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We also give a brief description of the Abelian logic which as well corresponds to one of the
comparative logics proposed by Casari. By different types of agents, we understand agents
with diverse cognitive presumptions and capabilities. This reflects the idea that different
agents can be encoded by a game (dialogue) semantics and truth (and validity) can be seen
as a product of different types of communications between agents, establishing the relation
between various types of moves available to the players and the resulting type of rationality.
However, the main focus of the paper is concentrated on the technical result concerning the
game proposed in the paper. In a separate section, we prove that this game is adequate to the
Abelian logic. The game can be extended to the one allowing for the disjunctive strategies.
As immediate future research, we suggest proving that Proponent’s winning strategies for
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derivation of the formula F' in the hypersequent calculus GA.
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1. Introduction

In the present paper we introduce a variation of the Giles’s game that
captures the semantics of the Slaney and Meyer’s Abelian logic A |[Meyer et
al., 1989]. The Giles’s game is a two-player zero-sum game which can be seen
as a valuation game, i.e. semantic game that determines truth in a given model.
The model is represented by the risk assignments for each formula. Giles’s game
is of a particular interest as it combines two types of games:
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e Games determining truth on a model, like Game-Theoretical Semantics
of J. Hintikka |Hintikka, 1996|;

e Lorenzen’s dialogue games determining validity |Lorenzen et al., 197§,
|[Krabbe, 2006|.

Our article comprises five sections two of them being the introduction and
conclusion. In the introduction, we informally show a notion of Giles’s game as
it was presented for Lukasiewicz infinitely-valued logic. This is done in order
to make the initial experiment-based interpretation of the game more evident
for a reader. Later we proceed by suggesting our own interpretation of Giles’s
game for Abelian logic which is much different from the original experiment
based interpretation which is due to semantics of Abelian logic. We proceed by
presenting the notion of Abelian logic in the section 2. In section 3 the notion
of Giles’s game for Abelian logic is formally introduced, and finally we prove
the adequacy of this game to Abelian logic in section 4.

To begin with, we present the basic idea of Giles’s game for Lukasiewicz
infinitely-valued logic L the way it is presented in [Fermiiller, 2009| which will
later be tailored to capture Abelian logic (see section 3). The game G([I'||A], p)
consists of:

e 2 players,i.e. I (me)andY (you). In our own presentation of the game for
Abelian logic we stick to the Lorenzen’s names for players, i.e., Proponent
for I and Opponent for You. Players bet on formulae by asserting them.
As the game proceeds as decompositions of complex formulae, it ends up
in an elementary state, i.e., a state where all the formulae asserted by O
and P are atomic;

e ['is a multiset that contains all the formulae asserted by O and multiset A
contains all the formulae asserted by P. Those are multisets because they
may contain multiple instances of the same formulae unlike ordinary sets.
It is important as each instance of a formula adds up its risk assignment
to the sum of the risk undertaken by a player in question;

e the language is used in a restricted version. The language for the logic L
has only one atomic connective — and a constant L representing falsity.
Other connectives can be defined as follows:

— 2A =4y A— L (negation),

— A&B =4ct ~(A — —B) (strong conjunction),

— AANB =45 A&(A — B) (weak conjunction),

AV B =45 (A= B) = B)AN((B— A) — A) (disjunction);
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e a (repeatable) elementary experiment E, related to some ¢ stating “E,
yields a positive result”. If ¢ can be either true or false as in classical
logic, then the same experiment should lead to the same result over all
repetitions. However, if we allow our experiments to exhibit dispersion
meaning that the same experiment may yield different results under repe-
tition, then we are not any more in the realm of the classical logic. That
means that now the risk associated to asserting each proposition is not a
value from the set {0, 1} but rather a fixed risk value (denoted (g)) in the
real unit interval [0, 1] is ascribed to any atomic g. That yields the game
corresponding to the logic L as proved in [Fermiiller, 2009];

e fixed risk value (-) in the closed interval [0, 1] (for non-classical case) for
each propositional variable. (L) = 1;

e the risk for a multiset! p1,po, ..., pn is the following: (p1,p2,...,pm) =

Z?;l@i);

e (R.,) if a user X has asserted A — B and another user Z attacks this
statement by asserting A, the user X has to assert B. The user Z can
also grant the formula A — B asserted by X. In the latter case, the
granted formula A — B is just deleted from the X set of assertions.

Possible Interpretations of the Game

Giles’s game was motivated by the need to account for logical reasoning
in physical theories. Atomic statements represent experiments that have fixed
probability of a positive outcome. The idea is that players bet on the expecta-
tions related to those experiments, i.e. they agree to pay 1€ for each incorrect
statement. A player asserting the initial formula (whom we call a Proponent)
wins a game if they expect no loss of money (i.e., P either pays the same
amount to O as O pays to P or P even gets some money from O).

Resource based interpretation

Although this interpretation of a game suits well several fuzzy logics, includ-
ing the Lukasiewicz infinitely-valued logic L, it does not seem to be adequate for
the Abelian logic A since the set of truth values is a proper subset of R instead
of an interval (as for instance in Lukasiewicz infinitely-valued logic L: [0,1]).
So we suggest another interpretation of the game. We can think of atomic
statements (represented by propositional variables) as some sort of special re-
sources that can be both positive and negative, for instance, equity securities
(e.g., common stocks) or derivatives. Complex formulae would then represent
simple operations on such assets, like addition and subtraction. When a user

The notion of a multiset will be formally defined in what follows on page
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who is trying to show that the formula is true (we will call them the Proponent)
in a given model states a complex formula, they state that it’s value is non-
negative, i.e. after performing all the operations specified in the formula the
Proponent will have a non-negative budget. This interpretation seems to be
rather close to one of the possible views on Abelian logic as on the comparative
logics proposed by Casari in |Casari, 1989).

Bounded rationality interpretation

Initially, the game was proposed by Robin Giles in 1970s to model logical
reasoning in physics. Thus, Giles’s game can be seen as a game related to the
knowledge of the expected probability of positive results of experiments. From
that follows that the game can be seen as a type of epistemic game, or more
precisely a game related to the epistemic states of agents where an epistemic
state of an agent is represented truth-functionally. The game characterisation
of many-valued logics is also related to our investigations in the area of cog-
nitive presumptions and types of rationality as many-valued logics can be seen
as some alternative variants of characterisation of knowledge and degrees of
belief [Kubyshkina et al., 2016].

Given the above idea, there can also be an alternative understanding of the
Giles’s game for Abelian logic, i.e. in terms of bounded agents with respect to
their epistemic presumptions. One of the main features of the game for Abelian
logic is that there are no versions of the principle of limited liability (sometimes
denoted as LLA and LLD):

Definition 1. Limited liability for attack (LLA): A player X can always decide
not to attack an occurrence of a formula that has been asserted by another
player Y.

Definition 2. Limited liability for defence (LLD): A player X can always assert
1 in reply to an attack by another player Y.

As there is no internal weakening in the corresponding hypersequent calculus
(cf. [Metcalfe et al., 2005|), thus in the game agents cannot grant formulae (i.e.
delete them from the opponents’ side), that means that the agents cannot agree
on any formula, they need to put all those formulae to the test which represents
a very strict understanding of epistemic presuppositions. On the other hand,
the absence of internal contraction can be interpreted as agents discussing some
factual statements, thus a duplicate of a formula cannot be just added in a run
of a game as ¢ being true once, does not grantee it being realised two times.
This interpretation is consistent with the first one, it just adds the idea of
the rules binding agents’ presumptions and capabilities. The detailed study of
possible interpretations of Giles’s game for A is subject of a separate research.
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Motivation

The motivation for the paper is twofold. On the one had, the idea is to
suggest a game semantics for Abelian logic to get its dynamic interpretation.
And this reveals the connection between proof theory and games with respect
to many-valued logics. On the other hand, we are interested in investigating the
rational agency and its epistemic presumptions that are implied in the many-
valued logics. We have discussed a related classification of agent types in our
previous work |[Pavlova, 2017| and this is one of our directions of investigation
with respect to that classification. This direction is related to our study of
agency and the potential use of games and fuzzy logics to model different types
of agents.

2. Abelian Logic

In this section we briefly present some of the basic notions with respect to
Abelian Logic A. It was introduced by Meyer and Slaney |[Meyer et al., 1989|
as a logic of relevance. It also coincides with one of the Casari’s comparative
logics |Casari, 1989| formalising comparisons of majority, minority, and equal-
ity in natural languages. There exists a sequent calculus for A provided by
Paoli [Paoli, 2001] as well as a hypersequent calculus.

Definition 3. Let P be a countable set of atomic propositions. The language
L 4 for Abelian logic is generated by the following BNF:

Fu=p|F|FANF|FVF|F—-F|F+F|t,
where p € P.

Negation can be defined as follows: =F =45 F' — t. It is also worth men-
tioning that truth and canonical falsity are identical in this logic: -t =t — ¢,
thus t = —t.

Definition 4 (Axioms and rules). A is generated by the following schemes of
axioms? and rules:

(A1) A— ((A— B) — B),
(A2) (A= B)=(B—=C)— (A= 0)),
(A3a) A— (t— A),
)

(A3b) (t — A) — 4,

2 Alternatively, we could have used axioms plus substitution rule.
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(Ada) (AVB)—=C)— ((A=C)AN(B—=(0)),
(Adb) (A= C)AN(B—=C))— ((AVB)—0),
(A5a) (A+B)—C)— (A= (B—0)),
(A5D) (A= (B —C)) = (A+B) = C),
(A6) (AANB) — A,
(A7) (AANB) — B,
(A8) (A= B)AN(A—=C)) = (A= (BACQ)),
(A9) (AN(BVC))—= ((ANB)V(ANQ)),
(A10) ((A— B) — B) — A,
A2B A yp, jﬁa AL

Some notes on semantics

As for semantic point of view, the appropriate algebras for A are lattice-
ordered Abelian groups. There are well-established results with respect to the
algebraic semantics for Abelian logic, and we are not going into their details
(for the reference, see |Metcalfe et al., 2005]). We should only notice once
again, that the domain of truth values is the set of real numbers R, whereas
the designated value is > 0, i.e., [0, +00), and the primitive ¢ = 0. One should
also keep in mind that intensional disjunction and intensional conjunction are
identical, which is one of the differences from the LL linear logic.

Definition 5. The assignment function I assigns each propositional variable
of the language £ 4 of Abelian logic a real number: I: Prop — R.

Later in section 4, we will need the definition of valuation for our proof of
Adequacy of Giles’s game for A to Abelian logic. Valuation can be defined as
an extension of assignment as follows:

Definition 6. A valuation v for A is a function from the set of formulae
into the set of real numbers R (v: £4 — R) that extends an assignment I to
propositional variables of values in R by:

u(t) =
v(A — B) =v(B) —v(A)
v(AV B) = min(v(A),v(B))
v(A A B) =maz(v(A),v(B
v(A+ B) =v(A) +v(B)
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As —A is not a primitive as it was defined earlier via ¢ and implication
(mA =gcf A — t), one can deduce the valuation for negation the following way:

v(=A)=v(A—=1t)=v(t) —v(A) =0—v(A) = —v(A).

3. Giles’s Game for Abelian logic A

In this section we give a formal and precise definition of a Giles’s game
and highlight some differences between the game for the Lukasiewicz infinitely-
valued logic L and the one for Abelian logic discussed in the present paper.
Those differences can also be interpreted as representing alternative types of
agents featuring their cognitive presumptions.

3.1. The Structure of a Game

We start by providing the basic definitions with respect to the structure
of Giles’s Game for logic A. The general idea is that a game start with the
initial state which a sequence of formulae asserted by O and P and ends up
in the elementary state of the same form containing, however, only atomic
propositions. If players start with the initial state and play until the elementary
state according to the rules, we would call this a run of a game. Here follows
the formal definition.

Definition 7. A run of a game is a sequence of attacks and defences obeying
the logical rules and some regulation p that begins with the state [II || X] a
finite (possibly empty) multiset II of formulae that are initially stated by the
Opponent (we will use O as a shortening) and a finite (nonempty) multiset ¥
of formulae that are initially stated by Proponent (here and elsewhere we shall
use P) and ends with an atomic state of the game.

Here we use the notion of a multiset which can be informally described as
a modification of the concept of set which allows for multiple instances of the
same elements®. Ordinary sets are composed of pairwise different elements, i.e.,
no two elements are the same. As we are making use of multisets here, that
means that our II and ¥ can contain the same formulae multiple times, for
instance, we can have the following state: [p,p,q || , ¢, p, 7).

3For the sake of being precise, we put here a formal definition of a multiset (which is not
pertinent to the topic of the paper).

Definition 8. Let S be a set. A multiset over S is just a pair (D, f), where D is a set and
f: D — N is a function.
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What are the states?
There are two types of states in the game: d-states and i-states. We first
provide a definition of a d-state (meaning “dialogue state”):

Definition 9. A dialogue state (d-state) of a game is [II | X] where
IT={Ay, Ay, ..., Ay} is a multiset of formulae that are currently asserted by
the Opponent and ¥ = {By, Bs,..., By} is a multiset of formulae currently
asserted by the Proponent.

Each statement can be attacked at most once. We also introduce a notion
of i-states that that refers to a special state that indicates the active formula
of the corresponding d-state. Thus, the i-state follows each d-state (except for
the atomic one) in a game:

Definition 10. An i-state is an intermediary statement that reflects a player’s
choice of active formula, i.e. the formula occurrence that gets attacked or
defended (like in the rules for disjunction, for instance). These states are the
same states as the corresponding d-states [II || ¥] where II = {A;, Ao, ..., A}
and ¥ = {By, Ba,..., By}, that also contain a special marking of an active
formula denoted by underlining: [II, 4; || 3, B;] or [II, 4; || £, B;].

In our definition of a run of a game (as well as in some other definitions
that will follow) we used the notion of an elementary state which contains only
atomic propositional variables, but no complex formulae. It is time to give a
formal definition to it:

Definition 11. A state [p1,p2,.--,Pm || ¢1,42,--.,qn] is called elementary
(or atomic) if all p; are atomic propositional variables asserted by O and all g;
are atomic propositional variables asserted by P.

Moving from one state to another

Now that we know what a state is and what types of states constitute a
game (and a run of a game), it is important to specify how players go from
one state to another in the most general sense (i.e., regardless of the formulae
they asserted). We need to specify the protocol of the game which sometimes
referred to as structural rules in the literature (especially on Lorenzen games).
And the first question that arises is that of whose move it is at a certain state
of a particular game. There is no standard way to determine the sequence of
moves, e.g., in Lorenzen’s games (or Dialogue Logic) the moves between the
Opponent and Proponent alternate whereas in Hintikka game (also known as
GTS) moves are determined by the main connective or the outermost quantifier
(or modality). A peculiar feature of Giles’s game is that the order of moves
does not make any difference, thus there is no unique way to determine the
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sequence of moves. We introduce the notion of requlation p which determines
whose move it is at a particular state of a game.

Definition 12. A regulation p is a function that assigns to each non-elementary
d-state either the label P read as “P initiates the next round and chooses a
formula to assert” or the label O, for “O initiates the next round chooses a
formula to assert”.

The label for an i-state should match to the corresponding d-state.
Definition 13. A round consists of the following components:

e Player o* who's turn it is to move according to a particular regulation p
selects an active formula;

e « either attacks the active formula (by either selecting a subformula that
B should state or stating a formula itself as in the case of implication)
if it is in the §’s set of statements or states a formula according to the
logical rules if it belongs to a’s own set of statements. [ should react
immediately to each attack, as specified in the following logical rules.

One may notice that the response to an attack (when one is possible ac-
cording to the logical rules specified below) cannot be postponed. Furthermore,
unlike in the Lukasiewicz infinitely-valued logic L, in the game for Abelian lo-
gic A, players cannot grant formulae (i.e. delete them from the states without
attacking them). This corresponds to the lack of internal weakening in A.

Given the above definitions, we are ready to define the game for A. We dis-
tinguish here several rather similar concepts, namely: a game, a game form,
and a run of a game. If a run of a game is a precise play that is performed by
players, a game form represents all possible strategies (i.e. possible runs of a
game) that O and P may have in a game with both fixed initial state [II || X]
and regulation p.

Definition 14. A game form G([II | ], p) is a tree of starts with the initial
d-state [II || X] as the root together with all possible successor states S with
respect to a particular regulation p and the logical rules described below.

A game G is obtained from the game form by adding a playoff function (-)
for propositional variables. The playoff function maps all propositional variables
to the set of reals R.

“Variables alpha and j refer to arbitrary players s.t. if o is P, then 3 is O and visa versa.
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3.2. Logical Rules

Having defined the general course of the game, we now need to specify the
rules for attacks and defences which depend on the logical form of a formula
in question. We call them logical rules (though sometimes they are also called
particle rules in the literature on logical games).

Definition 15. The Giles’s game &4 for Abelian logic A contains the
following logical rules for connectives:

]| 2,A>B]® (RD) [AD B IT||ZF (L D)

| |
[A, 1T %, B] (B, 11| %, 4]

IS, AAB]®  (RA) [AAB ISP (LA) [AAB I X7 (LA)
|

|
IS A [0S, B [A L[| 3] [A L[| 3]

|2, AvBP (Rv) [I|S,AVB° (Lv)  [AVBIT|X]® (Lv)

|
(I %, A] [ %, B

(AT ] [A ] 2]
T2, A+ BI® (R+) [A+ B[ X]° (L+)
iy 2‘, A, B] [A,B,‘H [
[T =, 4" (Rt) [t 1] X% (L)
| |
[T ]| %] [T %]

We also introduce a separate rule for truth ¢ which is a special case of the
distinguished value for Abelian logic as it coincides with the canonical falsity:
t = —t, i.e., t = 0. Thus, intensional disjunction and intentional conjunction
are the same: A+ B = —(=A+-B). Given that negation of a formula is defined
the standard way via implication and canonical false, i.e. =A = A D t, one can
see that the following rules are admissible (and derivable) given the rules for ¢
and the rules for implication (so for simplicity we add it to our logical rules):

Theorem 1 (The rules for negation).
I 2, 24]9 oA, 1| 5P

| |
(A, TL ]| 53] [T %, A]
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Proof. Given the definition of negation as follows =A =4,y A D t, we derive
the rules for —A as follows:

] %,A454° (RD) At | =P (LD)
(A, TT ||‘ ¥, ¥ [t, 11 || ‘E,A]O
(AT 2,47 (Rt) [t 1] E,‘A}O (Lt)
[A,H‘ | 3] [T ] ‘E,A}

3.3. Winning Conditions and Strategies

Before we can define the winning conditions for players, it is necessary to
make a few remarks on the playoff of the Giles’s game for the Abelian logic.
As we have stated before, in the original Giles’s game we associate to each
atomic variable a risk value (r) which can be related to the valuation of the
formula in L as follows: v(r) = 1—(r). Asin the Abelian logic A propositional
variables rage over the R, we may directly interpret arbitrary real valued payoffs
in a Giles-style game as truth values.

Definition 16. A playoff function (-) is a function that assigns each proposi-
tional variable a number from the set of real numbers, i.e, () = f: Prop — R,
where Prop is a set of all propositional variables of £ 4.

Now we are ready to define the winning conditions (abbreviated as w.c.) for
P and O in a run of a game with a given regulation p, and playoff function ().

Definition 17. The Proponent wins in a particular game if the atomic state
satisfies the following conditions: > 7" p; <377, q;°. Otherwise, the Oppon-
ent wins.

However, to define satisfiability and validity via games, we need the concept
of a winning strategy for a player in a game. Normally a strategy for a player is
defined as a function from states to states that determines a unique choice for
that player but includes all the possible actions of the other player (or players
if there is more than two). A strategy is subtree of a game G([II || ], p, (-))
such that:

1. The root node is the d-state [II || XJ;

2. All leaf nodes are elementary d-states;

®Note that the elementary state [II || £] can be empty (or have II = § or £ = ) in
particular cases of games on the formulae containing ¢, e.g. G([t || t], p) for some arbitrary p.
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3. If for some node [II; || £;] in the tree p([II; || ;]) = P, then [II; || ¥;] has
exactly one successor i-state which has only one successor d-state which
is the choice of the Proponent with respect to the logical rules;

4. If for some node [II; || £;] in the tree p([II; || £;]) = O, then [II; || £;] has
a set of all possible successor i-states representing the possible marking.
These i-states has a set of successor d-states which represent all possible
choices of the Opponent with respect to the logical rules;

Definition 18 (Winning Strategy). A finite game tree T is a winning
strategy 7 for P with respect to a particular playoff function (-) iff each
leave (of the tree representing the strategy) ends with the elementary state
[DasD2, - Pm || @152, - - -, qn] satisfying the condition : Yoropi < Z?:o qj
where Z?:o ¢ ={(q1,q2,---,qn) and >_;" pi = (Pa, D2, - - - ,Pm)°.

We shall define the playoff (- || -) of the run of a game G([IT || )], p, {-))
that ends with the elementary state (pq,p2,...,Pm || ¢1,62,- - -, qn) as follows:

MIT)=>"¢—=> n

§=0 i=0

4. Adequacy of Giles’s Games &, to the Abelain logic A

In this subsection we establish the relation between the existence of a win-
ning strategy for the Proponent and validity. However, there are several pre-
liminary steps that should be made before we come to the main theorem of the
paper.

Auxiliary remarks

Fist of all, we need also to extend the semantics of A from formulae to
multisets I' of formulae as follows (henceforward F' € Ly, i.e., is an arbitrary
formula of the above defined language for A):

v(T) =dges Y v(F).
Fer

Secondly, we should establish the correspondence between the playoffs in the
game and valuation in Abelian logic. Unlike Lukasiwicz logic, here the corres-
pondence is direct, i.e., we use the following mapping:

(p)" = v(p).

5That means that each elementary state should be as follows with respect to risk assign-
ment (q1,q2,- -, qn) 2 (Pa,P2;- - -, Pm)-




Game-theoretical interpretation of abelian logic A 87

The mapping (p)¥ = v(p) which places playoff value assignments in one-to-one
correspondence with truth value assignments can be extended to:

(Pasp2s - Pm | @162, -+, qn)” = 0([q15 G2, - - s Gn]) — V([Pas P2, - - -, Pm))-
Correspondingly, we define the following function for arbitrary states:
(I ) = v(E) — v(ID),
Finally, note that
o(F) = o([F]) > 0 iff (| F)¥ > 0.
Thus, we prove the following theorem:

Theorem 2. A formula F is valid in A iff there exists a winning strategy for
Proponent in the game G([|| F],p, (-)) with any playoff assignment (-) and with
respect to an arbitrary consistent regulation p.

Proof. To prove this theorem, we are going to use induction on the complexity
of states. First, we observe that each game G is a finite tree ending up with
elementary states. Thus, a winning strategy for P is a finite tree ending with
elementary states satisfying the winning conditions for P, i.e. Z}”:O G =D,
Given the playoffs (-) for propositional variables, we can construct an optimal
strategy for P which would maximize the playoff of P (and the playoff of the
game the way we defined it in the section 3) as follows:

1. For any choice of the Opponent at a state .S, we take the minimal playoff
(for P) of all successor states S’ that follow from the state S;

2. For a state S where it is the Proponent’s choice, we take the maximal
possible playoff (for P) of possible successor states S’ that follow the
state S.

Now we have to show that the notion of the maximal playoff can be extended
from the elementary states [pa,p2, ..., Pm || 41,92, - - ., qn] to arbitrary states of
the form [II; || ¥;] such that the following conditions are satisfied:

(IT| X,AD> B)=(A1I|| £, B) (1)

(ADB,II|| %)= (A1 %, B) (2)

(L] %, AV B) = maz((IL || X, A), (IL || %, B)) (3)
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(AV B, IL| ) = min({A, 1L ]| ), (B, 1T || X)) (4)
(IL]| %, AN B) = min({IL || 3, A), (IL[| X, B)) (5)
(ANB, I 5) = maz((A,IT || ), (B, IL || 3)) (6)
(I X,A+B)=(II| X,A,B) (7)
(A+B,1I||X)=(AB1II| %) (8)

(I %, ¢) = (I ]| %) 9)

(¢, L[| %) = (I ]| %) (10)

(I %, =4) = (A, 1] %) (11)

(AL %) = (A I %) (12)

Now we check that (IT || ') is well-defined, i.e. the above conditions
together with the definition of the Proponent’s playoff for elementary states
can be simultaneously fulfilled. We have to show that (- || -) indeed specifies
P’s playoff with respect to his optimal game strategy. We proceed by induction
on the complexity of the obtained states. The base cases are obvious. For the
equation (1 we consider the following induction step:

): {(IL|[X,AD B) = (2): (A B, %) =
v(X ) v(ll) +v(AD B) = v(X) —o(l) —v(A D B) =
( ) — v(Il) + v(B) —v(A) = v(%) —o(Il) — v(B) + v(4) =

IT[| %) + v(B) —v(A) = (IL || 2) —v(B) +v(A) =
(A, 11| %, B) (B,I1]| %, A)

It is straightforward to check other connectives, so we obtain the following
corresponding induction steps:
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: (IT'|| X,AV B) =
v(X) —v(l) +v(AV B) =
v(X) — v(Il) + maz(v(A),v(B)) =
(L[} ) + maz(v(A),v(B))

ol
maz ({1 || =, A), (I || =, B))

B): 1|, ANB) =
v(X) —v(Il) +v(AAB) =
v(X) —v(II) + min(v(A),v(B)) =
(L] ) + min(v(A),v(B)) =
min((I1 || £)+v(A), (L || Z)+v(B)) =
min((I1 || ¥, A),(IL | £, B))

@: | =,A+B)=

v(X) —v(Il)+v(A+ B) =
v(X) —v(Il) + v(A) +v(B) =
(IL]| ) + v(A) +v(B) =
(I'|| 3, A, B)

@: )%t =
v(X) —v(Il) +o(t) =
v(X) —v(Il)+0 =
(IT]| %) + 0 = (I || %)

@: (Av B I %) =
v(X) —ou(ll) —v(AV B) =
v(X) — v(Il) — max(v(A),v(B)) =
(IL || %) + min(—v(A), —v(B)) =
min((I1 || X)—v(A), (Il || £)—v(B)) =
min((A,IL || %), (B, I1 || %))

©): (ANB,II|| %) =
v(X) —ou(ll) —v(AAB) =
v(X) —v(II) — min(v(A),v(B)) =
(IL | ) +maz(-v(A), —v(B)) =
maz({(A,I1 || %), (B,IT || %))

[):(A+ B, IL || X) =
v(X) —o(ll) —v(A+ B) =
v(X) —v(l) —v(A) —v(B) =

And finally the supplementary case for negation:

[LL): (I 2, ~4) =
v(X) — o) +v(—A) =
(L] %) —v(4) = (A, I || )

[12): (AT %) =
v(%) —o(l) —v(=4) =
(I %) +v(4) = (IL || %, A)

Given the correctness of the statements we prove that our formula
F > 0 given a certain valuation v iff P has a winning strategy in a game over
F (formally G([IT | T, F], p, (-)), where Il =T =0, i.t. G([|| F], p, (-))) with the
playoff function (-) = v and arbitrary regulation p.
=-direction:Assume that F' > 0. We proceed by induction on the length of
the winning strategy in a game over F. Assume that F is a game of n moves,
and P has a winning strategy in a game of n — 1 moves:

1. F = p (is atomic). Then we automatically have that p > 0, thus P wins
in the first move, so she has a winning strategy;
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6.
7.

. F = A D B. Then, the next state has the following form: [A | BJ.

By induction hypothesis P has a winning strategy for the state [A || B],
thus B > A. By according to the statement |1} (IT || £, 4 D B) = (A, I ||
Y, B), thus P still has the strategy for the state A D B;

F = AV B. Then, the next state has the following one of the follow-
ing forms: either [|| A] or [|| B]. According to the statement (3| P has a
strategy to keep the maximal of the disjunction as it is her choice whether
to select A or B. By IH (here a later, IH refers to the Induction Hypo-
thesis), P has a w.s. (= winning strategy) for either [|| A] or [|| B], so
she has a w.s. for F;

F = A A B. Then according to the logical rules, the next step will be
either [|| A] or [|| B]. As it is the choice of O and her aim is to minimise
the overall playoff for P, we should assume that O choses the minimal
conjunct. We have proved that (Il || ¥, A A B) = min((IL || £, A), (IT ||
¥, B)). By our IH P has a w.s. for the game n — 1 with the initial state
being the minimal (w.r.t. to the P’s playoff) of the 2 possible states,
namely [|| 4] or [|| B:

F = A+ B. Then, the next state is [|| A, B]. As we have proved that
(Il || £,A+ B) = (Il | ¥, A, B) (statement [7). By IH, P has a w.s. in
the game of n — 1 with the initial state being [|| A, B], so P has a w.s.
for the game of n;

F =t. This case is trivial as t = 0;

F = —A is just a case of implication: F'= A D t.

=--direction:Assume that P has a w.s. in a game over F. We proceed by
induction on the structure of F:

1

2.

F =p (i.e. it is atomic). Then P has a w.s. iff (|| p) > 0. Thus, v(p) > 0;
F =t. This case is analogous to n[i}

F=AD>B. Phasa w.s. in agame over A D B, ie. (| AD B)>0. By
proposition[l] (|| A > B) = (A || B). By IH, as P has a w.s. for [A || B],
then v(B) — v(A) > 0. By definition v(B) — v(A) = v(A D B). Thus,
v(AD B) = 0;

F=AV B. Phas A w.s. in a game over AV B, ie. (| AV B) > 0. By
proposition (3] (|| AV B) = maz((Il || £, A),(II || ¥, B)) as it is P who
choses a disjunct (thus it is mazimum) and P has a w.s. in one of the



Game-theoretical interpretation of abelian logic A 91

games: either [|| A] or [|| B]. Thus, either (|| A) > 0 or (|| B) > 0. By IH,
either v(A) > 0 or v(B) > 0. By definition of the valuation function in
our semantics, we have v(AV B) = max(v(A),v(B)), hence v(AVB) > 0;

5. F=AAB. P has A w.s. in a game over AA B, ie. (| AANB) > 0. By
proposition [f, (|| A A B) = min((Il || £, A), (Il || X, B)) as it is O who
choses a conjunct (thus it is minimum), and P has a w.s. in both of the
games: [|| A] and [|| B]. Thus, both (|| A) > 0 and (|| B) > 0. By IH,
both v(A) > 0 and v(B) > 0. By definition of the valuation function in
our semantics, we have v(AAB) = min(v(A),v(B)), hence v(AAB) > 0;

6. A+ B. P has A w.s. in a game over A+ B, i.e. (|| A+ B) > 0. By
proposition[7} (|| A+B) = (Il | X, A, B) (there is no choice of conjuncts),
and P has a w.s. in in a game over [|| A,B]. Thus, (|| A,B) > 0.
By IH, v(A,B) > 0. By the definition of valuation for multisets’, we
get v(A4,B) = v(A) + v(B). But by def. of valuation function in our
semantics, we have v(A + B) = v(A) + v(B), hence v(A + B) > 0;

7. F = —Ais just a case of implication: FF = A D t.

If v(F') > 0, then there is wining strategy for the Proponent for G([|| F1], p)
with some playoff assignment (-) for any consistent regulation p®. As a formula
F is valid iff for any valuation v holds v(F) > 0, F > 0 for every playoff
function (-). [ |

As a future path of research, we would like to extend the game for Abelian
logic with disjunctive strategies to get a unified strategy for family of games
corresponding to one particular formula in question. By a disjunctive strategy
we understand the one that allow players to duplicate states, so that there are
2 kinds of non-leaf nodes:

e playing nodes;
e duplicating nodes.

Let us use D = S1V S V...V S, to denote a state disjunction which can be
viewed as a multiset of states because there might be several instances of the
same state but the order of the states (S1,S9,...,Sy) is not relevant. We as-
sume the definition of a disjunctive strategy to be the same as in |Fermiiller,
2009|, namely:

7
ct.
8Since do not depend on the order in which they are decomposed.
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Definition 19. “A disjunctive strategy for D respecting a regulation p is a tree
of state disjunctions with root D where the successor nodes are in principle
determined in the same way as for ordinary strategies”.

Definition 20. A disjunctive strategy is wining for a player X iff at every
leaf node there is at least one component (an elementary d-state) S; of a state
disjunction Sy V So V...V S, that is winning for the player X.

It is important that for a collection of games on the same formula there
exists a disjunctive winning strategy for a player X iff there is an ordinary
strategy for every game in that collection.

5. Conclusion

In the present paper we have proposed a new game interpretation of the
Abelian logic A. This game is based on the Giles’s game explaining how reason-
ing about experiments in physics proceeds. There is a well studied version of the
game for the class of Lukasiewicz many-valued logics, including the infinitely-
valued logic L. We have constructed a game for Abelian logic in section 3 and
provided two possible interpretations of the game in 1. The first interpretation
suggests that players reason about the resources/costs and budgeting. As the
value might be negative, it is natural to think of these assets as securities (i.e.,
tradable financial assets). This is indeed related to the one of the standard
interpretations of A. The second interpretation suggests that the moves that
are allowed to agents, represent their cognitive presumptions and the type of
their rationality. Both interpretations are subject to our future study in more
detail.

The main technical result of the paper is the proof of adequacy of the game
to the Abelian logic that is shortly described in a separate section. We have
provided a full proof in the section 4. This gives rise to the future work related
to the game that we have proposed.

Future work

The future work is related to constructing disjunctive strategies for game for
Abelian logic and proving the correspondence between hypersequent calculus
GA and the game G4, where a derivation in the calculus decodes a winning
strategy for Proponent in the game with disjunctive strategies. Furthermore, in
the future research our aim will be to analyse the game interpretation of fuzzy
logic from the point of view of epistemic and other agents’ presumptions taking
into account the truth-functional interpretation of epistemic states. We shall
also look into possibility of interpreting modal operators in the Giles’s game
and more generally dialogue game framework to attempt to modal epistemic
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modalities for non-classical logics and information change in this particular
game framework.
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