
Modelling and Validation of Trading and
Multi-Agent Systems: An Approach Based on

Process Mining and Petri Nets?

Julio C. Carrasquel and Irina A. Lomazova

National Research University Higher School of Economics,
Myasnitskaya ul. 20, 101000 Moscow, Russia
jcarrasquel@hse.ru, ilomazova@hse.ru

Abstract. This paper presents our research on trading and multi-agent
systems. Trading systems support the processes of buying/selling finan-
cial instruments between traders, so the validation of their correctness
is a crucial task. Conversely, multi-agent systems is a current topic of
interest within the analysis of interactive processes. We use Petri nets as
the formalism for system modelling and simulation, whereas for valida-
tion we consider the use of process mining, and specifically conformance
checking. Our research aims to use and develop conformance heuristics
that can be aware on the data perspective of processes, and to take into
account concurrent and non-isolated process instances whose execution
may depend on each other.

Keywords: trading systems, multi-agent systems, petri nets, process
mining, conformance checking.

1 Introduction

This position paper presents our research on the modelling and validation of
trading and multi-agent systems.Trading systems support the processes of trad-
ing financial instruments (also known as securities). Since most of these systems
are automated, traders submit orders with data attributes specifying what to
buy or sell, and on what terms; many classes of orders exist allowing the traders
to configure orders according to their trading strategy [11]. We aim to diagnose
whether some process instances, handling orders from traders, deviate from their
expected behavior; thus, we would like to answer questions of the following na-
ture: Do all orders of a given class strictly follow their associated rules? If so,
which are the deviating orders? From which traders? Here, when checking com-
pliance of a case, it is needed to be aware of the order data attributes in such a
way to correctly assess whether the violation of some rule has occurred.

? This work is supported by the Basic Research Program at the National Research
University Higher School of Economics.
Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 Julio C. Carrasquel and Irina A. Lomazova

Conversely, multi-agent systems refers to a kind of system where agents in-
teract within some environment; to assess whether an agent (a process instance)
may deviate from its expected behavior may depend on different factors: the
inner state of the agent, the states of other agents, or the current condition of
the environment (also referred to as a context or as a system nesting the agents);
thus, when checking compliance of an agent, it is needed to be aware of other
process instances and the environment with which such an agent interacts.

We propose to work with process mining [6] to check deviations in both sce-
narios. Unlike traditional data mining techniques, which are process agnostic,
process mining aims to discover, diagnose and improve processes given some ob-
served behavior (i.e., event logs) and some formal description of the expected
behavior (i.e, process models, business rules). Within process mining, we con-
sider conformance checking [8]; conformance checking techniques aim to detect
whether some process instances, captured from event logs, deviate from their
expected behavior (described by some process model); however, state-of-the-art
conformance checking techniques mostly focus on the control-flow, i.e., causal
dependence between activities. Instead, we need to come up with more clever
heuristics in our research: In trading systems is it important to consider data-
aware conformance checking (to consider data attributes), whereas in multi-
agent systems it is needed to reason on multiple-instance-aware conformance
checking (to consider the interaction between process instances). Checking dif-
ferent perspectives on conformance checking is a current issue in which the pro-
cess mining community has been driving its efforts; thus, this research aims to
provide a contribution in this area.

In the remainder of this paper, we present our research as follows. Section 2
presents the research approach. Sections 3 presents our initial work addressing
the domains of trading and multi-agent systems. Section 4 presents some related
literature. Finally, section 5 provides the conclusions.

2 The Research Approach

The use and development of conformance heuristics, data-aware and for multi-
agent systems, are our ultimate goals. Thus, there are other activities to carry out
thorughout our work. Fig. 1 presents the research overall scheme. We distinguish
the following main activities throughout our work:

Formal Modelling : To model processes we use formalisms with a convenient
visualization and clear semantics. We use Petri nets [20] — a formalism for
modelling concurrent systems with a strong theoretical basis, and a wide range
of analysis techniques; Existing high-level classes of Petri nets allow, for the use
of data attributes, i.e., coloured Petri nets [12]; for the modelling of multi-agent
systems, i.e., nested Petri nets [15]; and more recently, for connecting process
models with non-local data structures, i.e, DB-nets [19]. A model can be also
a set of logic formulae, i.e, based on temporal logics, stating a specific kind of
behavior to be guaranteed in the system. The formalisms we use are aimed to
be normative since these describe the behavior that the system must comply.

Modelling and Validation of Trading and Multi-Agent Systems 3

FIX
messages

Event Data
Φ1,Φ2, ... ,Φk

Trading
System

Normative Process Models

Event
Logs

Trading history of
many securities

Filtered Event Log
Trading history of a

specific security

coarse-grained
scooping

fine-grained
scooping

Conformance
Checking

Simulation

Formal
Modelling

Produces

Data Pre-Processing

Fig. 1: The overall research approach.

Data Pre-Processing : Users communicate with a trading system via different
interfaces, i.e, the Financial Information Exchange (FIX) protocol [2] is a widely
used standard to enable such communication. As an input for process mining, we
consider samples of FIX messages. These messages encode, for instance, the con-
nection management, submission of orders to trade, system reports, etc; many
processes can be extracted from such messages: the process of maintaining a con-
nection, the process of trading an order, etc. We refer as coarse-grained scooping
the extraction, from the FIX messages, an event log (a set of cases) of a process
of interest. In particular, we are interested in the process of handling an order,
i.e., from the moment a user submits an order, until it goes out from the system.
The obtained event log may be refined (fine-grained scooping) to take just cases
of interest, i.e, cases where orders are trading the same security. We plan to
further discuss about this procedure of data pre-processing in upcoming works.

Conformance Checking and Simulation: Given some model describing a sys-
tem process we aim to simulate it to get insights regarding its functioning. We
consider consolidated Petri net tools such as CPN Tools [1] or Renew [13]. On
such model, we also aim to replay an event log corresponding to the same process.
Ultimately, our goal is to develop data- and multiple-instance-aware conformance
checking heuristics that can provide diagnostics on possible deviations of cases
observed in the event log, and that do not comply the norms described in the
models.

3 Research Application Domains

3.1 Trading Systems

We focus on electronic trading systems, i.e, where trades are automatically per-
formed using orders [11]; users submit orders in the system to either buy or sell
securities; an order is an object o = (id, sec, p, q, s), with an identifier id, speci-
fying the security sec being traded, the price p per stock, the number of stocks

4 Julio C. Carrasquel and Irina A. Lomazova

Table 1: Arrival of orders trading the same security, insertion in their order book
(based on a price-time priority), and afterwards, the execution of trades.

(a) submitted orders

time order price size side

10:01 oB1 20.0 4 buy

10:02 oS1 22.0 2 sell

10:03 oS2 22.0 4 sell

10:04 oB2 22.2 5 buy

(b) order book initial state

buyer size price size seller

22.0 4 oS2

oB2 5 22.0 2 oS1

oB1 4 20.0

(c) executed trades

buyer seller quantity

1 oB2 oS1 2

2 oB2 oS2 3

q, and a value s ∈ {buy, sell} indicating whether the user is buying or selling.
Such structure is just for example purposes; orders can have many more complex
attributes allowing the user to configure the trading according to some strategy.
Upon their submission, orders may be placed in an order book — a two-sided
priority queue where orders are served according to some priority. Each order
book is related with a unique security; typically, the priority is a price-time pol-
icy: orders whose prices are the best1 are served first, and if two orders have the
same price, it is served first the order submitted earlier (see table 1). The first
order on each side of the book is also referred to the highest ranked order. A
match between two orders may occur as long as the price of the highest ranked
buy order is greater or equal than the price of the highest ranked sell order.
For instance, after the execution of the trades depicted in table 1(c). no trade
execution will be possible since the price of the next best buy order oB1 is not
greater or equal than the price for the remaining quantity of the next best sell
order oS1.

new

new

rejected

reject

expired canceled

partially
filled

can
cel

expire

expire

filled

trade

tradereplace
trade

replace

cancel

trade

trade

trade

Fig. 2: Order handling process as a labelled transition system. The node with
a small inbound arrow represents the initial state, whereas nodes with small
outbound arrows represent the final states.

We consider the process related to the handling of an order, i.e, from an
initial event where an order is submitted into the system up to a final event

1 In the buy side, the best price is from the buy order whose price is the maximum,
whereas as in the sell side, the best price is from the sell order whose price is the
minimum.

Modelling and Validation of Trading and Multi-Agent Systems 5

where the order is discarded. Fig. 2 depicts the order handling process as a
labelled transition system — the nodes represent the state of an individual order,
whereas the transitions denote the activity fired over such order2. We extract
cases related to this process from a sample of FIX messages, as described in
section 2. Table 2 presents a small fragment from a real event log generated from
the FIX messages where each case, and its corresponding set of events, is related
with an order identifier (order id), thereby keeping track of what happens with
each order and its attributes. All orders (case) of this event log trades the same
security, so these belong to a same order book. As an example, fig. 3 provides a
synthesized view of the observed behavior of each order in that event log.

Table 2: Fragment from a real event log related to handling process of distinct
orders in a trading system.

order id event id activity state timestamp price size side

T272 1 new new 18-02-2019T05:50:49.382 10 500 sell

T272 2 trade filled 18-02-2019T05:50:49.391 10 0 sell

T273 3 trade partially filled 18-02-2019T05:50:49.391 10 500 buy

T273 4 replace partially filled 18-02-2019T05:50:49.406 10 1000 buy

T273 5 cancel canceled 18-02-2019T05:50:49.925 10 1000 buy

Fig. 3: Observed behavior from a real event log consisting of 40 orders (cases)
trading a specific security — synthesized using ProM’s inductive visual miner.

Orders are non-isolated, i.e, a buy order depends on a sell order to be filled
and vice-versa; thus, we aim to visualize orders interacting in a single simulation
model displaying the order book dynamics. To this aim, input event logs can be
suitably manipulated and further processed, changing the perspective of what
is the process, i.e, a case could be now understood as the trading session on a
specific order book, whereas the events may have the orders as their attributes.
Events that actually refer to the same action (i.e, in table 2, events 2 and 3
refer to the same trade execution) can be merged. Such further processed event
log may be replayed on a high-level Petri net simulation model, for instance,
using CPN Tools or the Renew platform. The semantics of the selected modelling
language and the supporting tool should allow to model the order book structure,
as well as to formulate its priority scheme.

2 The labelled transition system in fig. 2 is an abstraction as there are more possible
states and activities executed over an order. As an example, we refer the reader to
the process flow of an order in the London Stock Exchange system [3].

6 Julio C. Carrasquel and Irina A. Lomazova

After the reconstruction of the order handling processes from event logs and
the simulation of the order book dynamics, we aim to focus to check whether
some orders deviate from its expected behavior. For example, fig. 2 does not
capture all the needed pre- and post-conditions while an order moves from a
state to another; thus, order data attributes are also important to understand
the correct behavior of each order, i.e, an order expires if some time has elapsed,
the trade activity goes from the partially filled state to the filled state just if
the order quantity of stocks goes to zero, etc. This leads us to research adequate
data-aware conformance checking techniques for this scenario.

3.2 Multi-Agent System Processes

We define a type of agent as a class of process, i.e., the handling of a trading order,
a customer in a bank, etc. We consider agents with well-defined initial and final
states such that each agent: (i) it is instantiated upon request, (ii) it executes
internal activities, either independently or influenced by an external control, (iii)
it interacts with other agents, and (iv) it is terminated upon completion of its
tasks. We model agents with workflow nets (WF-nets) [4] — a Petri net class
to model business processes. However, WF-nets can hardly model at the same
time a large number of process instances or their interaction.

We propose to model multi-agent systems (MAS) with nested Petri nets (NP-
nets) [15] where tokens can be Petri nets themselves. A NP-net is constituted
by a system net representing an environment, where agents may be created,
interact, and eventually terminate; places in the system net store these agents
as tokens with an inner Petri net structure (referred to as net tokens). NP-
nets can model nested processes where the system net may be a parent process,
i.e., a trading session, a bank customer service system, whereas net tokens may
represent child processes, i.e., the handling of a single trading order, a customer,
a bank employee; in the following, we present a formal definition of NP-nets,
adapted from their classical definition, aimed to be used on the development of
a multiple-instance-aware conformance heuristic.

Definition 1. Let Type be a set of agent types; V ar — a set of typed (over
Type) variables. We define a multi-agent system as a nested Petri net NP =
(SN, {N1, .., Nk}, A, l) where:

– ∀i∈{1,..,k} Ni = (Pi, Ti, Fi) is a WF-net. Without loss of generality, we shall
assume that Type = {N1, ..., Nk};

– SN = (PSN , TSN , FSN , v,W) — a system net where:
• PSN , TSN , FSN — the sets of places, transitions, and the flow relation;
• v : PSN → Type — a place-typing function;
• W : FSN → V ar — an arc-labelling function, s.t for an arc r adjacent

to a place p, the type of W (r) coincides with the type of p.
– A is a finite set of activity labels. We consider the subset Λ = {λ1, λ2, ...},
Λ ⊆ A as a set of labels used to synchronize the agents and the system net.

– l : (TSN ∪ T1 ∪ ... ∪ Tk)→ A is a transition labelling function.

Modelling and Validation of Trading and Multi-Agent Systems 7

NP-nets provide four kind of steps to synchronize net tokens and the system
net: (i) a transport step — the firing of a transition t ∈ TSN in the system net,
l(t) /∈ Λ, which transports net tokens across places, without changing their inner
state; (ii) an agent-autonomous step — the firing of t ∈ Ti, l(t) /∈ Λ, in a net
token with structure Ni; (iii) a horizontal synchronization step — the firing of
t ∈ Ti and t′ ∈ Tj (in two distinct net tokens), lying in a same place of the SN ,
l(t) = l(t′) = λ, λ ∈ Λ; and (iv) a vertical synchronization step — the firing of
t ∈ TSN , l(t) = λ, and multiple enabled transitions in some net tokens, provided
that these transitions are labelled by λ ∈ Λ. Each of these net tokens are in a
binding enabling the firing of t.

t1 λ1

λ3

λ2

λ4

iN 1

oN 1

x

x x

x

xx

x

x x

x

y

y

y

y

λ5
y y

iN 2 oN 2

(α1, N 1, [i])

(α2, N 1, [i])

a1 λ1 a3 λ3

λ 2

λ4

a1 λ1 a3 λ3

λ 2

λ 4

b1 λ1 λ3 λ5

(β1, N 2, [i]) b2

admit
customer

customer
leaves

finish service

serve customer

refuse
customer

employee
leaves

request
service

perform
service

request
service

perform
service

start to
serve

serve other
customer

Fig. 4: A nested Petri net modelling a customer service system in a bank.

We assume a stable set of identified net tokens N = {α1, α2, ...} s.t. each
agent α ∈ N is a triple 〈id,Ni,m〉 where id is a net token identifier, Ni ∈
{N1, ..., Nk} is the inner structure of the net token, and m — a marking in
Ni. This is referred to as a strictly conservative nested Petri net [16] where no
net tokens are created, copied or disappeared, i.e, the cardinality of N is fixed.

8 Julio C. Carrasquel and Irina A. Lomazova

Fig. 4 shows an example of a (strictly conservative) NP-net modelling a bank
customer service system. The SN is an environment where instances of two
kind of agents interact, i.e., the elements of N ; we have agents α1 and α2 of type
N1 (customers), and an agent β1 of type N2 (employee). We could extract the
elements of N from an event log, and to inject them as the initial marking of
the net.

WF-nets consider an input and output place denoting the initial and final
state of a process instance. Likewise, given a NP-net NP, we consider a set of
input places I = {iN1 , ..., iNk

} and output places O = {oN1 , ..., oNk
}, I,O ⊆

PSN , and we consider the following rules: (i) in an initial marking M0 of a NP ,
all net tokens of type Ni are assigned to a unique input place iNi

s.t. v(iNi
) = Ni,

i.e., (see fig. 4) a customer is in its initial place waiting to be admitted, whereas
an employee is in its initial place waiting for a customer to be served; (ii) in
a final marking MF of a NP , all net tokens of type Ni are expected to be
located in an output place oNi , i.e., all customers are expected to be in their
final place representing, that they left the bank; all employees are in their final
place denoting their termination. With these conditions, we aim to formalize how
a MAS process should be correct, i.e, to comply with some criterion of soundness
for it. The following definition proposes such a criterion.

Definition 2. Given a (strictly conservative) nested Petri net NP , with a stable
set of net tokens N , and with I and O as the set of input and output places,
then NP is sound, iff:

– (Soundness of agents) Each WF-net (agent type) Ni is sound, according to
the classical definition of soundness for WF-nets (see [4]).

– (Proper completion) Each net token α ∈ N of type Ni is located in its as-
signed output place oNi ∈ O in the final marking MF .

– (Option to complete) From the initial marking M0, it is always possible to
reach the final marking MF , i.e., each net token α ∈ N should be able to
arrive from its input place to its output place.

– (No dead transitions) For any t ∈ TSN there exists a possible firing sequence
enabling t.

We presented how to model MAS process models based on NP-nets, and how
these should satisfy a criterion of soundness. Our ultimate goal, though, is the
development of conformance heuristics, i.e., to compare a MAS process model
against an event log to determine possible deviations of the observed behavior.
Let us consider the following case:

cNP = 〈 (t1, α1), (a1, α1), (b1, β1), (t1, α1), (a1, α2), (λ1, {α1, β1}), (a3, α1),
(λ3, {α1, β1}), (λ2, α2), (λ4, α1), (λ4, α2), (λ5, β1) 〉

The case cNP is an ordered sequence of events related to the MAS process
model of fig. 4. Each event is a pair (a, {α1, α2, ...}) indicating the occurrence of
an activity a ∈ A, and a set of agents {α1, α2, ...} ⊆ N involved in such occur-
rence, i.e, (t1, α1) refers to activity t1 executed in SN transporting α1 (transport

Modelling and Validation of Trading and Multi-Agent Systems 9

step); (a1, α1) refers to a1 executed by the agent α1.(agent-autonomous step);
and (λ1, {α1, β1}) refers to λ1 executed by the agents α1, β1, and the SN (ver-
tical synchronization step). Using a basic conformance checking technique, i.e,
token-based replay, then cNP perfectly fits in the model of fig. 4; if we count
in the replay the number of produced (p), consumed (c), missing (m), and re-
maining (r) tokens on both, the agents and the system net, then the fitness
metric 1

2 (1− m
c) + 1

2 (1− r
p) will be equal to 1. Using an alignment technique, it

is likely to expect the same result. However, considering non-fitting (deviating)
cases, then we have to reason further on the analysis of deviations: deviation
of some agents? of the system net? a deviation of an agent that affected other
agents? This leads us to research on some conformance checking heuristic aware
of multiple concurrent agents (within some environment) interacting.

4 Related Work

Conformance checking is increasingly attracting researchers and practitioners3.
In the most recent book on conformance checking, Carmona et al. [8] classify
conformance checking techniques in three types: (a) rule-based checking : to con-
struct a set of rules, i.e, using declare models [21], to check whether cases com-
ply these rules; (b) token-replay : to detect missing or remaining tokens along
the replay of each event log trace in some model; and (c) alignments: to di-
rectly associate an event log trace with a valid execution sequence. Among these
types, alignments provide the most advanced set of techniques. However, these
techniques consider mostly the control-flow perspective, i.e, causal dependence
between activities, thereby neglecting other causes in other perspectives that
can be responsible in some case misbehavior; as a matter of fact, in [8] it is
mentioned the need to develop techniques incorporating perspectives such as
timestamps, resources, and in general, other case attributes (referred in [8] to as
multiple-perspective conformance checking).

In this sense, it is noteworthy to cite the work by Mannhardt et al. [18],
where it was developed an alignment-based multiple-perspective algorithm to
detect case deviations using a cost function whose weight balances between the
data attributes (time, resource, etc) and the control-flow; Petri nets with data
were used. The approach of [18] is based on the work of de Leoni et al. [14],
where the control-flow was fixed as the most important perspective in identifying
deviations. In [5] it is proposed a method to verify whether cases in an event log
meet a set of properties using a language based on Linear Temporal Logic (LTL).
These rules may be defined over event attributes, so it can be computed whether
some deviation of the case has occurred based on data. The later could be used
in our work stating a set of rules that cases handling orders should comply.

3 As a notorious example, the business-to-business firm MarketAndMarkets predicts
conformance checking as the fastest growing segment of the process analytics market,
that will worth USD 1.422 million by 2023 (see https://www.marketsandmarkets.

com/PressReleases/process-analytics for more information).

10 Julio C. Carrasquel and Irina A. Lomazova

Recent works address the importance to consider non-isolated cases. In the
work of Denisov et al. [9] on performance analysis and process mining applied
on logistics, it is considered the use of a performance spectrum that considers
non-isolated cases, i.e, the time needed to serve a case may depend on other con-
current cases being served. In [10], D. Fahland studies the unaddressed challenges
on process mining about processes interacting with each other in a one-to-many
or many-to-many fashion; such interactions among processes may be suitably
modelled by the use of NP-nets as we described in section 3.2.

Nowadays, the application of process mining has expanded to broad domains
beyond the traditional business process management in organizations. Novel
works has recently applied process mining on the performance analysis of rail-
ways [17], in the modelling of gaming behavior [22], and in the assessment of
software development teams [7], among other examples. However, to the best of
our knowledge, there have not been works applying process mining on trading
systems. Our future work may bring new approaches based on process mining
to validate trading systems that, for instance, the software testing industry may
leverage within their testing activities on trading software.

5 Conclusions

In this paper we presented our research about the modelling and validation of
trading and multi-agent systems. We presented our approach consisting in the
phases of modelling, data pre-processing, simulation and conformance checking.
We aim to use classes of Petri nets to model the expected behavior of processes in
trading systems, as well as for constructing simulations, i.e, showing the dynam-
ics of components like order books. We also generate event logs from the observed
behavior of real systems, pre-processing samples of messages exchanged between
users and the trading system. We envision that these event logs may be replayed
in the simulation models. We also introduced how nested Petri nets may be used
to model multi-agent system (MAS) processes, and we gave an idea about how
to define correctness in MAS processes. Our ultimate research goal is to come up
with data- and multiple-instance-aware conformance checking techniques. The
use of simulation models may be helpful to reason on the desired functioning of
the systems, and it may allow us to come up with new conformance checking
heuristics.

Albeit we introduced separately the topics of trading and multi-agent sys-
tems, we indeed aim to combine the theory of MAS in the modelling and valida-
tion of trading systems. For instance, traders (or trading agents) play a deter-
minant role in the state of order books, since they constantly interact with the
trading system, i.e, submitting orders for buying and selling securities. Thus,
a trading system with the traders may be modelled in a multi-agent structure.
For example, inspired by the layer configuration of DB-nets [19], fig. 5 shows
how a simulation model may be organized in our future research work to emu-
late traders (modelled as net tokens of a NP-net) interacting with the trading
system (modelled within the system net of a NP-net) in order to apply some
actions over order books (modelled as a database structure).

Modelling and Validation of Trading and Multi-Agent Systems 11

net tokens (trading agents)

system net (trading system)

queries and actions
over an order book

database (order book)

control

data logic

persistence

Fig. 5: Conceptual organization of a MAS model interacting with an order book.
Inspired by the approach of DB-nets given in [19].

References

1. CPN Tools - A tool for editing, simulating, and analyzing Colored Petri nets.
https://www.cpntools.org

2. FIX Standards - FIX Trading Community. https://www.fixtrading.org/

standards/

3. London Stock Exchange - MIT 202 - FIX Trading Gateway Issue 11.8, 2018
4. van der Aalst, W.: The Application of Petri Nets to Workflow Management. Journal

of Circuits, Systems and Computers 08(01), 21–66 (1998)
5. van der Aalst, W., de Beer, H., van Dongen, B.: Process Mining and Verification

of Properties: An Approach Based on Temporal Logic. In: Meersman, R., Tari,
Z. (eds.) On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE. LNCS, vol. 3760, pp. 130–147. Springer (2005)

6. van der Aalst, W.: Process Mining: Data Science in Action. Springer, 2nd edn.
(2016)

7. Caldeira, J., Abreu, F., Reis, J., Cardoso, J.: Assessing Software Development
Teams Efficiency using Process Mining. In: 1st International Conference on Process
Mining (ICPM) (2019)

8. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:
Relating Processes and Models. Springer (2018)

9. Denisov, V., Fahland, D., van der Aalst, W.: Unbiased, Fine-Grained Description
of Processes Performance from Event Data. In: Weske, M., Montali, M., Weber,
I., vom Brocke, J. (eds.) Business Process Management. LNCS, vol. 11080, pp.
139–157. Springer (2018)

10. Fahland, D.: Describing Behavior of Processes with Many-to-Many Interactions.
In: Donatelli, S., Haar, S. (eds.) Application and Theory of Petri Nets and Con-
currency. LNCS, vol. 11522, pp. 3–24. Springer (2019)

11. Harris, L.: Trading and Exchanges: Market Microstructure for Practitioners. Ox-
ford University Press (2003)

12. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer (2009)

13. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An Extensible Editor and Simulation Engine for Petri Nets:
Renew. In: Cortadella, J., Reisig, W. (eds.) Applications and Theory of Petri Nets
2004. LNCS, vol. 11080, pp. 484–493. Springer (2004)

12 Julio C. Carrasquel and Irina A. Lomazova

14. de Leoni, M., van der Aalst, W.: Aligning Event Logs and Process Models for
Multi-perspective Conformance Checking: An Approach Based on Integer Linear
Programming. In: Daniel, F., Wang, J., Weber, B. (eds.) Business Process Man-
agement. LNCS, vol. 8094, pp. 113–129. Springer (2013)

15. Lomazova, I.A.: Nested Petri Nets - a Formalism for Specification and Verification
of Multi-Agent Distributed Systems. Fundamenta Informaticae 43, 195–214 (2000)

16. Lomazova, I.A., Ermakova, V.O.: Verification of Nested Petri Nets Using an Un-
folding Approach. In: Cabac, L., Kristensen, L.M., Rölke, H. (eds.) Petri Nets and
Software Engineering. CEUR Workshop Proceedings, vol. 1591 (2016)

17. Mannhardt, F., Arnesen, P., Landmark, A.: Estimating the Impact of Incidents on
Process Delay. In: 1st International Conference on Process Mining (ICPM) (2019)

18. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

19. Montali, M., Rivkin, A.: DB-Nets: On the Marriage of Colored Petri Nets and
Relational Databases”. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions
on Petri Nets and Other Models of Concurrency XII. LNCS, vol. 10470, pp. 91–118.
Springer (2017)

20. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

21. Pesic, M., Schonenberg, H., van der Aalst, W.: DECLARE: Full Support for
Loosely-Structured Processes. In: 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007). pp. 287–287 (2007)

22. Ramadan, S., Baqapuri, H., Roecher, E., Mathiak, K.: Process Mining of Logged
Gaming Behavior during Functional Magnetic Resonance Imaging. In: 1st Inter-
national Conference on Process Mining (ICPM) (2019)

