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Abstract
In the present paper we survey existing graph invariants for gradient-like flows on
surfaces up to the topological equivalence and develop effective algorithms for their
distinction (let us recall that a flow given on a surface is called a gradient-like flow if
its non-wandering set consists of a finite set of hyperbolic fixed points, and there is
no trajectories connecting saddle points). Additionally, we construct a parametrized
algorithm for the Fleitas’s invariant, which will be of linear time, when the number of
sources is fixed. Finally, we prove that the classes of topological equivalence and topo-
logical conjugacy are coincide for gradient-like flows, so, all the proposed invariants
and distinguishing algorithms works also for topological classification, taking in sense
time of moving along trajectories. So, as the main result of this paper we have got
multiple ways to recognize equivalence and conjugacy class of arbitrary gradient-like
flow on a closed surface in a polynomial time.

Keywords Gradient-like dynamics · Effective distinguishing algorithms · Graph
invariants · Surface

1 Introduction

It is well-known that theMorse functions exist on anymanifolds and, hence, there exist
gradient flows as well. Generically, they are structurally stable and a dynamics of such
systems is a base for the class of gradient-like flows, i.e. flows, whose non-wandering
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set consists of a finite number of hyperbolic fixed points, whose invariant manifolds
cross transversally.

Such flows are used everywhere, when modelling regular processes in different
natural sciences is used (see, for example, Pesin and Yurchenko 2004). Hence, it is
very important to be able to compare dynamics of such models without depending on
a nature of their appearing. Meanwhile, depending on research goals, it is important
both a qualitative behaviour of a system, i.e. partition into trajectories, and time of
moving along trajectories. In dynamical systems theory, the relation, preserving par-
tition into trajectories up to homeomorphism, is called the topological equivalence
and the relation, preserving in addition time of moving along trajectories, is called the
topological conjugacy. A finding of invariants uniquely determining an equivalence
class for a system is called the topological classification.

The finiteness of the set of non-wandering orbits of a gradient-like flow leads to
invariants that goes back to the classical works of Andronov and Pontryagin (1937),
Leontovich and Mayer (1937, 1955). In the present paper we survey existing graph
invariants for gradient-like flows on surfaces up to the topological equivalence and
develop effective algorithms1 (i.e. polynomial-time algorithms) for their distinction.
Additionally, we construct a parametrized algorithm for the Fleitas’s invariant, which
will be of linear time, when the number of sources is fixed. Finally, we prove that the
classes of topological equivalence and topological conjugacy are coincide for gradient-
like flows. So, all the proposed invariants and distinguishing algorithms work also for
the topological conjugacy.

2 Supporting Concepts and Facts

In this part we recall some definitions and facts to effective distinguish graphs appear-
ing below as invariants for gradient-like flows.

2.1 On Gradient-Like Flows on Surfaces

A C1-smooth flow on a closed surface S is a family of diffeomorphisms f t : S → S,
smoothly depended on t ∈ R, such that f 0(x) = x and f t ( f s(x)) = f t+s(x), for
any x ∈ S, t, s ∈ R. Everywhere below f t is a smooth flow on a closed surface S.

For every point x ∈ S the setOx = { f t (x), t ∈ R} is called an orbit of x . The flow
orbit is homeomorphic to either a point, or a circle, or a line; and is called either a
fixed point, or a periodic orbit, or a non-singular trajectory, respectively. Each orbit,
other than a fixed point, is oriented in the direction of increasing time t .

Two flows f t : S → S, f ′t : S′ → S′ are called topologically equivalent if there
is a homeomorphism h : S → S′ sending the trajectories of f t to trajectories of f ′t
and preserving the orientation of them. If, in addition, the homeomorphism h has a

1 The notion of an effectively solvable problem rises to Cobham (1964), who asserts that a computational
problem can be feasibly computed on some device only if it can be computed in time bounded by a
polynomial on a parameter representing the length of input data. The complexity status of the general graph
isomorphism problem is not proved to be polynomial or not. Graphs in the criteria are not graphs of the
general type, they possess peculiar combinatorial properties.
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property h f t = h f ′t for every t ∈ R, then the flows are said to be topologically
conjugate. An invariant of some class of flows is a properties which is preserved up
to the topological equivalence or conjugacy.

If the eigenvalues in a fixed point p have a non-zero real part, then p is called a
hyperbolic fixed point. The hyperbolicity of the fixed point is expressed by the fact
that the point have a stable manifold Ws

p and an unstable manifold Wu
p as following

Ws
p = {x ∈ S | f t (x) → p, t → ∞}, Wu

p = {x ∈ S | f t (x) → p, t → −∞},

respectively. Besides, dim Wu
p is equal to the number of eigenvalues with positive real

parts. If dim Wu
p = 0, then p is called a sink, if dim Ws

p = 1, then p is called a saddle
point, if dim Wu

p = 2, then p is called a source. A connected component lup, l
s
p of

Wu
p\{p}, Ws

p\{p} is called unstable, stable separatrix of p respectively.

Proposition 2.1 (Palis andDeMelo 1982,Ch. 2, Theorem4.10;Kruglov 2018,Lemma
1; Robinson 1995, Ch. 4, Theorem 7.1) A flow f t : S → S in some neighbourhood
of a hyperbolic fixed point p is topologically conjugate to one of the following linear
flows

at (x, y) = (
2−t x, 2−t y

)
,

bt (x, y) = (
2t x, 2−t y

)
,

ct (x, y) = (
2t x, 2t y

)
,

if p is a sink, saddle or source, respectively (see Fig. 1).

A point p ∈ S is called a wandering point of a flow f t , if there is an open neigh-
bourhood Up of p, such that f t (Up) ∩Up = ∅, for all |t | > 1. Otherwise p is called
a non-wandering point. The set of all the non-wandering points of f t is called the
non-wandering set, and it is denoted by � f t .

A flow f t : S → S is a gradient-like if its non-wandering set consists of a finite
set of hyperbolic fixed points, and there are no trajectories connecting saddle points2.
Everywhere below f t is a gradient-like flow on S with at least one saddle point3,�0

f t ,

�1
f t �2

f t are the sets of all sinks, saddles, and sources of f t , respectively.

Proposition 2.2 (Grines et al. 2016, Theorem 2.1.1 and Corollary 2.2) For every
gradient-like flow f t , we have the following properties:

1. S = ⋃
p∈� f t

Wu
p = ⋃

p∈� f t
W s

p;

2 If the non-wandering set includes also a finite number of hyperbolic periodic orbits, then the flow is called
aMorse-Smale flow and topological classification of such flows on surfaces has been obtained, for example,
in Peixoto (1973) and Oshemkov and Sharko (1998). If a flow allows also trajectories connecting saddle
points, then such flow is called an �-stable flow; classification of �-stable flows without limit cycles on
surfaces has been obtained in Kruglov et al. (2018a); classification of all �-stable flows on surfaces has
been obtained in Kruglov et al. (2018b).
3 All gradient-like flows without saddle points are given on a sphere and have only two fixed points: source
and sink. All such flows are topologically conjugate.
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Fig. 1 A local conjugacy between hyperbolic fixed points and fixed points of the linear flows on R2; f t is
a flow on S, at , bt ct are flows from Proposition 2.1, u is a neighbourhood of the Origin O

2. Wu
p (Ws

p) is a smooth submanifold of S diffeomorphic to Ri (R2−i ), for each fixed

point p ∈ �i
f t ;
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3. for every saddle point σ , there is a unique sink (source) point ω (α), such that

cl(luσ )\luσ = {σ, ω} (cl(lsσ )\lsσ = {σ, α});

4. for each sinkω (source α), there exists at least one saddle point σ with an unstable
(stable) separatrix luσ (lsσ ), such that cl(luσ )\(luσ ) = {σ, ω} (cl(lsσ )\(lsσ ) = {σ, α}).

2.2 Some Basic Definitions and Facts from Graph Theory

A graph is a pair (V , E), where V is a set of vertices and E is a set of pairs of vertices,
which are called edges. If E contains ordered pairs, then the graph is called a directed
one. If some of edges is consisted in E more than one time, then it is called a multiple
edge, a graph with multiple edges is called a multigraph.

Twovertices are called adjacent if they are connected by an edge (i.e. they constitute
the edge), and the edge is incident to each of the vertices. A loop is an edge, whose end-
vertices coincide. A simple graph is an undirected graph without loops and multiple
edges.

The number of edges incident to a vertex is called degree of the vertex. A non-
directed graph of the maximum vertex degree 3 is called a subcubic.

A set {b1, (b1, b2), b2, . . . , bk−1, (bk−1, bk), bk} is called a path of the length k. If
b1 = bk , then the path is called a cycle. A graph is called connected if every two its
vertices are joined by a path.

A graph (V ′, E ′), where V ′ ⊂ V and E ′ ⊂ E , is called a subgraph of a graph
(V , E).

A graph is called embeddable into a surface if there are sets of points and Jordan
curves with pairwise disjoint interiors on the surface, corresponding to the graph’s
vertices and edges, respectively. The genus of a graph is the minimum among genuses
of surfaces into which the graph can be embedded. A graph is called planar if it is
embeddable into a 2-sphere.

One says that an isomorphism of n vertices graphs can be recognized (tested) in
a time t(n) if a distinguishing algorithm contains t(n) operations. The algorithm is
called effective if t(n) is restricted by some polynomial function of n.

Proposition 2.3 (Hopcroft and Wong 1974) Isomorphism of two n-vertex planar sim-
ple graphs can be recognized in O(n) time.

Proposition 2.4 (Miller 1980) Isomorphism of two n-vertex simple graphs of genus g
can be tested in O(nO(g)) time.

Proposition 2.5 (Kawarabayashi 2015, Theorem 1.3) For every integer g, isomor-
phism of graphs of genus at most g can be done in linear time4.

Proposition 2.6 (Galil et al. 1987) Isomorphism of n-vertex simple subcubic graphs
can be recognized in O(n3 log(n)) time.

4 Note that the paper (Kawarabayashi 2015) is a preprint and, to the best of our knowledge, it is not publish
in a peer-review journal. This is the reason why we will use Propositions 2.3 and 2.4 to obtain our results.
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Proposition 2.7 (Luks 1982) For each fixed ρ, isomorphism of n-vertex simple graphs
of the maximum vertex degree at most ρ can be recognized in polynomial time.

To this end, we will also need the following graph transformations.
A k-subdivision of an edge e = (a, b) is the following modification of an initial

graph: to delete e from the graph and add new vertices c1, c2, . . . , ck with edges
ac1, c1c2, . . . , ck−1ck, ckb.

A k∗-subdivision of an edge e = (a, b) is the following modification of an initial
graph: to delete e from the graph and add new vertices c1, c2, . . . , ck, d with edges
ac1, c1c2, . . . , ck−1ck, ckb, c1d.

3 An Algorithm for Peixoto’s Graph

3.1 Peixoto’s Graph

According to Peixoto (1973), the Peixoto’s invariant for a gradient-like flow f t is a
connected directed graph � f t with distinguishing sets. Vertices of � f t correspond to
fixed points of the flow f t and edges correspond to saddle separatrices. The set of
vertices is divided into the three parts: vertices for sources, vertices for saddles, and
vertices for sinks. Each saddle vertex is incident to four edges, corresponding to four
separatrices. There is no an edge, connecting a source vertex with a sink vertex, and all
the edges are directed from a source vertex to a saddle vertex or from a saddle vertex
to a sink vertex (see Fig. 2).

Figure 3 shows that there are non-equivalent gradient-like flows with isomorphic
directed graphs. It is the reason that � f t is equipped with some distinguishing sets to
receive an equipped graph �P

f t , which will be a complete topological invariant.
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Fig. 2 An example of a gradient-like flow f t and its directed graph � f t ; αi is a source, ai is a vertex on

� f t corresponding to αi , i = 1, 4; σi is a saddle, si is a vertex on � f t corresponding to σi , i = 1, 3; ω is
a sink, w is a vertex on � f t corresponding to ω
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Fig. 3 Two flows f t and f ′t with the same directed graphs � f t and � f ′t ; αi is a source, ai is a vertex on

� f t corresponding to αi , i = 1, 6; σi is a saddle, si is a vertex on � f t corresponding to σi , i = 1, 5; ω is
a sink, w is a vertex on � f t corresponding to ω; similar for the primed ones

To define a distinguishing set, let us consider the set

S̃ = S\
⋃

σ∈�1
f t

(
cl(Wu

σ ) ∪ cl(Ws
σ )

)
.

The closure of any its connected component is called a cell. Due to Peixoto (1973),
all the cells can be of the three types, described in Fig. 4.

A distinguishing set is a subgraph corresponding to the boundary of a cell. Hence,
distinguishing sets can be of the three types, corresponding to the cell types (see Fig.
5). We call by a tail an edge with one degree in one of its ends.

Two Peixoto’s graphs �P
f t , �

P
f ′t of gradient-like flows f t and f ′t , respectively, are

called isomorphic if there is an isomorphism between � f t and � f ′t , which preserves
distinguishing sets.

Proposition 3.1 (Peixoto 1973, Proposition 4.4) Two gradient-like flows f t , f ′t are
topologically equivalent iff their Peixoto graphs �P

f t , �
P
f ′t are isomorphic.

3.2 An AlgorithmDistinguishing the Peixoto’s Graphs

We assume that gradient-like flows are given on the same surface S and denote by
g(S) the genus of S. The idea to construct an algorithm consists of a transformation
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Fig. 4 The types of cells for a gradient-like flow; α is a source, σ, σ1, σ2 are saddles, ω is a sink
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Fig. 5 A flow f t from G and its Peixoto’s graph �P
f t

with subgraphs; αi is a source, ai is a vertex on � f t

corresponding to αi , i = 1, 4; σi is a saddle, si is a vertex on � f t corresponding to σi , i = 1, 3; ω is a sink,
w is a vertex on � f t corresponding to ω

of the equipped Peixoto’s graph �P
f t to a simple graph �̃ f t such that �P

f t and �P
f ′t are

isomorphic iff �̃ f t and �̃ f ′t are isomorphic. Moreover we will do it preserving the
embeddability for �̃ f t . In more details.

First, we add two degree one neighbours to every saddle vertex of �P
f t . Next, for

any type 1 subgraph of �P
f t , we add a new vertex and four edges, connecting the

new vertex with all the vertices of the subgraph. Finally, we apply the 2∗-subdivision
operation to every oriented edge of �P

f t the way if they would be oriented otherwise.

The resulting graph is �̃ f t (see Fig. 6).

Lemma 3.1 The graphs �P
f t and �P

f ′t are isomorphic iff �̃ f t and �̃ f ′t are isomorphic.
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Fig. 6 The Peixoto’s graph �P
f t

of with subgraphs and its simple graph �̃ f t ; ai is a vertex corresponding

to a sink, i = 1, 4; si is a vertex corresponding to a saddle, i = 1, 3; w is a vertex corresponding to a sink

Proof Obviously, �̃ f t can be uniquely constructed by �P
f t . We will show that �P

f t can

also be uniquely restored by �̃ f t . This fact implies the correctness of this lemma.
A vertex of �̃ f t is a saddle in �P

f t iff it has two neighbour degree one vertices.
Hence, all the saddle vertices can be uniquely determined. Let x be a saddle vertex
of �P

f t . In �̃ f t , it is adjacent to a degree two vertex y and to a degree three vertex
z. The vertex y has a degree three neighbour y′, which has two neighbours and one
of them, denoted by y′′, has degree one or more than one. The vertex y′′ is a sink
vertex and xy′′ is an edge in �P

f t . The vertex z has a degree two neighbour z′, which
has a neighbour z′′ �= z. The vertex z′′ is a source vertex and z′′x is an edge in
�P

f t .

Knowing sink, source, and saddle vertices of�P
f t , it is possible to restore all its tails.

Any subgraph of type 2 or 3 is completely defined by its tail. Hence, all subgraphs
of these types can be uniquely found. Vertices of type 1 subgraphs are defined as
the neighbours of those degree four vertices of �̃ f t that belong to four 5-cycles.

�
Theorem 1 Let f t and f ′t be gradient-like flows on S, �P

f t and �P
f ′t be their equipped

n-vertex Peixoto’s graphs with m edges. Then isomorphism of �P
f t and �P

f ′t can be

tested in O(nO(g(S))) time. This problem can be solved in O(m) time if g(S) = 0.

Proof First, construct �̃ f t and �̃ f ′t by �P
f t and �P

f ′t . It can be done in O(m) time.

Additionally, �̃ f t and �̃ f ′t both have O(m) vertices. Both graphs �̃ f t and �̃ f ′t can be
emdedded into S. Indeed, it is true for� f t and� f ′t . Puttingnewvertices, corresponding
to type 1 subgraphs, inside type 1 cells does not create an intersection of edges in an
interior point. The same is true for adding degree one vertices. Hence, �̃ f t and �̃ f ′t

are both emdeddable into S. By Propositions 2.3 and 2.4, isomorphism �̃ f t and �̃ f ′t
can be checked in O(nO(g(S))) time (in O(m) time if g(S) = 0). Thus, the same is
true for �P

f t and �P
f ′t . �
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4 An Algorithm for a Modification of Peixoto’s Graph

4.1 AModification of Peixoto’s Graph

In 2011, Grines et al. (2016) suggested5 another version of the Peixoto’s invariant.
Namely, they avoid the distinguishing sets and equipped the directed Peixoto’s graph
� f t by orders of some edges to obtain an equipped graph �GP

f t .

Let ω be a sink of f t , and let Lω be the set of separatrices containing ω in their
closures. It follows, for example, from Proposition 2.1 that there is a 2-disk Bω � ω,
such that each separatrix l ⊂ Lω intersects ∂Bω at a unique point. For the vertex w,
corresponding to ω, let Ew be the set of edges of the graph � f t incident to w. Let Nw

be the cardinality of the set Ew. Let us enumerate elements of Ew in the next way. We
pick a 2-disk Bω in the basin of ω and set cω = ∂Bω. We define the counterclockwise
orientation on cω with respect to Bω. We enumerate all the edges e1, . . . , eNw from
Ew according to the order of the corresponding separatrices as we move along cω,
starting from some point on cω. This enumeration of all the elements of Ew is said to
be compatible with the embedding of the separatrices.

Two equipped graphs �GP
f t and �GP

f ′t of flows f t and f ′t (possibly, on different
ambient surfaces) are said to be isomorphic if there is an isomorphism ξ between � f t

and � f ′t , such that the permutation 
w,w′ , where w′ = ξ(w), induced by ξ is a power
of a cyclic permutation6, for each vertex w, corresponding to a sink.

Consider Fig. 3 once again and suppose that the vertex w (w′) of the graph corre-
sponds to the sink point ω (ω′) and the vertex a (a′) of the graph corresponds to the
source point α (α′). We renumber the separatrices lu1 , lu2 , lu3 , lu4 (l ′u1 , l ′u2 , l ′u3 , l ′u4 ) of the
saddle points belonging to the stable manifold of the point ω (ω′) in accordance with
the positive orientation on a closed curve around ω (ω′). We denote by σ1, σ2, σ3, σ4
(σ ′

1, σ
′
2, σ

′
3, σ

′
4) the saddle points that satisfy the condition that σi (σ ′

i ) belongs to the
closure of lui (l ′ui ). Introduce a numeration on the set Eω (E ′

ω) compatible with the
embedding of the separatrices. As we have already noted, the graphs � f t and � f ′t are
isomorphic. There are exactly two isomorphisms of these graphs: the isomorphism
ξ1 of the natural identification of the graph � f t with the graph � f ′t and the isomor-
phism ξ2 that is the composition of the natural identification and the reflection with
respect to the axis a′w′. One can directly check that the isomorphism ξ1 induces the

permutation 
w,w′ =
(
1 2 3 4
1 2 4 3

)
and the isomorphism ξ2 induces the permutation


w,w′ =
(
1 2 3 4
4 3 2 1

)
. None of the permutations is a power of a cyclic permutation

and the equipped graphs �GP
f t and �GP

f ′t are not isomorphic.

Proposition 4.1 (Grines et al. 2016, Theorem 3.2.1) Gradient-like flows f t and f ′t
are topologically conjugate iff their equipped graphs �GP

f t and �GP
f ′t are isomorphic.

5 The classification results in Grines et al. (2016) have been obtained for gradient-like diffeomorphisms,
but they are also valid for flows.
6 It can be directly checked that the property of the permutation to be a power of a cyclic permutation is
independent on a choice of the curves cω and cω′ .
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4.2 An AlgorithmDistinguishing theModifying Peixoto’s Graphs

We will use an idea which is similar to one for Peixoto’s graphs and modify the graph
�GP

f t up to a graph �̄ f t by the following way.

For any sink vertex w of �GP
f t , we consider the cyclically ordered set Ew of all the

edges, incident to w. We delete w from �GP
f t (and all the edges, incident to w), add

a cycle with Nw vertices to the resulting graph, whose vertices are numbered with
1, . . . , Nw. For any 1 ≤ i ≤ Nw, we add a non-oriented edge between i-th vertex of
the cycle and the second end of i-th element of Ew distinct to w. Next, we add two
degree one neighbours to every saddle vertex of �GP

f t and apply the 2∗-subdivision
operation to every its oriented edge.

Lemma 4.1 The graphs�GP
f t and�GP

f ′t are isomorphic iff �̄ f t and �̄ f ′t are isomorphic.

Proof Similar to the reasonings from the proof of Lemma 3.1, knowing �̄ f t , it is
possible to restore all the saddles of �GP

f t and all the edges of �GP
f t . Hence, all the

cycles of �̄ f t , corresponding to all the sinks of �GP
f t , can be determined. A cyclical

order of Ew is determined under rounding of the cycles. Hence, knowing �̄ f t , it is
possible to uniquely restore �GP

f t The opposite possibility is obvious. �

Theorem 2 Let f t and f ′t be gradient-like flows on S,�GP
f t and�GP

f ′t be their equipped

n-vertex graphs with m edges. Then isomorphism of �GP
f t and �GP

f ′t can be tested in

O(nO(g(S))) time. This problem can be solved in O(m) time if g(S) = 0.

Proof We start from constructing the graphs �̄ f t and �̄ f ′t by �GP
f t and �GP

f ′t . It can be

done in O(m) time. Additionally, �̄ f t and �̄ f ′t both have O(m) vertices. Since �̃ f t

and �̃ f ′t can be embedded into S, << inscribing >> cycles into sinks of �GP
f t and

�GP
f ′t keeps embeddability into S, then �̄ f t and �̄ f ′t can also be embedded into S. By

Propositions 2.3 and 2.4, isomorphism �̄ f t and �̄ f ′t can be checked in O(nO(g(S)))

time (in O(m) time if g(S) = 0). Thus, the same is true for �GP
f t and �GP

f ′t . �

5 An Algorithm forWang’s Graph

5.1 Wang’s Graph

The Wang’s invariant (Wang 1990) is an invariant for gradient-like flows on oriented
surfaces S. The invariant is a graph dual to the unequipped Peixoto’s graph: for the
Wang’s graph �W

f t for f t correspond to the cells of f t its edges of the colour s
correspond to the stable separatrices and edges of the colour u correspond to the
unstable separatrices (see Fig. 7). This graph consists of 4-cycles around each saddle
point, its edges are coloured in two coloursu and s, the opposite edges in all the 4-cycles
have the same colour. Hence, each its vertex has degree two or four. In addition, all the
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u u

uu

uu

S

f t

ГWf t
S

S

S S

S S

Fig. 7 A flow f t from G on a surface S and its Wang’s invariant �W
f t
; s, u are the colours for edges

edges are directed so that the direction of any edge is consistent with the clockwise
orientation of its 4-cycle.

TwoWang’s graphs�W
f t , �

W
f ′t for gradient-like flows f t , f ′t , respectively, are called

isomorphic if there is an isomorphism between �W
f t and �W

f ′t preserving the colours.

Proposition 5.1 (Wang 1990) The gradient-like flows f t , f ′t are topologically equiv-
alent iff their Wang’s graphs �W

f ′t , �W
f ′t are isomorphic.

5.2 An AlgorithmDistinguishing theWang’s Graphs

By the graph �W
f t , we construct a graph �̆ f t as follows. We apply 2∗-subdivision to

every oriented edge of the colour s and 3∗-subdivision to every oriented edge of the
colour u. The same operation is done for the graph �W

f ′t to obtain a graph �̆ f ′t . These
operations take linear time on the numbers of vertices.

Lemma 5.1 The graphs �W
f t and �W

f ′t are isomorphic iff �̆ f t and �̆ f ′t are isomorphic.

Proof To prove the lemma, we only need to show that �W
f t can be uniquely recon-

structed by �̆ f t . Indeed, in �̆ f t , we find all degree 4 vertices, which will be degree
4 vertices in �W

f ′t , remove them to obtain the disjunctive sum of path-like remaining
subgraphs. By degree 3 vertices in these subgraphs, it is possible restore all edges in
4-cycles and their colours in �W

f t . �

Theorem 3 Let f t , f ′t be gradient-like flows and �W
f t , �

W
f ′t be their n-vertex Wang’s

graphs. Then isomorphism of �W
f t and �W

f ′t can be tested in a polynomial time on n.

If, additionally, f t and f ′t are given on the same surface S, then isomorphism of �W
f t

and �W
f ′t can be tested in O(nO(g(S))) time (in O(n) time, if g(S) = 0).
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Fig. 8 A triangular domain; α is
a source, ω is a sink, σ is a
saddle, lsσ is a stable sepratrix,
luσ is an unstable separatrix

curve

curve

curve

Proof Firstly, construct �̆ f t and �̆ f ′t by �W
f t and �W

f ′t . It can be done in linear time.

The sizes of �̆ f t and �̆ f ′t linearly depend on the sizes of �W
f t and �W

f ′t , respectively.

Notice that the maximum vertex degrees of �̆ f t and �̆ f ′t are 4. From this fact, Lemma
5.1, and Propositions 2.3, 2.4, 2.7 the statement of this lemma follows. �

6 Algorithms for Oshemkov–Sharko’s Graph

6.1 Oshemkov–Sharko’s Graph

The Oshemkov-Sharko’s invariant (Oshemkov and Sharko 1998) for a gradient-like
flow f t is a three-colour graph �OS

f t defined as follows. We were already speaking
about cells and their three types in Sect. 3 (see Fig. 4). We remove a trajectory from
each cell that connects its source and sink. These curves are said to be t-curves. A
connected component of the cell that we have got is called a triangular domain. Its
boundary is the union of closures of an unstable saddle separatrix, i.e. u-curve, a stable
saddle separatrix, i.e. s-curve, and a t-curve. We call these coloured curves as sides of
the triangular domain. Also the boundary of any triangular domain contains exactly
one source, one sink, and one saddle (see Fig. 8).

Vertices of the graph�OS
f t correspond to triangular domains of f t , edges correspond

to their sides and have the same colour – u, s or t (see Fig. 9).
Two graphs �OS

f t and �OS
f ′t of gradient-like flows f t , f ′t , respectively, are called

isomorphic if there is an isomorphism between �OS
f t and �OS

f ′t preserving colours.

Proposition 6.1 (Oshemkov and Sharko 1998, Theorem 1.10) Two gradient-like flows
f t , f ′t are topologically equivalent iff their graphs �OS

f t and �OS
f ′t are isomorphic.
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Fig. 9 A gradient-like flow f t on a surface S and its Oshemkov-Sharko’s invariant – three-colour graph
�OS
f t

; u, s, t are the colours for edges and colour curves

u u uu uu

S

S
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S

S

S

ГOSf t
t

t

tt

tt

Гf t

Fig. 10 The three-colour graph �OS
f t

and its simple graph �̌ f t ; u, s, t are the colours for edges and colour
curves

6.2 An Effective Algorithm to Distinguish the Oshemkov–Sharko’s Graphs

In the paper (Oshemkov and Sharko 1998), the authors proposed an algorithm for
distinguishing their graphs. Unfortunately, it is not polynomial-time and below we
suggest an effective algorithm.

Again, we use the idea of reduction of the isomorphism problem for three-colour
graphs to the same problem for simple graphs of bounded degree or embedded
into the ambient surface. We construct a graph �̌ f t by 1-subdividing each s-
edge, 2-subdividing each t-edge, and 3-subdividing each u-edge of �OS

f t (see Fig.
10).
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Lemma 6.1 The graphs �̌ f t and �̌ f ′t are isomorphic iff�OS
f t and�OS

f ′t are isomorphic.

Proof The graphs �̌ f t and �̌ f ′t can be uniquely constructed by the graphs �OS
f t and

�OS
f ′t . Let us show that the opposite fact is true. To this end, wemay consider the graphs

�̌ f t and �OS
f t only. Degree 3 vertices of �̌ f t are exactly degree 3 vertices of �OS

f t . A

colour of any edge of �OS
f t is determined by length of a path between the edge’s end

vertices in �̌ f t . This finishes the proof of this lemma. �
Theorem 4 Let f t and f ′t be gradient-like flows, �OS

f t and �OS
f ′t be their n-vertex

Oshemkov-Sharko’s graphs. Then isomorphism of �OS
f t and �OS

f ′t can be tested in

O(n3 log(n)) time. If f t and f ′t are given on the same surface S, then isomorphism
of �OS

f t and �OS
f ′t can be checked in O(nO(g(S))) time (in O(n) time, if g(S) = 0).

Proof The graphs �̌ f t and �̌ f ′t can be obtained in O(n) time and both have at most 5n
vertices. The graphs �̌ f t and �̌ f ′t are subcubic and both embeddable into S whenever
f t and f ′t are on S. Hence, by Propositions 2.3, 2.4, 2.6, and Lemma 6.1 this lemma
holds. �

7 Algorithms for the Fleitas’ Graph

7.1 Fleitas’Graph

The Fleitas’ invariant �F
f t (Fleitas 1975) for a gradient-like flow f t is constructed in

the nextway. Choose around each source a circle inside the cell’s closure, transversal to
f t ’s trajectories. Then label all the intersections of each circle and saddle separatrices
with marks so that intersections with separatrices of the same saddle have the same
mark. After that let us equip each chosen intersection point by a spin, i.e. an arrow
directed along the circle so that if we move intersection points with the same mark in
direction of their arrows, then their trajectories would converge to the same separatrix
(see Fig. 11).

Two Fleitas’ invariants �F
f t and �F

f ′t of gradient-like flows f t , f ′t , respectively, are
called isomorphic if there is an isomorphism mapping circles of �F

f t into circles of

�F
f ′t preserving marks and spins.
The Fleitas’ invariant was created to classify not all gradient-like flows on surfaces

but only polar flows (only one sink and one source).

Proposition 7.1 (Fleitas 1975) Two polar flows f t , f t (possibly, on distinct surfaces)
are topologically equivalent iff their Fleitas’ invariants �F

f t and �F
f ′t are isomorphic.
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Fig. 11 A gradient-like flow f t and its Fleitas’ invariant �F
f t
; αi is a source, i = 1, 4; σi is a saddle,

i = 1, 3, ω is a sink; 1, 2 and 3 are the labels

7.2 An AlgorithmDistinguishing the Fleitas’Graphs

7.2.1 Efficient Algorithms Based on Boundedness of Vertex Degrees and
Embeddability into the Ambient Surface

For the graph �F
f t , we define a graph �̂ f t as follows. We apply 2∗-subdivision to every

oriented edge (including loops) and put an edge between any pair of vertices with the
same marks. The same operation is done with �F

f ′t to obtain a graph �̂ f ′t .

Lemma 7.1 The graphs �̂ f t and �̂ f ′t are isomorphic iff �F
f t and �F

f ′t are isomorphic.

Proof The graphs �̂ f t and �̂ f ′t can be uniquely constructed by the graphs �F
f t and

�F
f ′t . We will show that the opposite fact is also true. One may consider the graphs

�̂ f t and �F
f t only. Two vertices x and y of �̂ f t constitute the oriented edge xy in �F

f t

iff there is a path (x, x ′, y′, y) in �̂ f t , such that y′ has a degree one neighbour in �̂ f t .
Therefore, all the cycles around source vertices can be restored. By these cycles and
edges between them it is possible to uniquely restore the marks. �
Theorem 5 Let f t and f ′t be gradient-like flows, �F

f t and �F
f ′t be their n-vertex

Fleitas’ graphs. Then isomorphism of �F
f t and �F

f ′t can be tested in O(n3 log(n))

time. If f t and f ′t lye on the same surface S, then isomorphism of �F
f t and �F

f ′t can

be checked in O(nO(g(S))) time (in O(n) time, if g(S) = 0).

Proof The graphs �̂ f t and �̂ f ′t can be obtained in O(n) time and both have at most 5n
vertices. The graphs �̂ f t and �̂ f ′t are subcubic and both embeddable into S whenever
f t and f ′t are on S. Hence, by Propositions 2.3, 2.4, 2.6, and Lemma 7.1 this lemma
holds. �
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7.2.2 A Parameterized Algorithm for the Fleitas’ Invariant

Weconsidern-vertex subcubic graphs (possibly,with loops andmultiple edges),whose
vertex sets were partitioned into k clockwise oriented cycles and suppose that the
partition into the cycles is explicitly given. We assume that a loop gives one to degree
of its ends. For short, we will refer these graphs to as (n, k)-graphs. In this subsection,
we present an algorithm to solve the isomorphism problem for (n, k)-graphs with the
computational complexity O((k+1)! ·n). Therefore, if the number of sources is fixed,
then the Fleitas’ criterion can be applied in linear time.

Themain ideawill be a reduction of the graph isomorphismproblem to the following
stringology task. Given two strings X = X1X2 . . . Xl and Y = Y1Y2 . . . Yl , the task is
to verify thatY is a cyclic permutation of X . It can be solved inO(l) timeby considering
the word Z = X1X2 . . . Xl X1X2 . . . Xl , containing all cyclic permutations of X , and
by subsequent applying any linear-time string matching algorithm (like algorithms
in Aho and Corasick (1975) Apostolico and Giancarlo (1986) Donald et al. (1977))
to find an entering of Y to Z . Further, it will be explained how to construct, by two
given (n, k)-graphs, two sets of at most k! strings, each with at most 3 · n characters in
the alphabet {−n,−n + 1, . . . ,−1, 0, 1, . . . , n − 1, n}. The time-complexity of this
process will be O((k+1)! ·n). The graphs will be isomorphic iff there are two strings
from distinct sets, one of which is a cyclic permutation of another.

Theorem 6 The isomorphism problem for (n, k)-graphs can be solved in O((k+1)!·n)

time.

Proof Let � be a connected (n, k)-graph. We number all the cycles by numbers from
1 to k, such that, for any 2 ≤ i ≤ k, there is an edge between

⋃i−1
j=1 V (C j ) and

Ci . There are at most k! such numerations, and all the appropriate numerations can
be computed in O(k! · n) time. Denote by C1, . . . ,Ck all the numbered, oriented
cycles. For any i ≥ 2, some vertices of Ci will be added to a << sum >> C̃i−1 of
C1, . . . ,Ci−1. The << sum >> C̃i−1 will be a clockwise oriented cycle and every
vertex of C̃i−1 will have one, two or three ordered labels. Every degree two vertex
of �, belonging to

⋃i
j=1 V (Ci ), will obligatory be on C̃i and will have exactly one

label. Any adjacent degree three vertices of �, both belonging to one of the cycles
C1, . . . ,Ci , will obligatory be on C̃i−1 and will have exactly two labels. Vertices of
C̃i , having exactly three labels, correspond to edges between distinct elements of the
set {C1, . . . ,Ci }. Initially, C̃1 = C1 and all its vertices are labelled with the label 1.

The transformation from C̃i−1 to C̃i is as follows. Let x1y1, x2y2, . . . , x ji y ji be all
the edges between C̃i−1 and Ci , i.e., for any 1 ≤ j ≤ ji , we have x j ∈ V (C̃i−1) and
y j ∈ V (Ci ). Suppose that y1, . . . , y ji are clockwise located on Ci . Let z j be the right
neighbour of x j on C̃i−1. For any 1 ≤ j ≤ ji , if y ji+1 is not a neighbour of y ji in Ci ,
we delete the edge x j z j from C̃i−1, add a path, strictly clockwise located between y j
and y j+1 on Ci , where y ji+1 = y1. We also add two edges, one of which connects x j
and the right neighbour of y j onCi , the another one connects z j and the left neighbour
of y j+1 on Ci .

We arrange i as the second label to all the vertices x1, . . . , x ji and as the first label
to all vertices of all the added paths. Second labels are also given to any two adjacent
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vertices a and b of Ci . If a = b, then zero is the second label of a. If a �= b, then
let na and nb be the numbers of vertices on clockwise oriented arcs between a, b
and between b, a, correspondingly. The vertex a has the second label na + 1, and the
vertex b has the second label nb + 1. Clearly, C̃i can be uniquely constructed by C̃i−1
and Ci . Moreover, by C̃i , it is possible to uniquely reconstruct C̃i−1, V (Ci ), all the
edges between C̃i−1, and internal paths between y j and y j+1, for any 1 ≤ j ≤ ji − 1.
But, we do not know an order for assembling paths between y j and y j+1, where
1 ≤ j ≤ ji − 1, to obtain the cycle Ci . It is easy to see that the procedure, described
in this paragraph, can be done in O(|V (C̃i−1)| + |V (Ci )|) time.

The current information, stored in C̃i , and the ji -linkorientedbroken line, composed
of the vectors −−→x1x2,

−−→x2x3, . . . ,
−−→x ji x1, completely define C̃i−1,Ci and all the edges

between them, as C̃i and the ji -link define an order for assembling the paths between
y j and y j+1, where 1 ≤ j ≤ ji − 1. To encode the line, let us consider a clockwise
oriented cycleC on the vertices x1, . . . , x ji , lied onC in the same order as on C̃i−1.We
clockwise number all the vertices of C . By this numeration, for any 1 ≤ j ≤ ji , it is
possible to compute in O(1) time the number n j of vertices on the clockwise oriented
arc between x j and x j+1. Note that the vector (n1, n2, . . . , n ji ) does not depend on the
numeration of vertices and completely defines the line together with some its point.
If arc’s orientation coincides with the orientation of −−−−→x j x j+1, then the third label of x j
is n j + 1; otherwise it is −n j − 1. Clearly that the total computation time for finding
all these third labels is O(|V (C̃i−1)| + |V (Ci )|).

Therefore, for any i , C̃i−1,Ci , and all the edges between them uniquely define C̃i

and vice versa. Hence, � uniquely defines a cycle C̃k and vice versa. The complexity
for obtaining C̃k by the graph G is

O(

k∑

i=1

(k − i) · |V (Ci )|) = O(k ·
k∑

i=1

|V (Ci )|) = O(k · n).

By C̃k , a string is obtained as follows. Started from any vertex of C̃k , we clockwise
read all its vertices, adding one, two or three characters to the current word, depending
on a vertex’s type. So, the total complexity for obtaining the whole set of words is
O(k! · k · n) = O((k + 1)! · n). Two given (n, k)-graphs are isomorphic iff there are
two words from distinct sets, such that one of them is a cyclic permutation of another.
Thus, the isomorphism problem for (n, k)-graphs can be solved in O((k + 1)! · n)

time. �

8 Topological Conjugacy of Gradient-Like Flows

The next theorem gives an opportunity to use all instruments for recognizing an equiv-
alence class of a gradient-like flow also to recognize its conjugacy class. This theorem
has been schematically proved as the main theorem in Kruglov (2018), but we give
here a modified and most detailed version of its proof.
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Theorem 7 If two gradient-like flows on a closed surface are topologically equivalent,
then they are topologically conjugate.

Proof Let S be a closed surface and f t : S×R → S be a C1 gradient-like flow. Then,
for every wandering trajectory � of f t , there are exactly two different fixed points p, q
of f t , such that the boundary of the trajectory has the form

cl(�)\� = {p, q},

and the trajectory is directed from p to q. In this case we will denote the trajectory by
�p,q assuming that the trajectory is directed from p to q.

Let f ′t be a C1 gradient-like flow topologically equivalent to f t , i.e. there is a
homeomorphism h : S → S, sending trajectories of f t into trajectories of f ′t and
preserving orientations of trajectories. It implies that h sends the fixed points of f t to
the fixed points of f ′t , we will denote p′ = h(p) for p ∈ � f t . Then

h(�pq) = �′
p′q ′,

for every wandering trajectory �pq of f t .
Let U0 = {(x, y) ∈ R

2 | x2 + y2 < 1}. By Proposition 2.1, there exist neigh-
bourhoods u p, u p′ of p, p′ respectively and homeomorphisms ψp : u p → U0,
ψp′ : u p′ → U0 such that restrictions f t |u p and f ′t |p′ are conjugate by means of

a homeomorphism h p = ψ−1
p′ ψp : u p → u p′ , i.e. h p ◦ f t |u p = f ′t |u p′ ◦ h p for any t

not moving points outward u p, u p′ respectively.
Let σ be a saddle point of f t . Consider uσ and U0. Let Ũ0 ⊂ U0 and its boundary

be constructed the next way. Let l++, l−+, l−−, l+− be the four trajectories of the
flow bt (x, y) = (

2−t x, 2t y
) : R2 → R

2 lying in different quadrants. Let Ũ0 be the
part of U0 restricted by these trajectories (see Fig. 12). Denote ũσ = ψ−1

σ (Ũ0) and
ũσ ′ = ψ−1

σ ′ (Ũ0). Note that obviously uσ ′ = hσ (uσ ), and a map h−1hσ preserves
separatrix of σ . Also note that hσ sends boundary of ũσ to boundary of ũσ ′ , which
means that points of ∂ ũσ and points of ∂ ũσ ′ are conjugate.

For a point x ∈ S, we denote by Ox (O′
x ) the orbit of the flow f t ( f ′t ) passing

through the point x . Let

Vσ =
⋃

x∈cl(ũσ )

Ox , Vσ ′ =
⋃

x∈cl(ũσ ′ )
O′

x .

Let us extend hσ up to a homeomorphism hVσ : Vσ → Vσ ′ by the following rule
(see Fig. 13). First let

hVσ |ũσ
= hσ .

Second, let for a point z ∈ (intVσ \cl(ũσ )) be {z0} = Oz ∩ ∂ ũσ and f tz (z0) = z, for
tz ∈ R; for a point z ∈ ∂Vσ \∂ ũσ let tz be such that |tz | = min|t |{t ∈ R | f −t (z) ∈ ∂ ũσ }
and z0 = f −tz (z); then

hVσ (z) = f ′tz (hσ (z0)).
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u
l++l-+

l-- l+-

Fig. 12 Neighbourhood ũσ of a saddle σ ; l++, l−+, l−−, l+− are trajectories of bt

Let us show that hVσ is a conjugating homeomorphism. Note that for each point of
∂ ũσ the homeomorphism hσ is well defined. Let ẑ ∈ clũσ . Note that ẑ′ = hσ (ẑ) ∈
clũσ ′ . Let z̄ ∈ Oẑ ∩ clũσ . Then there is a point z̄′ = hσ (z̄) such that z̄′ ∈ clũσ ′ and a
value t̄ such that hσ ( f t̄ (ẑ)) = f ′t̄ (hσ (ẑ)), because hσ is the conjugating one.

Let ẑ, z̄ ∈ Oz0 = Oz , where z and z0 are defined as before. Let t̂ be such that
f t̂ (ẑ) = z and let t̃ be such that f t̃ (ẑ) = z0; note that t̂ = t̃ + tz , where tz is defined
as before. Then hVσ ( f t̂ (ẑ)) = hVσ ( f tz ( f t̃ (ẑ))) = [de f ] = f ′tz (hσ ( f t̃ (ẑ))) =
f ′tz ( f ′t̃ (hσ (ẑ))) = f ′t̃+tz (hσ (ẑ)) = f ′t̂ (hσ (ẑ)) = f ′t̂ (hVσ (ẑ)), because hVσ |ũσ

=
hσ .

Let V (V ′) be the union of all Vσ (Vσ ′) and let hV : V → V ′ be a homeomorphism
such that hV (z) = hVσ (z) if z ∈ Vz .

Next we want to extend the homeomorphism hV up to ambient conjugating home-
omorphism. Note that there exists a sink ω such that the closure T of any connected
component of the set S\(V ∪ � f t ) belongs to the basin of ω. As h−1hσ preserves a
separatrix of σ then there is the closure T ′ ⊂ Ws

ω′ of an unique connected component
of the set S\(V ′ ∪ � f ′t ), such that h(T ) ∩ T ′ �= ∅, also ω′ = h(ω). Let us extend hV
to T by means of conjugating homeomorphism hT .

By Proposition 2.1, flows f t |uω and f ′t |uh(ω)
are conjugate bymeans ofψω andψω′ ,

respectively, to the restriction of the flow at |U0 . Let γ0 = {(x, y) ∈ R
2 | x2+ y2 = 1

2 }
be some closed curve without a contact, transversally crossing all trajectories of the
linear flows, and let γ = ψ−1

ω (γ0), γ ′ = ψ−1
ω′ (γ0). So, we correctly constructed a

closed curve without a contact around ω and ω′.
Let JT = γ ∩ T and let a0, a1 be the endpoints of the arc JT . Then there are saddle

points σ0, σ1 (possible σ0 = σ1), such that ai ∈ (JT ∩ Vσi ), i = 0, 1. Similarly, the
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Fig. 13 Main constructions for f t (on the left sphere) and for f ′t (on the right sphere); α1, α2, α′
1, α′

2 are
sources, σ , σ ′ are saddles, ũσ is the neighbourhood of σ , Vσ , Vσ ′ , T , T ′ are the domains, ω, ω′ are sinks,
ũω is the ω’s neighbourhood, JT , JT ′ , J̃T are the cross-sections, a0, a1 are the endpoints of JT , ã0, ã1
are the endpoints of J̃T

arc J̃T ′ = γ ′ ∩ T ′ is bounded by the points ã0, ã1 belonging to Vσ ′
0
, Vσ ′

1
, accord-

ingly. Let t0, t1 ∈ R, so that f ′ti (ãi ) = hV (ai ), i = 0, 1 and ρ : J̃T ′ → [0, 1] be a
homeomorphism, such that ρ(ãi ) = i, i = 0, 1. Let

JT ′ = { f ′tz (z̃) | z̃ ∈ J̃T ′ , tz = t0 + (t1 − t0)ρ(z̃)}.

Define an arbitrary homeomorphism hJ : JT → JT ′ , so that hJ (ai ) = hV (ai ), i =
0, 1. Then every point z in T is uniquely defined by the point z0 = Oz ∩ JT and the
value tz ∈ R, such that f tz (z0) = z. Let us define a homeomorphism hT : T → T ′ by
the formula

hT ( f tz (z0)) = f ′tz (hJ (z0)).

Let us define the conjugating homeomorphism hc : S → S, so that hc|V = hV ,
hc|T = hT , andhc|� f t

= h|� f t
. Thus, the conjugatinghomeomorphism is constructed

and Theorem is proved. �
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