀γ ∈ H1(Γ,Z). (B.8)

22Zig-zags could be easily found, as they are presented by paths on Γ, which turn maximally right at each

black vertex, and turn maximally left at each white one. In the central and right pictures from figure 13

the zig-zag paths for Toda chain on two sites are drawn.
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x4 x2

x3x1

α

β

γ

δ

(1, 2) (2, 2)

(0, 0) (1, 0)

Figure 13. Left: bipartite graph for the two-particle Toda chain, small arrows give the Poisson

structure from figure 17. Center: zig-zag paths α, β, γ, δ. Right: Newton polygon obtained from

zig-zags as elements H1(T2,Z). Numbers are labeling degrees of (λ, µ) in spectral curve (B.13).

Zig-zag variables xzi always present non-trivial elements from H1(T2,Z), so single zig-zag

itself cannot be expressed via the cluster variables. On the central and right pictures from

figure 13 zig-zag paths for the Toda chain on two sites are drawn. Casimir Z from the

example from previous sub-section in terms of it is given by Z = xαxβ .

Spectral curve. Now, we are ready to construct Hamiltonians of integrable system,

which is given by dimer partition function on it.

Perfect matching on bipartite graph Γ is such configuration of edges D ⊂ C1(Γ) that

each vertex has one adjacent edge from D. Such configurations has specific property that

∂D = W − B. Fixing any D0 ⊂ C1(Γ) we can put an element D − D0 ∈ C1(Γ), which

is closed, into correspondence to any perfect matching. Any D − D0 under decomposi-

tion (B.5) can be presented as

D −D0 = nA(D −D0)γA + nB(D −D0)γB +
∑
i

ki(D −D0)fi . (B.9)

Denoting variables xi = xfi , λ = xγA , µ = xγB dimer partition function of bipartite graph

Γ could be defined as

ZΓ,D0(λ, µ) =
∑
D

λnA(D−D0)µnB(D−D0)
∏
i

x
ki(D−D0)
i . (B.10)

Equation ZΓ(λ, µ) = 0 with λ, µ ∈ C× defines curve C ⊂ C××C×. The curve C is spectral

curve of integrable system. Collecting terms corresponding to the same degrees of spectral

parameters

ZΓ,D0(λ, µ) =
∑

(i,j)∈N

λiµjHij , N ⊂ Z2 (B.11)

we get Hamiltonians Hij of the Goncharov-Kenyon integrable system with the Newton

polygon ∆. Change of the base configuration D0 just multiplies partition function by

monomial

ZD′0 = xD0−D′0ZD0 , xD0−D′0 = λnA(D0−D′0)µnB(D0−D′0)
∏
i

x
ki(D0−D′0)
i . (B.12)
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In [17] authors proved for the special choose of D0 that the model is integrable — i.e.

that {Hij ,Hkl} = 0, and the number of independent Hamiltonians is half of the dimension

of phase space. Hamiltonians which correspond to the boundary integral points of N are

Casimirs of Poisson bracket, and have to be fixed, to get symplectic leaf with non-degenerate

Poisson bracket. Boundary intervals of ∂N are in one to one correspondence with zig-zag

paths. Vector presenting boundary interval coincides with the class of corresponding zig-

zag in H1(T2,Z). Choice of D0 proposed in [17] are so that Hij = 1 for one corner of

Newton polygon.

Important detail which remained out of the scope yet is that we have to choose con-

crete representative in H1(Γ,Z) for cycles γA and γB. Usually, spectral parameters are

expected to commute with all dynamical variables of the system, so γA and γB have to

be chosen as an integral combinations of zig-zag paths. However, it is not always pos-

sible — even for the simplest example of bipartite graph from figure 13, zig-zags are

(1, 0), (1, 2), (−1, 0), (−1,−2)-cycles, and subgroup generated by them in H1(T2,Z) has

index two. Generally, this order is d = |H1(T2,Z)/Z|, so by choosing spectral parame-

ters expressed via zig-zags, we get Hamiltonians depending on fractional powers of cluster

variables x
1/d
i . Convenient choosing of spectral parameters normalization is so that three

Hamiltonians in three corners of Newton polygon become equal to unit.

On right panel of figure 14 perfect matchings for bipartite graph from figure 13 are

drawn. Selecting third matching in the first row as a D0, and spectral parameters by

λ = xγA , µ = xγB with γA = β, γB = −1
2(β + δ), one gets spectral curve

Z = 1 + λ+ λµ2 + λ2µ2Z−1 + λµ

(
√
x1x4 + Z−1

√
x1

x4
+

√
x4

x1
+

1
√
x1x4

)
. (B.13)

Coefficient at λµ is precisely Hamiltonian of closed relativistic Toda chain on two sites.

Newton polygon of this curve coincides with the one obtained from zig-zags and drawn on

the right panel of figure 13.

Kasteleyn operator. Dimer partition function can be computed using the Kasteleyn

operator. To define it, first, consider discrete linear bundle with connection a on bipartite

graph Γ. In trivialization this means that we associate 1-d vector space C with each

vertex of Γ, and discrete monodromy ae ∈ C× with each edge e oriented from black to

white. For the edge with the opposite orientation set a−e = a−1
e . This definition can be

extended to any γ ∈ C1(Γ,Z) by aγ1+γ2 = aγ1aγ2 . Dynamical variables xγ used above,

could be naturally associated with monodromies taken over cycles, i.e. xγ = aγ if ∂γ = 0.

It is problematic to introduce Poisson structure for variables ae, as they are not ‘gauge

invariant’. We can perform gauge transformation eiφk at each vertex k, which results in

change aeij → aeije
i(φi−φj) of edge variables.23 However monodromies xγ are well defined,

so their bracket is given by (B.7).

23Actually, Poisson structure could be introduced even for non-closed loops. Interested reader can find

one in appendix of [17].
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a b

cd

e f

gh1 2

21

µ−1, bh λ, bf λ−1µ−2, hd µ−1, df

ae µ−1, ce µ−1, ga µ−2, cg

Figure 14. Left: bipartite graph with the edge weights. Small integers are to enumerate black

and white vertices. Right: perfect matchings for bipartite graph from figure 13 are in blue. Red

color indicates reference matching D0. Weights of the corresponding contributions to determinant

of Kasteleyn operator are written below.

Second ingredient in this construction is discrete spin structure — multiplicative map

Ke : C1(Γ)→ {±1}, which assigns ±1 to each edge e in such a way that for any face Bi

K∂Bi = (−1)l(Bi)/2+1 (B.14)

where l(Bi) — number of edges, adjacent to Bi.

Finally, the third ingredient is choosing of two oriented cycles hA and hB on T2, which

cross edges of Γ transversally, and as elements of H1(T2,Z) they present [hA] = γB and

[hB] = γA (indices A and B are indeed interchanged). We denote by 〈e, hA,B〉 intersection

index of edge e with cycle hA,B. It is +1 if edge cross cycle from the left to the right, if you

look along cycle. Bringing all ingredients together, Kasteleyn operator D : C|B| → C|W | of

graph Γ is a |B| by |W | (which are equal) matrix

D =

|B|∑
i=1

|W |∑
j=1

DijEij , Dij(λ, µ) = aeijKeijλ
〈eij ,hA〉µ〈eij ,hB〉 (B.15)

where we assume that aeij is zero, if there are no edges between vertices i and j. Note

that as an operator acting C|B| → C|W |, it acts from the right on row vectors. It could be

shown that

detD(λ̃, µ̃) =
∑
D

(−1)s([D])λ̃〈D,hA〉µ̃〈D,hB〉aD (B.16)

where summation goes over all perfect matchings, sign (−1)s will depend only on the

resulting class in homology of perfect matching after normalization. Parameters λ̃ and µ̃

are different from λ and µ used above. They do not indicate belonging of contribution to

any particular homology class, as D are not closed. To make it so, we have to subtract some

‘reference configuration’ D0, and choose pair of elements ζA, ζB ∈ H1(T2,Z), presenting A
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Figure 15. Left: transformation of bipartite graph under spider move. Right: mutation of quiver

under spider-move. We draw only the edges, connecting 1, 2, 3, 4 with 0, affected by the mutation.

and B cycles on T2. Precise relation between determinant of Kasteleyn operator and dimer

partition function is

Z ′Γ,D0
(λ, µ) =

∑
(i,j)∈N

(−1)s(i,j)λiµjHij =
detD(λ̃, µ̃)

aD0 λ̃
〈D0,hA〉µ̃〈D0,hB〉

∣∣∣∣∣
λ̃→λ/aζA , µ̃→µ/aζB

. (B.17)

For our example, cycles hA and hB are shown in figure 13, left. Weights of perfect matchings

are written under the pictures in figure 14. It can be easily seen that sum over them could

be computed by

detD(λ, µ) = det

(
a+ µ−1 c −b− λ−1µ−1 d

λ f + µ−1 h e+ µ−1 g

)
= (B.18)

= µ−1 bh+ λ bf + λ−1µ−2 hd+ µ−1 df + ae+ µ−1 ce+ µ−1 ag + µ−2 cg .

Dividing it by aD0 = λ−1µ−2hd and rescaling λ → λ/xβ , µ → µ/x− 1
2

(β+δ) with xβ =
cg
hd , xδ = dh

ae , one immediately gets spectral curve (B.13).

Spider moves. There is a special class of mutations for the quivers constructed from

bipartite graph called spider moves [17]. If mutation is performed at four-valent vertex

corresponding to four-gonal face of bipartite graph, one can change bipartite graph as

shown in figure 15, left, and redefine weights on the edges in such a way that dimer partition

function remains unchanged. Cluster variables expressed by edges are changing as they

should under corresponding mutations (see figure 15, right, for the change of quiver).

B.3 Cluster algebras

Dual description to X -cluster language is A-cluster language [14]. To define A-cluster

algebra, starting from the quiver Q, we associate with each vertex i ∈ Q of quiver

a pair of variables (τi,yi), y-variables are often called the coefficients, and τ -variables

usually refereed as cluster variables.24 The coefficients take values in tropical semi-field

P = Trop(u1, . . . ,ur) = 〈un1
1 . . .unrr |nα ∈ Q 〉 — a set equipped with the pair of opera-

tions:

un1
1 . . . unrr � um1

1 . . . umrr = un1+m1
1 . . . unr+mrr

un1
1 . . . unrr ⊕ um1

1 . . . umrr = u
min(n1,m1)
1 . . . u

min(nr,mr)
r .

(B.19)

24In contrast to original papers, see e.g. [14], we denote them as τ -variables, since they satisfy some

bilinear relations, as shown in section 4.3.
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It can be easily seen that with respect to � element 1 = u0
1 . . . u0

r is unit, and each element

y = un1
1 . . . unrr has inverse u−1 = u−n1

1 . . . u−nrr . Both operations are commutative, we

also have distributivity a � (b ⊕ c) = a � b ⊕ a � c. It is convenient for our purposes to

allow fractional powers of u, so that elements u1, . . . ,ur generate whole P. Field F of

rational functions in {τi}i∈Q with coefficients in P is called ambient field. Cluster seed is

a set (Q, {τi,yi}i∈Q). Mutation µk transforms seed into some other seed (Q′, {τ ′i ,y′i}i∈Q′)
with Q′ related to Q by the rules (B.3), while new cluster variables τ ′i ∈ F and coefficients

y′i ∈ P are defined by

y′i =

{
y−1
i , i = k

yi
(
1⊕ ysgn εik

k

)εik , i 6= k
(B.20)

τ ′k =
yk
∏|Q|
i=1 τ

[εik]+
i +

∏|Q|
i=1 τ

[−εik]+
i

(1⊕ yk)τk
, τ ′i = τi if i 6= k (B.21)

where [a]+ = max(0, a). Alternative point of view on coefficients is to consider generators of

P as frozen variables, placed in additional vertices of quiver, where mutations are forbidden.

If coefficients are expressed through the generators {uα} by yi = u
n1,i

1 . . . u
nr,i
r for some

fixed seed, we introduce another matrix b which contains exchange matrix ε as a block

b =

(
ε

N

)
, where N =


n1,1 n1,2 . . . n1,|Q|
n2,1 n2,2 . . . n2,|Q|
. . . . . . . . . . . .

nr,1 nr,2 . . . nr,|Q|

 . (B.22)

This can be viewed as an addition of r vertices with the variables τ|Q|+1 = u1, . . . , τ|Q|+r =

ur to the quiver, and connection of each vertex containing τ|Q|+α with the vertices contain-

ing τi, i < |Q| by nα,i arrows. We will denote extended quiver by Q̂ so that |Q̂| = |Q|+ r.

Mutation rules for τ variables get unified form

τ ′k =

∏|Q̂|
i=1 τ

[bik]+
i +

∏|Q̂|
i=1 τ

[−bik]+
i

τk
, τ ′i = τi if i 6= k, (B.23)

while mutation rules for coefficients are no longer needed — they transformations are taken

into account by transformations of extended quiver with frozen variables. The map from

A-cluster variables to X-cluster variables is given by

xi =

|Q̂|∏
k=1

τ bkik , 1 ≤ i ≤ |Q|. (B.24)

Under this map the frozen variables (i.e. coefficients) parameterize the Casimir functions

of Poisson algebra {Z, · } = 0, which are monomials Z =
∏
i x

ci
i in X-variables, defined by

the property that
∑

i εijcj = 0. If one takes all unit coefficients, the Casimirs

Z =

|Q|∏
i=1

xcii =

|Q|∏
i=1

|Q|∏
k=1

τ εkicik =

|Q|∏
k=1

τ
∑
i εkici

k = 1, (B.25)

become trivial. Mutation rules (B.23) and (B.2) are consistent with (B.24).
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b =

0 2 0 -2

-2 0 2 0

0 -2 0 2

2 0 -2 0

2 0 2 0

2 -2 2 -2




1 2

34

5

6

Figure 16. Left: extended exchange matrix b for ŜL2 Toda chain. Right: extended quiver with

frozen vertices shown by blue.

ε =

0 2 0 -2

-2 0 2 0

0 -2 0 2

2 0 -2 0




1 2

34

Figure 17. An example of skew-symmetric matrix ε (two-particle Toda chain) and corresponding

quiver. Poisson bracket has two Casimir functions Z = x1x3 and q = x1x2x3x4.

In the example of relativistic affine Toda chain with two particles (or on two sites) one

gets two Casimir functions Z and q. Extended exchange matrix, chosen following [1], is

drawn at figure 16.

The coefficients can be read from the matrix b (two lowest rows)

y1 = (τ5τ6)2, y2 = τ−2
6 , y3 = (τ5τ6)2, y4 = τ−2

6 . (B.26)

Introducing (cf. with figure 17) τ5 = q
1
4 , τ6 = Z

1
4 , one can write dynamics of cluster

variables under q-Painlevé flow T = s1,2s3,4µ1µ3, Tτi = τ i = τi(qZ), as

(τ1, τ2, τ3, τ4) =

(
τ2,

τ2
2 + q

1
2Z

1
2 τ2

4

τ1
, τ4,

τ2
4 + q

1
2Z

1
2 τ2

2

τ3

)
. (B.27)

Eliminating τ2 and τ4, one turns it into bilinear form of q-Painlevé A
(1)′

7 equation

τ1τ1 = τ2
1 + Z

1
2 τ2

3 , τ3τ3 = τ2
3 + Z

1
2 τ2

1 . (B.28)

C Proof of the RLL relation for cluster L-matrices

Here some details of proof of (2.36) are collected. Recall the definitions (2.37) (here and

below i, j = 1, . . . ,M)

Lij(µ) =
1

µ
1
2 − µ−

1
2

{
i = j, µ

1
2 z−2
i + µ−

1
2 z2
i

i 6= j, µ−
sij
2 (z2

j + z−2
j )

τj
τi

, τi = wi

M∏
k=1

zskik (C.1)

where the variables zi, wi have Poisson brackets

{zi, wj} =
1

4
δijziwj , {zi, zj} = {wi, wj} = 0. (C.2)
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It is useful to note that

{zi, τj} =
1

4
δijziτj , {τi, τj} = −1

2
sijτiτj . (C.3)

In addition to the sign-factors (A.3) we also introduce25

skij =


+1, k ∈ (ij)

−1, k ∈ (ji)

0, k = i, j

(C.4)

which satisfies

skij = −skji, skij = sijk, skij = sij + sjk + ski. (C.5)

From definitions (C.1)

z2
k = −

Lkk(λ)
√
µ− Lkk(µ)

√
λ√

λ/µ−
√
µ/λ

, z−2
k =

Lkk(λ)/
√
µ− Lkk(µ)/

√
λ√

λ/µ−
√
µ/λ

Lij(λ)Lkl(µ) = λ−
1
2
sij+

1
2
sklµ

1
2
sij− 1

2
sklLij(µ)Lkl(λ), i 6= j, k 6= l.

(C.6)

We take an anzatz

r̃(a) =

M∑
k=1

fk(a)Ekk ⊗ Ekk +
∑
m 6=n

gmn(a)Emn ⊗ Enm (C.7)

and show that one can choose fk and gmn such that equation

{L(λ)⊗ L(µ)} = [r̃(λ/µ), L(λ)⊗ L(µ)] (C.8)

holds. By direct computation it can be shown that (a 6= i 6= j 6= k 6= l):

a. {L(λ)⊗L(µ)} b. [r̃(λ/µ), L(λ)⊗L(µ)]

1. Eii⊗Ejj 0 0

2. Eaa⊗Eij 0 gaiLia(λ)Laj(µ)−gjaLaj(λ)Lia(µ)

3. Eaa⊗Eaj ALaa(λ)Laj(µ)−BajLaj(λ)Laa(µ) faLaa(λ)Laj(µ)−gjaLaj(λ)Laa(µ)

4. Eaa⊗Eia −ALaa(λ)Lia(µ)+BiaLia(λ)Laa(µ) −faLaa(λ)Lia(µ)+gaiLia(λ)Laa(µ)

5. Eij⊗Eji Bji(Ljj(λ)Lii(µ)−Lii(λ)Ljj(µ)) gijLjj(λ)Lii(µ)−gijLii(λ)Ljj(µ)

6. Eij⊗Ekl 1
2(skij+s

l
ji)Lij(λ)Lkl(µ) gikLkj(λ)Lil(µ)−gljLil(λ)Lkj(µ)

7. Eij⊗Eia −1
2s
a
ijLij(λ)Lia(µ) fiLij(λ)Lia(µ)−gajLia(λ)Lij(µ)

8. Eij⊗Eaj 1
2s
a
ijLij(λ)Laj(µ) −fjLij(λ)Laj(µ)+giaLaj(λ)Lij(µ)

9. Eij⊗Eja BjiLjj(λ)Lia(µ)−BjaLia(λ)Ljj(µ) gijLjj(λ)Lia(µ)−gajLia(λ)Ljj(µ)

10. Eij⊗Eai −BjiLii(λ)Laj(µ)+BaiLaj(λ)Lii(µ) −gijLii(λ)Laj(µ)+giaLaj(λ)Lii(µ)

(C.9)

25Notation k ∈ (ij) means that we consider i, j, k on the circle Z/MZ, with k in the oriented interval

from i to j.
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with

A = A(
√
λ/µ) =

1

2

√
λ/µ+

√
µ/λ√

λ/µ−
√
µ/λ

, Bij = Bij(
√
λ/µ) =

(λ/µ)
1
2
sij√

λ/µ−
√
µ/λ

. (C.10)

Computations in 1, 2, 7, 8.a) are straightforward. In 3, 4, 5.a) relation (C.6) has to be

used. 9, 10.a) can be obtained by application of (C.6) and (C.5):

{Lij(λ), Lja(µ)} = −1

2
λ−

1
2
sijµ−

1
2
sja
τa
τi

(saij(z
2
j + z−2

j )(z2
a + z−2

a ) + (z2
j − z−2

j )(z2
a + z−2

a )) =

= −1

2
λ−

1
2
sijµ−

1
2
sja(z2

a + z−2
a )

τa
τi

((saij + 1)z2
j + (saij − 1)z−2

j ) =

= −saijλ−
1
2
sijµ−

1
2
sja(z2

a + z−2
a )

τa
τi
z

2saij
j =

=
λ−

1
2
sij+

1
2
siaµ−

1
2
sja√

λ/µ−
√
µ/λ

Lia(λ)
[
Ljj(λ)µ

1
2
saij − Ljj(µ)λ

1
2
saij
]

=

=
(λ/µ)

1
2
sjiLjj(λ)Lia(µ)− (λ/µ)

1
2
sjaLia(λ)Ljj(µ)√

λ/µ−
√
µ/λ

.

(C.11)

Looking at the table C.9 we can suggest that the last two columns are equal, if we put

fi = A(
√
λ/µ), gij = Bji(

√
λ/µ) . (C.12)

For 1–5 and 9–10 it is obvious. For 6, 7, 8 it is easier to move from the right to the left.

For 6, using (C.5):

gikLkj(λ)Lil(µ)− gljLil(λ)Lkj(µ) =

=
λ−

1
2
sik− 1

2
skjµ−

1
2
ski− 1

2
sil − λ−

1
2
slj− 1

2
silµ−

1
2
sjl− 1

2
skj√

λ/µ−
√
µ/λ

τj
τk

τl
τi

(z2
j + z−2

j )(z2
l + z−2

l ) =

=
λ−

1
2
sjikµ−

1
2
slki − λ−

1
2
siljµ−

1
2
skjl√

λ/µ−
√
µ/λ

Lij(λ)Lkl(µ) .

(C.13)

All possible relative positions of the indices i, j, k, l can be encoded in the table

sjik slki silj skjl skij + slji

+1 +1 +1 +1 0

+1 −1 +1 −1 0

+1 −1 −1 +1 −2

−1 +1 −1 +1 0

−1 +1 +1 −1 +2

−1 −1 −1 −1 0

(C.14)
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which shows that 6.a) and 6.b) from (C.9) are equal. For 7.b):

fiLij(λ)Lia(µ)−gajLia(λ)Lij(µ) = (C.15)

=
1

2

(
√
λ/µ+

√
µ/λ)λ−

1
2
sijµ−

1
2
sia−2λ−

1
2
saj− 1

2
siaµ−

1
2
sja− 1

2
sij√

λ/µ−
√
µ/λ

τj
τi

τa
τi

(z2
j+z−2

j )(z2
a+z−2

a ) =

=
1

2

√
λ/µ+

√
µ/λ−2(λ/µ)−

1
2
sjia√

λ/µ−
√
µ/λ

Lij(λ)Lia(µ) = −1

2
saijLij(λ)Lia(µ)

which is equal to 7.a). Similarly for 8 a) and b). To show that (C.7) is equal to (A.26)

multiplied by 1
2 , we have to note that

M∑
k=1

Ekk ⊗ Ekk = 1⊗ 1−
∑
i 6=j

Eii ⊗ Ejj (C.16)

and 1 ⊗ 1 is commuting with anything, so can be always added to the r-matrix with the

arbitrary coefficient, without any change of the relations.
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