
The Logic of Action Lattices is Undecidable
Stepan Kuznetsov

Steklov Mathematical Institute of the RAS
8 Gubkina St., Moscow, Russia

National Research University Higher School of Economics
3 Kochnovsky Pr., Moscow, Russia

Email: skuzn@inbox.ru

Abstract—We prove algorithmic undecidability of the
(in)equational theory of residuated Kleene lattices (action lat-
tices), thus solving a problem left open by D. Kozen, P. Jipsen,
W. Buszkowski.

Published by IEEE as S. Kuznetsov, The logic of action lattices
is undecidable. In: Proc. 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, IEEE, 2019. https://ieeexplore.ieee.org/
document/8785659 c©2019 IEEE

I. INTRODUCTION

Kleene algebras form one of the classic notions of theo-
retical computer science, going back to the seminal paper of
S. C. Kleene [23]. Kleene algebras use the standard set of
regular expression operations: · (product), + (join; further we
denote it by ∨), and, most interestingly, the iteration operation,
∗ (Kleene star).

Kleene [23] informally interpreted elements of a Kleene
algebra as types of events. This interpretation gives an intuition
of the Kleene algebra operations: a ·b means event a followed
by event b; a+ b means an event which is either a or b; a∗ is
a repeated several times (maybe zero1).

The join operation yields a semi-lattice preorder on the
Kleene algebra: a � b iff a ∨ b = b. In the informal
interpretation, a � b means that a is a narrower type of events,
than b (every event of type a is also of type b, but maybe not
the other way round).

The notion of action algebra, or residuated Kleene algebra,
was introduced by V. Pratt [30] as an extension of Kleene
algebra with division operations (residuals). D. Kozen [18]
extended it further to action lattices by adding the meet
operation (∧).

Both extensions—adding residuals and meet—were moti-
vated by the fact that the classes of algebras in the extended
setting happened to have better properties than the original
ones. Namely, residuated Kleene algebras form a finitely
based variety [30], while Kleene algebras without residuals
do not [31], [7]. For residuated Kleene lattices, the algebra of
matrices over such a lattice is also a residuated Kleene lattice,
while this does not hold for residuated Kleene algebras [18].

Residuals also fit the original paradigm of Kleene [23],
where elements of the algebra represent events (or actions)

1Wishing to avoid the empty event (“nothing happened”), Kleene consid-
ered a compound connective a∗b, meaning “several times a followed by b.”

performed in a system. Namely, a → b (resp., b ← a) could
be interpreted as follows: this is an event which, if preceded
(resp., followed) by an event of type a, becomes an event of
type b.

The formal definition of action lattice is as follows.

Definition 1. An action lattice is a structure
〈A;�,∨,∧,0, ·,1,←,→, ∗〉, where:2

1) 〈A;�,∨,∧〉 is a lattice, 0 is its minimal element (0 � a
for any a ∈ A);

2) 〈A; ·,1〉 is a monoid;
3) ← and → are residuals of · w.r.t. �, i.e.,

a � c← b ⇐⇒ a · b � c ⇐⇒ b � a→ c;

4) a∗ is the least element b such that 1∨a · b � b (in other
words: 1 � a∗, a · a∗ � a∗; if 1 � b and a · b � b, then
a∗ � b).

The presence of residuals makes many desired properties of
our algebras automatically true, so we do not need to postulate
them explicitly. These include:
• monotonicity of · w.r.t. � (shown by J. Lambek [26]);

residuals are monotone by one argument and anti-
monotone by the other one;

• despite the asymmetry of the condition for Kleene star,
the dual one also holds: a∗ is also the least b such that
1 ∨ b · a � b (shown by Pratt [30]); without residuals,
there exist left and right Kleene algebras [16];

• the zero element is the annihilator w.r.t. ·: 0·a = a·0 = 0
for any a ∈ A.

Standard examples of action lattices include the algebra of
languages over an alphabet and the algebra of binary relations
on a set (with ∗ being the reflexive-transitive closure). Action
lattices of these two classes are *-continuous in the sense of
the following definition:

Definition 2. An action lattice is *-continuous, if, for any
a ∈ A, a∗ = sup{an | n ∈ ω} (where ω denotes the set of all
natural numbers, including 0).

In the presence of residuals, we do not need the context
in the definition of *-continuity (for Kleene algebras without

2Here we use the notation → and ← for residuals, as Pratt, Kozen, and
Buszkowski do; J. Lambek [26] denotes them as division operations: \, /. For
other operations, ·, ∨, and ∧, we follow Buszkowski; Kozen denotes them as
; , +, and · respectively. The Kleene star is always denoted by ∗.978-1-7281-3608-0/19/$31.00 c©2019 IEEE

residuals, the condition is as follows: b ·a∗ · c = sup{b ·an · c |
n ∈ ω}); *-continuity makes other conditions on the Kleene
star (item 4 in Definition 1) redundant. Non-*-continuous
action lattices also do exist; concrete examples are given
in [25].

In this paper, we are interested in (in)equational theories,
or algebraic logics, of action lattices. Statements of such
theories are of the form α � β, where α and β are terms
(formulae) constructed from variables and constants 1 and
0, using the operations of action lattices: ·, →, ←, ∨, ∧, ∗.
Statements which are true under all interpretations of variables
over arbitrary action lattices form action logic, denoted by
ACT. If we consider only *-continuous action lattices, we
get ACTω , as an extension of ACT.

For Kleene algebras, without residuals and meet, these the-
ories were exhaustively studied by Kozen [17] and Krob [24].
The equational theory of *-continuous Kleene algebras coin-
cides with that of all Kleene algebras, and the derivability
problem for this theory is algorithmically decidable and be-
longs to PSPACE.

In computer science, the usage of Kleene algebras is
connected to reasoning about program correctness. Such ap-
plications arise not in the pure setting of Kleene algebras,
but rather utilise extensions of those—remarkable examples
include Kleene algebras with tests (KAT) [21], concurrent
Kleene algebras (CKA) [12], nominal Kleene algebras [10],
[22], [2], and others. In the view of these applications, decid-
ability of natural algorithmic problems dealing with a given
extension of Kleene algebra becomes a desired property. In
this paper, we focus on decidability of equational theories, as
one of the simplest algorithmic problems. For KAT and CKA,
equational theories are decidable and belong, respectively, to
PSPACE [19] and to EXPSPACE [3].

Residuated Kleene algebras or lattices, theoretically, could
have also found their place in this series of extensions of
Kleene algebra. However, the situation with residuals is dra-
matically different. Though the inequational theories for both
Kleene algebras without residuals and meet and residuated
lattices without the Kleene star belong to PSPACE (the latter
is due to its connection to non-commutative linear logic [27],
[14]), the combination of them rises algorithmic complexity to
a higher level. The negative results presented in this paper, in a
sense, work against possible applications of residuated Kleene
lattices in the framework of reasoning about programs, or at
least require such applications to be more sophisticated and
accurate.

Logics of action lattices, ACT and ACTω , can be axiom-
atized using Gentzen-style sequent calculi. In these calculi,
derivable objects are sequents of the form Π ` β, where β
is a formula and Π is a finite linearly ordered sequence of
formulae (possibly empty: the empty sequence is denoted by
Λ). The sequent α1, . . . , αn ` β means α1 ·. . .·αn � β (due to
associativity, we need no brackets here); Λ ` β is interpreted
as 1 � β.

Both ACT and ACTω are extensions of the multiplicative-
additive Lambek calculus (MALC), which is the logic of

residuated lattices without Kleene star [28]. Axioms and
inference rules of MALC are presented in Figure 1; ACT
and ACTω are extensions of MALC by inference rules
presented in Figures 2 and 3 respectively.3 Rules of ACT
are admissible in ACTω , therefore the latter is an extension
of the former (if we consider them as sets of theorems, we
can write ACT ⊆ ACTω).

Let us comment a bit more on the (∗`)ω rule. The notation
αn in it is a shortcut for α, . . . , α (n times). This rule has
infinitely many premises, indexed by natural numbers: Γ,∆ `
γ; Γ, α,∆ ` γ; Γ, α, α,∆ ` γ; . . . , in other words, it is an
ω-rule. In the presence of the ω-rule, the notion of derivation
needs to be clarified. Now a derivation tree can be infinite, but
is still required to be well-founded, i.e., it is not allowed to
include infinite paths: each path going upwards from the goal
sequent should reach an axiom instance in a finite number of
steps.

By the standard Lindenbaum – Tarski construction, these
axiomatizations are sound and complete w.r.t. ACT and
ACTω respectively.

Notice that we include cut as an official rule of the system
only in ACT. Indeed, in ACTω , as shown by Palka [29], cut
is eliminable, while for ACT no cut-free system is known. An
attempt to construct such a system was taken by P. Jipsen [13],
but Buszkowski [5] showed that in Jipsen’s system cut is
not eliminable. Nevertheless, both ACT and ACTω are
conservative over MALC:

Proposition 1. If Π ` β does not include ∗, then the following
are equivalent:

1) Π ` β is derivable in MALC;
2) Π ` β is derivable in ACT;
3) Π ` β is derivable in ACTω .

Proof. Implications 1 ⇒ 2 and 2 ⇒ 3 are trivial, and 3 ⇒ 1
is due to cut elimination in ACTω: all formulae appearing
in a cut-free derivation are subformulae of the goal sequent;
thus, if we do not have ∗ in Π ` β, we do not need it in the
derivation.

Admissibility of cut also yields invertibility of some rules
in ACTω:

Proposition 2. Rules (`→), (`←), (· `), (` ∧), (∨ `), and
(∗ `)ω in ACTω are invertible, i.e.:

1) if Π ` α→ β is derivable, then so is α,Π ` β;
2) if Π ` β ← α is derivable, then so is Π, α ` β;
3) if Γ, α ·β,∆ ` γ is derivable, then so is Γ, α, β,∆ ` γ;
4) if Π ` α1 ∧ α2 is derivable, then so are both Π ` α1

and Π ` α2;
5) if Γ, α1 ∨ α2,∆ ` γ is derivable, then so are both

Γ, α1,∆ ` γ and Γ, α2,∆ ` γ;
6) if Γ, α∗,∆ ` γ is derivable, then so is Γ, αn,∆ ` γ for

any natural n.
3Conditions on the Kleene star in the definitions of action lattices given by

Kozen [18], by Buszkowski [5], and in the present paper, are slightly different,
so are the corresponding rules in ACT. Equivalence of these variants of
definition, however, was shown already by Pratt [30].

α ` α (ax)

Π ` α Γ, β,∆ ` γ
Γ,Π, α→ β,∆ ` γ (→`)

α,Π ` β
Π ` α→ β

(`→)

Π ` α Γ, β,∆ ` γ
Γ, β ← α,Π,∆ ` γ (←`)

Π, α ` β
Π ` β ← α

(`←)

Γ, α, β,∆ ` γ
Γ, α · β,∆ ` γ (· `)

Γ ` α ∆ ` β
Γ,∆ ` α · β (` ·)

Γ,∆ ` γ
Γ,1,∆ ` γ (1 `)

Λ ` 1
(` 1)

Γ,0,∆ ` γ (0 `)

Γ, αi,∆ ` γ
Γ, α1 ∧ α2,∆ ` γ

(∧ `)i, i = 1, 2
Π ` α1 Π ` α2

Π ` α1 ∧ α2
(` ∧)

Γ, α1,∆ ` γ Γ, α2,∆ ` γ
Γ, α1 ∨ α2,∆ ` γ

(∨ `)
Π ` αi

Π ` α1 ∨ α2
(` ∨)i, i = 1, 2

Fig. 1. The multiplicative-additive Lambek calculus (MALC)

Λ ` β α, β ` β
α∗ ` β (∗ `)fp ` α∗ (` ∗)0

Π ` α ∆ ` α∗
Π,∆ ` α∗ (` ∗)fp

Π ` α Γ, α,∆ ` γ
Γ,Π,∆ ` γ (cut)

Fig. 2. ACT rules for Kleene star(
Γ, αn,∆ ` γ

)
n∈ω

Γ, α∗,∆ ` γ (∗ `)ω
Π1 ` α . . . Πn ` α

Π1, . . . ,Πn ` α∗
(` ∗)n, n ∈ ω

Fig. 3. ACTω rules for Kleene star

Proof. Straightforwardly, using cut.

For ACTω , algorithmic complexity is established by the
following theorem:

Theorem 1 (W. Buszkowski and E. Palka, 2007). ACTω

is Π0
1-complete and, thus, not decidable and not recursively

enumerable.

In this theorem, Buszkowski [5] proved the lower bound,
Π0

1-hardness, and Palka [29] proved the upper one, ACTω ∈
Π0

1, or co-recursive-enumerability.
Being Π0

1-hard, ACTω is not recursively enumerable (and,
therefore, cannot be formulated as a system with finite proofs).
On the other side, ACT is clearly recursively enumerable
(belongs to Σ0

1), thus it is strictly weaker than ACTω .
(A concrete example of a sequent derivable in ACTω , but
not in ACT is given in [25].)

II. OUTLINE

Decidability of ACT, the logic of the whole class of action
lattices, remained an open question, raised by Kozen [18],

Jipsen [13], and Buszkowski [5], [6]. We give a negative
answer:

Theorem 2. ACT is undecidable.

Before going into technical details, let us sketch the general
ideas behind the proof of Theorem 2.

In his proof of Π0
1-hardness of ACTω , Buszkowski [5]

uses an encoding of the totality problem for context-free
grammars, that is, the question whether a given context-free
grammar generates all (non-empty) words over its terminal
alphabet. For the totality problem, in its turn, there is a
well-known reduction from the complement of the halting
problem for Turing machines. Namely, given a deterministic
Turing machine M and its input word x, one can efficiently
construct a context-free grammar GM,x, which generates all
non-empty words if and only if M does not halt on x. Next, by
Buszkowski’s construction, one efficiently constructs a sequent
ΓM,x ` S (here S is a fixed variable), such that this sequent
is derivable in ACTω if and only if machine M does not halt
(runs infinitely long) on input x. Details of these translations

are presented in Sections IV and V, along with the necessary
modifications for our needs. Since the halting problem is Σ0

1-
hard, its complement is Π0

1-hard, thus so is ACTω .
Let us say that “ACTω proves that M does not halt on

x,” if ACTω derives ΓM,x ` S. Our idea is to show that in
some cases ACT is already sufficient to prove non-halting
of M on x. Namely, after a modification of Buszkowski’s
encoding, ACT becomes capable of proving non-halting of
Turing machines which are trivially cycling.

Definition 3. A state qC of a Turing machine M is called a
cycling one, if the rules for qC are 〈qC , a〉 〈qC , a,N〉 for
any letter a of the internal alphabet of M; here N stands for
“no move.” In other words, once M reaches qC , it gets stuck
in this state.

Notice that a cycling state is a priori not required to be
reachable. The definition of a cycling state thus does not
refer to the execution of M, and cycling states can be found
algorithmically, given the code of M. Runtime is handled by
the next definition.

Definition 4. A Turing machine M trivially cycles on input
x, if M reaches a cycling state qC while running on x.

Our modification of Buszkowski’s construction (presented
in Sections IV and V) replaces GM,x by G′M,x and thus ΓM,x

by the corresponding Γ′M,x. The new grammar G′M,x generates
the same language as GM,x, but has some redundant produc-
tion rules, which make proving Γ′M,x ` S easier in some cases.
From the point of view of ACTω , this replacement changes
nothing: Γ′M,x ` S is still derivable in ACTω if and only if
M does not halt on x.

Now, however, the class of pairs 〈M, x〉 for which ACT,
the weaker system, proves non-halting (i.e., derives the sequent
Γ′M,x ` S) includes the class C of all pairs where M trivially
cycles on x. On the other hand, this class is disjoint with the
class H of all pairs where M halts on x: if ACT proves non-
halting for a pair 〈M, x〉, then so does ACTω , and therefore
M indeed does not halt on x.

Next, there is a folklore fact (see Proposition 10 below),
that H and C are recursively inseparable, that is, there is no
decidable class K of pairs 〈M, x〉 which includes C and is
disjoint with H. Thus, the class of pairs for which ACT
proves non-halting is undecidable, and so is ACT itself.

This finishes the proof of Theorem 2, and even gives a
stronger result:

Theorem 3. If ACT ⊆ L ⊆ ACTω , then L is undecidable.

In the following sections, we present the proof of Theorem 3
in detail.

III. THE “LONG RULE”

In this section we formulate an admissible rule in ACT,
which will be used later. First we introduce a shortcut no-
tation ψ+ = ψ · ψ∗ for positive iteration and recall that
ψn = ψ, . . . , ψ (n times; notice that here we use comma,
not multiplication).

Next, we prove the following technical lemma:

Lemma 3. For any natural n, the following “long rule” is
admissible in ACT:

ψ ` γ ψ2 ` γ . . . ψn ` γ ψn, ψ+ ` γ
ψ+ ` γ

Proof. Induction on n. For n = 0 the rule is trivial. For the
induction step, we use the fact that ψ+ ` ψ ∨ (ψ · ψ+) is
derivable in ACT (established straightforwardly).

Next, apply an instance of the long rule for n−1, admissible
by induction hypothesis:

ψ ` γ ψ2 ` γ . . . ψn−1 ` γ ψn−1, ψ+ ` γ
ψ+ ` γ

The first n− 1 premises of this rule are given. The last one is
derived as follows:

ψ+ ` ψ ∨ (ψ · ψ+)

ψn ` γ
ψn, ψ+ ` γ

ψn−1, ψ · ψ+ ` γ
(· `)

ψn−1, ψ ∨ (ψ · ψ+) ` γ
(∨ `)

ψn−1, ψ+ ` γ
(cut)

IV. ENCODING I: NON-HALTING OF TURING MACHINES TO
TOTALITY OF CONTEXT-FREE GRAMMARS

In this section we recall a standard result—Π0
1-completeness

of the totality problem for context-free grammars. We choose
the construction with direct encoding of Turing machines,
since further we are going to analyze the behaviour of Turing
machines in a more refined way. Such a proof can be found, for
example, in textbooks by Kozen [20], Sipser [32], and by Du
and Ko [9]. Other proofs could have a detour, for example, via
Post’s correspondence problem, which would be inconvenient
for us. In this section we revisit this proof and modify it for
our further needs.

We consider only deterministic Turing machines operating
on {0, 1} as the input alphabet. When talking about halting,
we consider any situation when the machine cannot perform
the next operation: for simplicity, we have no designated
“accepting” state(s) in the Turing machine, and every finish
of the execution process is considered “successful.” Thus, the
complement to halting is only infinite execution, in which
the machine, from a given starting configuration, can perform
arbitrarily many steps of execution.

For a Turing machine M, by ΣM we denote its internal
alphabet and QM is the set of the states of M (for simplicity
we further write just Σ and Q). We suppose that Σ and Q are
disjoint (Σ∩Q = ∅) and that # is a fresh symbol (# /∈ Σ∪Q).

For each pair 〈M, x〉 of a Turing machine and its input word
one constructs a context-free grammar GM,x over alphabet Σ∪
Q∪{#} with the following property: GM,x generates all non-
empty words over this alphabet (i.e., has the totality property)
if and only if M does not halt on input x. This construction is
going to be efficient in the sense that the function 〈M, x〉 7→
GM,x is computable.

The configuration of M when it is in state q ∈ Q with the
word a1a2 . . . an ∈ Σ∗ in its memory, and observing its letter
ai, is encoded by the following word:

k = a1 . . . ai−1qai . . . an

(if the memory is empty, then k = q , where is the blank
symbol). A correct protocol of execution of M on input x is a
sequence of configurations k0, k1, . . . , km, where k0 = q0x is
the initial configuration (q0 is the initial state) and each ki+1

is the successor configuration of ki, according to the program
of M. (Since M is deterministic, the successor, if it exists, is
unique.) A protocol is encoded by the following word:

#k0#kR1 #k2#kR3 # . . .#km# if m is even;

#k0#kR1 #k2#kR3 # . . .#kRm# if m is odd.

Notation wR means w written in the reversed letter order.4

Such a protocol is a halting one, if km has no successor.
Otherwise the protocol can be continued further.

We design the context-free grammar GM,x that will generate
all words over Σ ∪ Q ∪ {#} that do not include a halting
protocol as a prefix. Thus, GM,x generates all non-empty
words if and only if no halting protocol exists, i.e., M does
not halt on x (see Lemma 4 below).

The desired set of words is the union of the following ones:
• words not starting with #;
• words of only one letter;
• T (“trash”): words starting with #, but such that either

between some two occurrences of # there is a word that
is not a code of a configuration or reversed code of a
configuration (i.e., has 0 or more than 1 letters from Q),
or such that its prefix before the second # is not #q0x;

• E (“error”): starting with #, but includes, between two
#’s, a code of a configuration ki (maybe reversed) whose
successor is ki+1 (in particular, it has a successor), but
the next block between #’s is not kRi+1;

• P (“prefix”): starts with # and either does not end on
#, or ends on #km# (or #kRm#, depending on parity),
where km is a configuration that has a successor. Words
from P, unless they also belong to T or E, encode
incomplete execution protocols.

Notice that languages T and P are regular and therefore
context-free. The E language can be generated by a non-
deterministic pushdown automaton. This automaton first non-
deterministically guesses the number i for which ki is not
followed by its reversed successor. Then it puts ki to the
stack and, after passing #, takes it back from the stack
(in the reversed order) and establishes the fact that the next
block between #’s is not the reversed successor configuration.
This establishes the fact that E is also context-free. Finally,
removing the leftmost # from these languages does not affect
context-freeness.

4Kozen [20] uses a different construction, without reversing configurations
with odd numbers. This results in a slightly more complicated grammar for
the E language below.

Thus, there exist, and can be efficiently constructed, three
context-free grammars for these languages, with the leftmost
removed. We can suppose that the sets of non-terminal
symbols of these grammars are disjoint, and their starting
symbols are T , E, and P respectively. Moreover, we translate
these grammars into Greibach normal form [11], in which
each production rule is of the form A ⇒ aB1 . . . B`, where
a is a terminal letter from Σ ∪Q ∪ {#}, the symbols A, B1,
. . . , B` are non-terminal ones, and 0 ≤ ` ≤ 2. Now we put
these grammars all together and add a new starting symbol S,
another non-terminal U and the following production rules:

S ⇒ aU where a 6= #

S ⇒ a for any a ∈ Σ ∪Q ∪ {#}
S ⇒ #T

S ⇒ #E

S ⇒ #P

U ⇒ aU for any a ∈ Σ ∪Q ∪ {#}
U ⇒ a for any a ∈ Σ ∪Q ∪ {#}

(U generates all non-empty words).
The grammar obtained by this procedure is the needed
GM,x:

Lemma 4. The grammar GM,x defined above generates all
non-empty words over Σ∪Q∪{#} if and only if M does not
halt on input x.

Proof. If M halts on x, then its halting protocol starts with
#, but belongs neither to T, nor to E, nor to P. Hence, the
language generated by GM,x is not total.

If M does not halt on x, then there is no halting protocol.
Thus, any word beginning with # is either malformed (belongs
to T), or includes an incorrect execution step (belongs to E),
or is an incomplete protocol, i.e., allows further continuation
(then it belongs to P). All such words are generated by GM,x;
all non-empty words not beginning with #, as well the one-
letter word ‘#’, are also generated explicitly. Therefore, in
this case GM,x generates all non-empty words.

This construction is sufficient for Buszkowski’s [5] proof of
Π0

1-hardness of ACTω . For our purposes, however, we aug-
ment GM,x with some extra rules. These rules are redundant
in the sense that they do not extend the language generated by
the grammar—but they make proving totality easier and enable
formalisation of these proofs in the weaker system ACT.

First, we notice that T and E (but not P) are closed under
concatenation with arbitrary words to the right: an incorrect
protocol could not get fixed by further extension. Thus, adding
the following rules does not add new words to the language:

S ⇒ #TU

S ⇒ #EU

Next, if M includes a cycling state qC (see Definition 3),
then any protocol in which qC appears is necessary non-halting
(incomplete) and therefore belongs to P. If a word with qC
is not a correct protocol, then it is also already generated by

GM,x. Hence, any word including qC belongs to the language,
and it is safe to add the following rules:

S ⇒ #CU

C ⇒ aC for any a ∈ Σ ∪Q ∪ {#}
C ⇒ qCU

C ⇒ qC

(non-terminal C generates all words with qC). Notice that
these rules are added only if M actually includes a cycling
state.

We denote the augmented grammar by G′M,x. Since G′M,x

generates the same language as GM,x, Lemma 4 holds for
G′M,x as well.

V. ENCODING II: PROVING NON-HALTING OF TURING
MACHINES IN ACTω AND ACT

Following Buszkowski, we transform G′M,x into a Lambek
categorial grammar. In order to make our presentation self-
contained, here we reexplain the proofs of Buszkowski’s
lemmata.

Let the set of variables of the Lambek calculus include all
non-terminals of G′M,x. The grammar is in Greibach normal
form, so each production rule is of the form A⇒ aB1 . . . B`
(see previous section). For every such rule, we associate the
formula A ← (B1 · . . . · B`) with a (if ` = 0, take just A).
Next, for every a ∈ Σ∪Q∪ {#} let {ϕa,1, . . . , ϕa,m} be the
set of all such formulae (obtained from production rules with
this a) and let ϕa = ϕa,1 ∧ . . . ∧ ϕa,m.

The following lemma shows that this translation of a
context-free grammar into the Lambek calculus is sound and
complete:

Lemma 5. For any non-terminal A of G′M,x, the word
a1 . . . an is generated from A in G′M,x if and only if the sequent
ϕa1 , . . . , ϕan ` A is derivable in MALC.

Notice that, due to conservativity (Proposition 1), provabil-
ity of this sequent is MALC is equivalent to its provability
in ACTω and/or in ACT.

Proof. The left-to-right implication is easier and is obtained
by induction on the context-free derivation of a1 . . . an from
A in G′M,x. Let the first production rule in this derivation
be A ⇒ a1B1 . . . B`. Then by induction hypothesis we have
ϕa2 , . . . , ϕai1 ` B1, and so on, ϕai`−1+1

, . . . , ϕan ` B`. By
cut from A ← (B1 · . . . · B`), B1, . . . , B` ` A (which is
derivable) we get A ← (B1 · . . . · B`), ϕa2 , . . . , ϕan ` A.
By definition, A ← (B1 · . . . · B`) is a member of the
conjunction ϕa1 , so several applications of (∧ `) yield
ϕa1 , ϕa2 , . . . , ϕan ` A. (In particular, ` could be zero, and
we get ϕa1 ` A from A ` A. This is the induction base.)

For the right-to-left implication, consider a cut-free deriva-
tion of ϕa1 , . . . , ϕan ` A in MALC. Notice that the only
rules which can occur in this derivation are (←`), (` ·), and
(∧ `). Since ∧’s appear only as the topmost connectives of the
formulae ϕi, if (∧ `) happens to be applied before (←`) or
(` ·), these two rules can be interchanged. Also, applications

of (∧ `) operating in different ϕi’s are independent and can
be performed in any order. Thus, we can assume that all ap-
plications of (∧ `) which constructed ϕa1 were performed at
the very bottom of the derivation.5 In other words, our sequent
got derived from A← (B1 · . . . ·B`), ϕa2 , . . . , ϕan ` A. Next,
locate the application of (←`) which introduced the leftmost
←. Again, this application can be permuted with all other
rules’ applications, and moved to the bottom of the derivation.
Thus, we get ϕa2 , . . . , ϕan ` B1 · . . . · B`. Finally, we move
the (` ·) rule, which introduced the succedent, to the bottom
of the derivation (again, it is interchangeable with all other
rules). Next, we use the induction hypothesis to show that
B1, . . . , B` derive a2 . . . an in the context-free grammar, and
then apply the A ⇒ a1B1 . . . B` production rule. (For ` = 1
we just use the induction hypothesis and apply A ⇒ a1B1;
` = 0 is the base case: in this situation there is no ←, and
by induction on the derivation we show that ϕa2 , . . . , ϕan is
in fact empty. Application of A⇒ a1 in this case finishes the
context-free derivation.)

Next, let ψ =
∨

a∈Σ∪Q∪{#}
ϕa, and by invertibility of (∨ `)

and (∗ `)ω (Proposition 2) Buszkowski obtains the following
two lemmata (notice that we replaced GM,x with G′M,x).

Lemma 6. G′M,x generates all words of length n over Σ ∪
Q ∪ {#} if and only if ψn ` S is derivable in MALC.

Proof. By the (∨ `) rule and its invertibility (Proposi-
tion 2), derivability of ψn ` S is equivalent to derivability
of ϕa1 , . . . , ϕan ` S for arbitrary a1, . . . , an. Then apply
Lemma 5.

Lemma 7. G′M,x generates all non-empty words over Σ ∪
Q ∪ {#} (i.e., its language is total) if and only if ψ+ ` S is
derivable in ACTω .

Proof. Immediately from the previous lemma, by (· `),
(∗ `)ω , and their invertibility.

Notice that ψ is constructed from the pair 〈M, x〉 via
grammar G′M,x, so the sequent ψ+ ` S is exactly Γ′M,x ` S
mentioned in Section II. Lemma 7 yields Buszkowski’s result
of Π0

1-hardness of ACTω .
The material presented in this section before this point was

indeed previously known. Lemma 5 follows from Gaifman’s
theorem [1], as shown by Lemma 1 and Corollary 1 in [5].
Lemma 7 is [5, Lemma 5]; Lemma 6 is not explicitly formu-
lated by Buszkowski, but easily follows from his proofs.

We are going further and prove that, if M trivially cycles
on x, then Γ′M,x ` S is provable already in ACT. First we
establish a technical fact.

Lemma 8. The sequent ψ+ ` U is derivable in ACT.

This lemma states the fact that totality of the language
of words generated from U is provable in ACT. Indeed,

5This analysis of a cut-free derivation in MALC is in fact a specific
and very simple instance of the focusing technique in non-commutative
intuitionistic linear logic (see [15] for more details and further references).

production rules for U provide the easiest possible way of
generating all non-empty words.

Proof. Since for any letter a ∈ Σ ∪ Q ∪ {#} we have
production rules U ⇒ a and U ⇒ aU in the context-
free grammar, formulae U and U ← U are included in
conjunctions ϕa for any a. Thus, by (∧ `) we have ϕa ` U
and ϕa ` U ← U , and by (∨ `) we get ψ ` U and
ψ ` U ← U (recall that ψ =

∨
a∈Σ∪Q∪{#}

ϕa).

Now ψ+ ` U is derived as follows:

ψ ` U
Λ ` ψ → U

(`→)
ψ ` ψ

ψ ` U ← U

ψ,U ` U (`←), inv.

U ` ψ → U
(`→)

ψ,ψ → U ` ψ → U
(→`)

ψ∗ ` ψ → U
(∗ `)fp

ψ,ψ∗ ` U (`→), inverted

ψ+ ` U
(· `)

Now we are ready to prove the key lemma.

Lemma 9. If M trivially cycles on input x, then ψ+ ` S is
derivable in ACT.

Proof. Suppose that M trivially cycles on x. Consider the
execution of M on input x up to the moment when M enters
the cycling state qC (such an execution is unique, because M
is deterministic). Let the code of the corresponding sequence
of configurations be of length n (n is the number of letters
in the code, not the number of configurations!). Notice that
n > 1, since this code includes at least two symbols, namely
qC and the leftmost #.

Now we derive ψ+ ` S using the “long rule” (Lemma 3):

ψ ` S ψ2 ` S . . . ψn ` S ψn, ψ+ ` S
ψ+ ` S

All its premises, except the last one, are of the form ψm ` S
and are derivable by Lemma 6. In order to derive the last
premise, we first apply (∨ `) as many times as possible to all
formulae in ψn. Now we have to derive ϕa1 , . . . , ϕan , ψ

+ ` S
for any word a1 . . . an over Σ ∪Q ∪ {#}.

Apply cut as follows:

ψ+ ` U ϕa1 , . . . , ϕan , U ` S
ϕa1 , . . . , ϕan , ψ

+ ` S
(cut)

The left premise is derivable by Lemma 8. For the right
premise, consider several cases:

1) a1 6= #. Then S ⇒ a1U is a production rule of
the grammar, and ϕa1 contains (as a member of the
big conjunction) S ← U . Each of the other formulae,
ϕa2 , . . . , ϕan , contains U ← U , by the U ⇒ aiU pro-
duction rule. Thus, our sequent, ϕa1 , . . . , ϕan , U ` S,
is derived from S ← U,U ← U, . . . , U ← U,U ` S
(which is derivable in the Lambek calculus) by several
applications of (∧ `).

2) a1a2 . . . an ∈ T. In this case a1 = #, and the
remainder a2 . . . an is generated in G′M,x from non-
terminal T . By the S ⇒ #TU production rule, we have
S ← (T · U) in ϕa1 , and by (∧ `) we now have to
derive the sequent S ← (T · U), ϕa2 , . . . , ϕan , U ` S.
By Lemma 5, since a2 . . . an is generated from T , the
sequent ϕa2 , . . . , ϕan ` T is derivable. Finally, use cut:

ϕa2 , . . . , ϕan ` T S ← (T · U), T, U ` S
S ← (T · U), ϕa2 , . . . , ϕan , U ` S

The upper-right sequent is derivable in the Lambek
calculus.

3) a1a2 . . . an ∈ E. The same as the previous case, with E
instead of T .

4) a1 = # and ai = qC for some i ∈ {2, 3, . . . n}.
Essentially the same: use the S ⇒ #CU production
rule and notice that ϕa2 , . . . , ϕan ` C is derivable, since
a2 . . . an is generated from C.

Finally, we notice that this case analysis is exhaustive.
Indeed, any word of at least two letters, which starts with
and does not belong to T or E, is a prefix of a correct
protocol of execution of M on input x. Such an execution is
unique, and we know that it includes qC as one of the first n
symbols of the configuration sequence code.

Notice that the P non-terminal did not become completely
useless in the presence of C: while for long words we use C
instead of P , shorter prefixes of the configuration sequence,
which appear in derivations of ψm ` S, m < n, are still
generated using P . For long prefixes of the infinite run of M
on x, however, the rules with C provide a uniform, purely
inductive way of proving ψm ` S, which is encodable in
ACT.

VI. UNDECIDABILITY OF ACT

Let us fix the encoding of pairs 〈M, x〉 as sequents of action
logic as described in the previous two sections: Γ′M,x = ψ+,
where ψ is obtained from G′M,x. Let L be an arbitrary theory
in the language of ACT and ACTω .

Definition 5. By K(L) we denote the class of pairs 〈M, x〉,
for which the sequent Γ′M,x ` S is derivable in L (“pairs of
a Turing machine and its input, for which L can prove non-
halting”).

(Formally speaking, one can identify L with the set of its
theorems, so “derivable in L” actually means “belongs to L.”)

Let H be the class of all pairs where M halts on x, H be
its complement (the class of all pairs where M does not halt
on x), and C be the class of all pairs where M trivially cycles
on x. When talking about (un)decidability of such classes, we
suppose that M is encoded as a binary word in a standard
way.

Using these notations, we can summarize results of the
previous section in the following way:

Lemma 7: K(ACTω) = H;
Lemma 9: K(ACT) ⊇ C.

Moreover, for any L between ACT and ACTω we have

C ⊆ K(ACT) ⊆ K(L) ⊆ K(ACTω) = H.

Now we use a folklore fact that C and H are recursively
inseparable:

Proposition 10. There exists no decidable class K which
includes C (C ⊆ K) and is disjoint with H (K ⊆ H).

Proof. Diagonalization. Suppose there exists a decidable class
K which separates C and H. Fix an encoding of Turing
machines. By decidability of K, the following program can
be implemented as a Turing machine:

given y ∈ {0, 1}∗,
if y is a code of a Turing machine M and 〈M, y〉 ∈ K,

then halt;
if y is a code of a Turing machine M and 〈M, y〉 /∈ K,

then enter a cycling state;
if y is not a code of a Turing machine,

then halt.
Denote this Turing machine by Mδ and let yδ be its code.
Consider 〈Mδ, yδ〉.

Case 1: 〈Mδ, yδ〉 ∈ K. On one hand, Mδ , by its definition,
halts on yδ . On the other hand, it does not, since K ⊆ H.
Contradiction.

Case 2: 〈Mδ, yδ〉 /∈ K. On one hand, Mδ , by its definition,
trivially cycles on yδ , i.e., 〈Mδ, yδ〉 ∈ C. On the other hand,
C ⊆ K, therefore 〈Mδ, yδ〉 /∈ C. Contradiction.

In particular, K(L) is undecidable for any L such that
ACT ⊆ L ⊆ ACTω . This finishes the proof of Theorem 3
and, in particular, establishes undecidability of ACT (Theo-
rem 2).

VII. CONCLUSION

We have proved that ACT is algorithmically undecidable.
Some related questions, however, still require further investi-
gation. First, the exact complexity class for ACT should be
settled. We conjecture Σ0

1-completeness: thus, undecidabilities
of ACTω and ACT are of different nature. A more technical
question is an exact characterization of K(ACT): which sorts
of “regular” halting, besides trivial cycling, can be proved
in ACT (this depends, however, on the construction of
G′M,x). Second, Buszkowski proves Π0

1-hardness not only for
ACTω itself, but also for its fragments with only one additive
connective (either ∨ or ∧, but not both). It looks plausible that
our undecidability proof for ACT would also work in these
fragments. The fragment without ∧ (only ∨) is particularly
interesting, since it is the logic of action algebras originally
introduced by Pratt. Finally, the old question of constructing a
good (analytic) Gentzen-style calculus for ACT is still open.
One possible approach would be to take non-well-founded cut-
free derivations for ACTω [8] and consider the subclass of
derivations corresponding to ACT (cf. [4] for arithmetics).

ACKNOWLEDGMENT

Though not mentioned explicitly in this paper, the encoding
of cyclic executions of Turing machines in ACT is essentially
connected to circular proofs in the version of ACTω with
non-well-founded derivations (cf. [8]). The author is grateful
to Daniyar Shamkanov and Anupam Das for sharing ideas
on circular proofs. The author would also like to thank Fedor
Pakhomov, Max Kanovich, Andre Scedrov, and Stanislav Sper-
anski for fruitful discussions, and the anonymous reviewers for
their helpful comments. Being a Young Russian Mathematics
award winner, the author thanks its jury and sponsors for this
high honour.

FINANCIAL SUPPORT

This article was prepared within the framework of the HSE
University Basic Research Program and funded by the Russian
Academic Excellence Project ‘5-100.’

REFERENCES

[1] Y. Bar-Hillel, C. Gaifman, E. Shamir. On the categorial and phrase-
structure grammars. Bulletin of the Research Council of Israel 9F (1960),
1–16.

[2] P. Brunet, D. Pous. A formal exploration of nominal Kleene algebra.
In: MFCS 2016, LIPIcs vol. 58, Schloss Dagstuhl—Leibniz-Zentrum für
Informatik, 2016, pp. 22:1–22:13.

[3] P. Brunet, D. Pous, G. Struth. On decidability of concurrent Kleene
algebra. In: CONCUR 2017, LIPIcs vol. 85, Schloss Dagstuhl—Leibniz-
Zentrum für Informatik, 2017, pp. 28:1–28:15.

[4] W. Buchholz. Notation systems for infinitary derivations. Archive for
Mathematical Logic 30 (1991), 277–296.

[5] W. Buszkowski. On action logic: equational theories of action algebras.
Journal of Logic and Computation 17 (2007), 199–217.

[6] W. Buszkowski. Some open problems in substructural logics.
Invited talk, Kick-off meeting for project TICAMORE.
Vienna, 14–16 March, 2017. https://ticamore.logic.at/legacy/
program/ticamore-kick-off-vienna-2017-Buszkowski.pdf

[7] J. H. Conway. Regular algebra and finite machines. Chapman and Hall,
London, 1971.

[8] A. Das, D. Pous. Non-wellfounded proof theory for (Kleene+action)
(algebras+lattices). In: CSL 2018, LIPIcs vol. 119, Schloss Dagstuhl—
Leibniz-Zentrum für Informatik, 2018, pp. 19:1–19:18.

[9] D.-Z. Du, K.-I. Ko. Problem solving in automata, languages, and com-
plexity. John Wiley & Sons, New York, 2001.

[10] M. J. Gabbay, V. Ciancia. Freshness and name-restriction in sets of
traces with names. In: FoSSaCS 2011, LNCS vol. 6604, Springer, 2011,
pp. 365–380

[11] S. Greibach. A new normal-form theorem for context-free phrase struc-
ture grammars. Journal of the ACM 12 (1965), 42–52.

[12] T. Hoare, B. Möller, G. Struth, I. Wehrman. Concurrent Kleene algebra
and its foundations. Journal of Logic and Algebraic Programming 80
(2011), 266–296.

[13] P. Jipsen. From semirings to residuated Kleene algebras. Studia Logica
76 (2004), 291–303.

[14] M. Kanovich, S. Kuznetsov, V. Nigam, A. Scedrov. Subexponentials
in non-commutative linear logic. Mathematical Structures in Computer
Science, FirstView (2018), https://doi.org/10.1017/S0960129518000117

[15] M. Kanovich, S. Kuznetsov, V. Nigam, A. Scedrov. A logical framework
with commutative and non-commutative subexponentials. In: IJCAR
2018, LNAI vol. 10900, Springer, 2018, pp. 228–245.

[16] D. Kozen. On Kleene algebras and closed semirings. In: MFCS 1990,
LNCS vol. 452, Springer, 1990, pp. 26–47.

[17] D. Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Information and Computation 110 (1994), 366–390.

[18] D. Kozen. On action algebras. In: Logic and Information Flow, MIT
Press, 1994, pp. 78–88.

[19] D. Kozen, F. Smith. Kleene algebra with tests: completeness and
decidability. In: CSL’96, LNCS vol. 1258, Springer, 1996, pp. 244–259.

[20] D. Kozen. Automata and computability. Springer-Verlag, New York,
1997.

[21] D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans-
actions on Computational Logic 1 (2000), 60–76.

[22] D. Kozen, K. Mamouras, A. Silva. Completeness and incompleteness
in nominal Kleene algebra. Journal of Logical and Algebraic Methods in
Programming 91 (2017), 17–32.

[23] S. C. Kleene. Representation of events in nerve nets and finite automata.
In: Automata Studies, Princeton University Press, 1956, pp. 3–41.

[24] D. Krob. Complete systems of B-rational identities. Theoretical Com-
puter Science 89 (1991), 207–343.

[25] S. Kuznetsov. *-continuity vs. induction: divide and conquer. In: Ad-
vances in Modal Logic vol. 12, College Publications, London, 2018, pp.
493–510.

[26] J. Lambek. The mathematics of sentence structure. The American
Mathematical Monthly 65 (1958), 154–170.

[27] P. Lincoln, J. Mitchell, A. Scedrov, N. Shankar. Decision problems for
propositional linear logic. Annals of Pure and Applied Logic 56 (1992),
239–311.

[28] H. Ono. Semantics for substructural logics. In: Substructural Logics,
Studies in Logic and Computation 2, Clarendon Press, Oxford, 1993,
pp. 259–292.

[29] E. Palka. An infinitary sequent system for the equational theory of *-
continuous action lattices. Fundamenta Informaticae 78.2 (2007), 295–
309.

[30] V. Pratt. Action logic and pure induction. In: JELIA 1990: Logics in AI,
LNCS (LNAI) vol. 478, Springer, 1991, pp. 97–120.

[31] V. N. Redko. On defining relations for the algebra of regular events (in
Russian). Ukrainskiı̆ Matematicheskiı̆ Zhurnal 16 (1964), 120–126.

[32] M. Sipser. Introduction to the theory of computation, 3rd ed. Cengage
Learning, 2012.

