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a b s t r a c t

S.S. Chern conjectured that the Euler characteristic of every closed affine manifold
has to vanish. We present an analog of this conjecture stating that the Euler–Satake
characteristic of any compact affine orbifold is equal to zero. We prove that Chern’s
conjecture is equivalent to its analog for the Euler–Satake characteristic of compact
affine orbifolds, not necessarily effective. This fact allowed us to extend to orbifolds
sufficient conditions for Chern’s conjecture proved by Klingler and Kostant–Sullivan.
Thus, we prove that, if an n-dimensional compact affine orbifold N is complete or
if its holonomy group belongs to the special linear group SL(n,R), then the Euler–
Satake characteristic of N has to vanish. An application to pseudo-Riemannian orbifolds
is considered. We give examples of orbifolds from the class under investigation. In
particular, we construct an example of a compact incomplete affine orbifold with
vanishing Euler–Satake characteristic, the holonomy group of which is not contained
in SL(n,R).

© 2019 Published by Elsevier B.V.

1. Introduction. Main results

B. Klingler [12, Section 1.1] emphasizes that affine manifolds ‘‘are surprisingly very poorly understood’’. Since orbifolds
can be considered as manifolds with singularities, the same can be said about affine structures on orbifolds.

S.S. Chern (in 1955) puts forward the following conjecture on topology of affine manifolds.
Chern’s conjecture. The Euler characteristic of every closed affine manifold has to vanish.
In other words, Chern’s conjecture states that non-zero Euler characteristic is an obstruction to the existence of an

affine structure on a closed manifold. This conjecture is open today in general case.
Chern’s conjecture was proved by B. Kostant and D. Sullivan for complete affine manifolds, i.e. for affine space

forms [14].
An n-dimensional affine manifold is called special if its holonomy group belongs to the special linear group SL(n,R).

Recently, B. Klingler [12] proved Chern’s conjecture for special affine manifolds. Some other sufficient conditions for
Chern’s conjecture have been found (see a short overview in [12]).

Orbifolds were introduced by I. Satake [16] as a generalization of the concept of manifold and they were called by him
V -manifolds. The term orbifold was suggested by W. P. Thurston. He applied the classification of compact two-dimensional
Riemannian orbifolds of constant curvature to the classification of closed three-dimensional manifolds [19].
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Orbifolds arise in different branches of mathematics and physics, including algebraic and differential geometry,
topology (see an overview [1]). Orbifolds find applications in conformal field theory, deformation quantization, foliation
theory. In particular, orbifolds are used in string theory as the spaces of string propagation [6].

The first articles devoted to differential geometry and topology of orbifolds belong to I. Satake [16,17]. Many concepts
of smooth manifold theory such as de Rham cohomology, characteristic classes, and the Gauss–Bonnet theorem were
generalized by I. Satake to orbifolds.

Differential geometry of orbifolds keeps developing. Automorphism groups of geometric structures on smooth orbifolds
are investigated in [2,21] and others papers. The papers [4] and [11] are devoted to geometrization of three-dimensional
orbifolds.

The aim of this paper is to find an analog of Chern’s conjecture for affine orbifolds and extend known results for affine
manifolds to affine orbifolds, mainly the results of B. Klingler [12] and B. Kostant and D. Sullivan [14].

We prove the following statement.

Theorem 1. Chern’s conjecture for affine manifolds is equivalent to the following analog for orbifolds:
The Euler–Satake characteristic of an n-dimensional compact affine orbifold has to vanish.

The holonomy group of an effective n-dimensional affine orbifold is a subgroup of GL(n,R) defined up to conjugacy
(see Section 3.3).

Definition 1. Let N be an n-dimensional affine orbifold and let N ef be the associated effective affine orbifold. The orbifold
N is said to be special if the holonomy group of N ef is contained in the special linear group SL(n,R).

The following statement extends the result of B. Klingler [12, Theorem 1.5] to orbifolds.

Theorem 2. Let N be an n-dimensional compact affine orbifold. If N is special, then its Euler–Satake characteristic is zero.

An orbifold N equipped with a pseudo-Riemannian metric g is called a pseudo-Riemannian orbifold. As an application
of Theorem 2 we obtain the following statement.

Theorem 3. Let (N , g) be an n-dimensional compact flat pseudo-Riemannian orbifold of arbitrary signature. Then the
Euler–Satake characteristic of N is zero.

The following statement extends the corresponding result of B. Kostant and D. Sullivan [14] to affine orbifolds.

Theorem 4. If N be an n-dimensional compact complete affine orbifold, then the Euler–Satake characteristic of N is zero.

Remark 1. It is known from [12, Remark 1.2] that Chern’s conjecture holds true for complex affine manifolds. This fact
and Proposition 4 imply that the Euler–Satake characteristic of any compact complex affine orbifold is zero.

Remark 2. For closed surfaces Chern’s conjecture is proved by Benzécri [3]. By Theorem 1, the analog of Chern’s
conjecture is true for all two-dimensional compact affine orbifolds.

Examples constructed below show that for the topological and orbifold Euler characteristics of orbifolds the direct
analog of Chern’s conjecture is not true (see Section 5).

The paper is organized as follows. In Section 2.1, we recall some facts, concerning the orbifold category.
In Section 2.2, we discuss regular coverings of orbifolds and their properties.
Section 2.3 is focused on different equivalent approaches to the concept of Euler–Satake characteristic for orbifolds

and its properties. The definitions of the topological and orbifold Euler characteristics are recalled in Section 2.4.
In Section 3.1, we consider an affine structure as a Cartan geometry. We define the holonomy group of an effective

affine orbifold in Section 3.3.
The structure of compact affine orbifolds is investigated in Section 3.4. The key result is the statement that every

compact affine orbifold is very good in Thurston’s terminology, i.e. it is the global quotient of an affine manifold by a
finite automorphism group (Proposition 4).

Theorem 1 is proved in Section 3.5. Theorems 2–4 are proved in Section 4.
In Section 5, we construct examples of computations of the Euler–Satake characteristic, the topological and orbifold

Euler characteristics of some orbifolds (Examples 2–3). We also construct an example of a compact affine orbifold with
zero Euler–Satake characteristic that is neither complete nor special (Example 1).

Assumption. All manifolds, orbifolds, vector fields, forms are assumed to be smooth of class C∞. Orbifolds (in particular,
manifolds) are assumed to be connected if otherwise is not mentioned.

Notations. We denote by X(M) the module of vector fields over the algebra of functions on a manifold M . If N is a smooth
distribution on M then XN(M) := {X ∈ X(M) | Xu ∈ Nu ∀u ∈ M}.
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We extend the notations of [13, Chapter 2] to orbifolds. We denote by P(N ,H) a principal H-bundle over an orbifold
N which is also an orbifold in the general case [2].

We denote by ∼= an isomorphism in an appropriate category.
The quotient spaces of X with respect to both left and right actions of a group G are denoted by X/G.
The order of a finite group G is denoted by |G|.

2. Orbifolds

2.1. The category of orbifolds

Denote by N a connected paracompact Hausdorff topological space and let n ∈ N. Let Ũ be a connected open subset
of Rn, ΓU a finite group acting on Ũ , ϕU : Ũ → N a ΓU -invariant map which induces a homeomorphism qU of Ũ/ΓU
onto the open subset U = ϕU (Ũ) of N . Then the triple (Ũ,ΓU , ϕU ) is called an orbifold chart on N with the coordinate
neighborhood U .

Let (Ũ,ΓU , ϕU ) and (Ṽ ,ΓV , ϕV ) be two orbifold charts with the coordinate neighborhoods U and V respectively, and
U ⊂ V . An embedding of the chart (Ũ,ΓU , ϕU ) into the chart (Ṽ ,ΓV , ϕV ) is a pair (ϕVU , λVU ), where λVU :ΓU → ΓV is a
group monomorphism inducing an isomorphism of the kernels of the actions and ϕVU : Ũ → Ṽ is a smooth embedding,
which is equivariant in the sense that ϕVU (γ (x)) = λVU (γ )(ϕVU (x)) ∀γ ∈ ΓU , ∀x ∈ Ũ .

An orbifold atlas on N is a family A = {(Ũ,ΓU , ϕU )} of orbifold charts, which cover N and are locally compatible in the
following sense: for any two charts (Ũ,ΓU , ϕU ) and (Ṽ ,ΓV , ϕV ) with the coordinate neighborhoods U and V and for any
x ∈ U ∩V , there exist an open neighborhood W ⊂ U ∩V of x and a chart (W̃ ,ΓW , ϕW ) with the coordinate neighborhood
W such that there are embeddings (ϕUW , λUW ) and (ϕVW , λVW ) of the chart (W̃ ,ΓW , ϕW ) into (Ũ,ΓU , ϕU ) and (Ṽ ,ΓV , ϕV )
respectively.

A connected paracompact Hausdorff topological space N equipped with a maximal (with respect to the inclusion)
orbifold atlas A is called an n-dimensional orbifold, which will be also denoted by N .

For an orbifold chart (Ũ,ΓU , ϕU ), let K
ef
U be the subgroup of ΓU , which consists of all γ ∈ ΓU such that γ · x̃ = x̃ for any

x̃ ∈ Ũ . As observed in [7, Section 2.2], for any two charts (Ũ,ΓU , ϕU ) and (Ṽ ,ΓV , ϕV ) with the coordinate neighborhoods
U and V such that U ∩V ̸= ∅, the subgroups K ef

U and K ef
V are isomorphic. This observation allows us to give the following

definition.

Definition 2. The inefficiency group K ef
N of a connected orbifold N with an atlas A is the group K ef

U for an arbitrary chart
(Ũ,ΓU , ϕU ) ∈ A. It is uniquely determined up to group isomorphism.

The inefficiency group K ef
N is defined up to isomorphisms. If K ef

N is trivial, then the group ΓU acts effectively on Ũ for
all charts of the atlas A. In this case the orbifold N is called effective.

We emphasize that K ef
N is a finite group.

Let N be an ineffective orbifold with atlas A = {(Ũ,ΓU , ϕU )}. Then the group Γ ef
U = ΓU/K

ef
U acts effectively on Ũ .

The atlas Aef
= {(Ũ,Γ ef

U , ϕU )} on the topological space N defines an orbifold N ef which is called the effective orbifold
associated to N .

For each point x ∈ N of an n-dimensional effective orbifold (N ,A), there exists a chart (Ũ,ΓU , ϕU ) ∈ A such that Ũ
is the n-dimensional arithmetic space Rn, ϕU (0) = x with 0 = (0, . . . , 0) ∈ Rn, and ΓU is a finite group of orthogonal
transformations of Rn. Such a chart is called a linearized chart at x.

For orbifold charts (Ũ,ΓU , ϕU ) and (Ṽ ,ΓV , ϕV ) in A with the coordinate neighborhoods, containing x ∈ N , the isotropy
subgroups (ΓU )y and (ΓV )z of the points y ∈ ϕ−1U (x) and z ∈ ϕ−1V (x) are isomorphic. Therefore, for every point x of N ,
there is a uniquely determined up to group isomorphism group Γ(x), called the orbifold group at x. A point x is said to be
regular if its orbifold group Γ(x) is isomorphic to inefficiency group K ef

N of N ; otherwise, it is called singular.
Let N and N ′ be smooth orbifolds with atlases A and A′ respectively. A continuous map f :N → N ′ is called smooth if,

for each x ∈ N , there exist charts (Ũ,ΓU , ϕU ) ∈ A and (Ũ ′,ΓU ′ , ϕU ′ ) ∈ A′ such that x ∈ U = ϕU (Ũ), f (U) ⊂ U ′ = ϕU ′ (Ũ ′),
a smooth map fU ′U : Ũ → Ũ ′, satisfying the identity f ◦ ϕU = ϕU ′ ◦ fU ′U , and for any γ ∈ ΓU , there is γ ′ ∈ ΓU ′ such that
fU ′U (γ (x)) = γ ′(fU ′U (x)) ∀x ∈ Ũ . The map fU ′U is called the representative of f in the charts (Ũ,ΓU , ϕU ) and (Ũ ′,ΓU ′ , ϕU ′ ).
It is defined up to composition with elements in ΓU and ΓU ′ respectively.

A smooth map f :N → N ′ is called a submersion, if each of its representative fU ′U : Ũ → Ũ ′ is a submersion of manifolds.
Let Orb denote the category of orbifolds, whose objects are smooth orbifolds and morphisms are smooth maps of

orbifolds. Note that the category of manifolds is a complete subcategory in Orb.
Two points in an n-dimensional orbifold N are said to have the same orbifold type, if there exist neighborhoods of

these points, which are isomorphic in the category Orb. The subset of points of the same orbifold type with the induced
topology has a natural structure of a smooth manifold, which is disconnected in general [2]. Let ∆k be the union of these
manifolds of dimension k. The manifolds of points of different types may have the same dimension. Emphasize that every
connected component ∆

cj
k of ∆k consists of points of the same type.

It is possible that ∆k = ∅ for some k ∈ {0, . . . , n− 1}.
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The family ∆(N ) = {∆
cj
k | j ∈ Jk, k ∈ {0, . . . , n}} is called the stratification of the n-dimensional orbifold N , and ∆

cj
k is

called its stratum. This stratification is natural [15].
It is well known that the set of regular points is the stratum ∆n. It is a connected, open, dense subset in N , which is

an n-dimensional manifold with the induced smooth structure.

2.2. Regular coverings of orbifolds

Recall the notion of a covering orbifold [19]. A smooth map f :N ′ → N of orbifolds (N ′,A′) and (N ,A) is called a
covering of the orbifold N , if, for any x ∈ N , there exists a chart (Ũ,ΓU , ϕU ) ∈ A at x such that f −1(U) is a disjoint union
of open subsets Vi ⊂ N ′, i ∈ I (I is countable), and, for each i ∈ I , there is an isomorphism ψi: Ũ/Γi → Vi, where Γi is a
subgroup of ΓU with the same kernel K ef

U of the action, such that f |Vi◦ψi ◦ pi = ϕU , where pi: Ũ → Ũ/Γi is the quotient
map.

Remark that the subgroups Γi are pairwise conjugate in the group ΓU . The orbifold N ′ is called a covering orbifold
of N .

A deck transformation of a covering f :N ′ → N is a diffeomorphism h:N ′ → N ′ in the category Orb such that f ◦h = f .
The set G(f ) of all deck transformations of a covering f forms a group called the deck transformation group. A covering
f :N ′ → N is called regular, if N = N ′/G(f ). Remark that N = N ′/G(f ) if and only if the group G(f ) acts transitively on
every fiber f −1(x), x ∈ N .

A diffeomorphism h̃:N ′ → N ′ of an orbifold N ′ is said to lie over a diffeomorphism h:N → N with respect to a
covering f :N ′ → N , if f ◦ h̃ = h ◦ f .

A universal cover k:N0 → N of an orbifold N is an initial object in the category of orbifold coverings, i.e., for any
covering f :N ′ → N , there is a unique covering ν:N0 → N ′, satisfying the equality f ◦ ν = k [10].

As known, for a connected orbifold N , a universal cover always exists. It is unique up to covering isomorphisms and
it is a regular covering ([19, Proposition 5.3.3]).

The deck transformation group G(k) of a universal cover k:N0 → N is called the orbifold fundamental group of N , it is
denoted by π orb

1 (N ).
In the terminology of Thurston [19], if an orbifold N has a covering f :N ′ → N such that N ′ is a manifold, then N is

called a good orbifold. If, moreover, the group G(f ) is finite, then N is called a very good orbifold. An orbifold N is called
bad, if it is not good.

Now we establish orbifold analogs of some classical results on regular coverings, which we will need in the proof
of Proposition 4. Their proofs are quite similar to the proofs of the classical results. We will give them for the sake of
completeness.

Lemma 1. Let k:N0 → N be a universal cover of an orbifold N . Then, for any diffeomorphism h ∈ Diff (N ), there is a
diffeomorphism h̃ ∈ Diff (N0), lying over h.

Proof. Let h ∈ Diff (N ). Then h ◦ k:N0 → N is a universal cover of N . Since a universal cover is unique up to covering
isomorphisms, there is a diffeomorphism h̃ ∈ Diff (N0) satisfying the equality k ◦ h̃ = h ◦ k, i.e. h̃ lies over h. □

Let f :N ′ → N be a covering of an orbifold N . Let k:N0 → N be a universal cover of N . In this case, there exists a
covering ν:N0 → N ′ satisfying the equality f ◦ ν = k. Thus, N0 is a common universal cover orbifold of N and N ′. By
definition, π orb

1 (N ) = G(k) and π orb
1 (N ′) = G(ν). For any h̃ ∈ G(ν), we have ν ◦ h̃ = ν, hence f ◦ (ν ◦ h̃) = f ◦ ν if and only

if k ◦ h̃ = k, i. e. G(ν) is a subgroup of G(k).

Proposition 1. A covering f :N ′ → N is regular if and only if π orb
1 (N ′) is a normal subgroup of π orb

1 (N ). Moreover, if f is a
regular covering, the quotient group π orb

1 (N )/π orb
1 (N ′) is isomorphic to the deck transformation group G(f ).

Proof. Let f :N ′ → N be a regular covering. We will use the notations introduced above. Since ν:N0 → N ′ is a universal
cover, by Lemma 1, for any h ∈ G(f ), there exists an element h̃ ∈ Diff (N0) lying over h, i.e. ν ◦ h̃ = h ◦ ν. The following
chain of equalities k ◦ h̃ = (f ◦ ν) ◦ h̃ = f ◦ (ν ◦ h̃) = f ◦ (h ◦ ν) = (f ◦ h) ◦ ν = f ◦ ν = k implies that k ◦ h̃ = k and h̃ ∈ G(k).
Thus for any h ∈ G(f ) there is h̃ ∈ G(k) lying over h with respect to ν:N0 → N ′.

Let us show that every g̃ ∈ G(k) lies over some h ∈ G(f ) with respect to ν. As G(ν) ⊂ G(k) and G(ν) lies over idN ′ ,
it is sufficient to consider g̃ ̸∈ G(ν). Fix a regular point x0 ∈ N and a point z0 ∈ k−1(x0). Then z1 = g̃(z0) ̸= z0. Denote
y0 = ν(z0), y1 = ν(z1). As g̃ ̸∈ G(ν), y0 ̸= y1. Since f :N ′ → N is a regular covering, the group G(f ) acts transitively on
the fiber f −1(x0). Therefore, there is an element h ∈ G(f ) such that h(y0) = y1. As shown above, for h ∈ G(f ), there is
h̃ ∈ G(k), lying over h with respect to ν. Remark that h̃ ◦ γ and γ ◦ h̃ lie over h for all γ ∈ G(ν). Let h̃(z0) = z2. Since h̃ lies
over h with respect to ν, we have ν(z2) = (ν ◦ h̃)(z0) = (h ◦ ν)(z0) = h(y0) = y1. Hence, z1, z2 ∈ ν−1(y1), and there exists
g0 ∈ G(ν), satisfying g0(z2) = z1. Thus, g0 ◦ h̃(z0) = z1 and g̃(z0) = z1, where g0 ◦ h̃, g̃ ∈ G(k). Since the deck transformation
group G(k) acts simply transitively on the fiber k−1(x0) over the regular point x0, it is necessary that g̃ = g0 ◦ h̃, hence g̃
lies over h.
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Define a map ρ:G(k)→ G(f ) by ρ(g̃) := h, where g̃ lies over h with respect to ν. It is easy to check that ρ is a group
homomorphism. As shown above, the map ρ is surjective. Since ker ρ = {g̃ ∈ G(k) | ν ◦ g̃ = ν} = G(ν), the group G(ν) is
a normal subgroup of G(k), and the group G(f ) is isomorphic to the quotient group G(k)/G(ν) = π orb

1 (N )/π orb
1 (N ′).

Prove otherwise. Assume now that G(ν) is a normal subgroup of G(k). For any g ∈ G(k), define a map h:N ′ → N ′ by
the equality h(x) = (ν ◦g)(x̃), x ∈ N , where x̃ ∈ ν−1(x) is an arbitrary point. Let us show that the definition is correct. Take
another point x̃′ ∈ ν−1(x). Since the fundamental group G(ν) acts transitively on the fiber ν−1(x) of the universal cover
ν:N0 → N ′, there is γ ∈ G(ν) such that x̃′ = γ (x̃). As G(ν) is a normal subgroup of G(k), there exists γ ′ ∈ G(ν), satisfying
the equality g ◦ γ = γ ′ ◦ g . The chain of equalities ν ◦ g(x̃′) = ν ◦ (g ◦ γ )(x̃) = ν ◦ (γ ′ ◦ g)(x̃) = (ν ◦ γ ′) ◦ g(x̃) = ν ◦ g(x̃)
implies that the map h:N ′ → N ′ is independent of the choice of x̃ ∈ ν−1(x), i.e. h is well defined. It is not difficult to
show that h ∈ Diff (N ′). By definition of h, we have h ◦ ν(x̃) = ν ◦ g(x̃) ∀x̃ ∈ N0, i.e. g lies over h with respect to ν.

Therefore, we have a map µ:G(k) → Diff (N ′) given by µ(g) := h, where g lies over h with respect to ν. Hence
µ(g) = ρ(g), and G(f ) = ρ(G(k)). Let us show that the group G(f ) acts transitively on every fiber f −1(z), z ∈ N . Let
z1, z2 ∈ f −1(z) and y1 ∈ ν−1(z1), y2 ∈ ν−1(z2). Since y1, y2 ∈ k−1(z), there exists a deck transformation g ∈ G(k) such that
g(y1) = y2. Put h = ρ(g) ∈ G(f ), hence h(z1) = z2. Therefore, the group G(f ) acts transitively on every fiber f −1(z), z ∈ N ,
and f : N ′ → N is a regular covering. □

2.3. The Euler–Satake characteristic of orbifolds and its properties

Let N be a compact n-dimensional orbifold and let N ef be the effective orbifold associated to N . It is known that N
(as well as N ef ) admits a good finite triangulation; i.e. a finite triangulation such that the orbifold groups at the points in
the interior of each simplex σ are the same [7,15]. Let K be such a triangulation of N . The Euler–Satake characteristic of
N is defined by the formula [17,19]

χES(N ) =
∑
σ∈K

(−1)dim σ
1
|Γσ |

, (1)

where Γσ is the orbifold group at any point in the interior of σ .
Let us introduce another, equivalent definition of the Euler–Satake characteristic. Let X be a vector field on N , x be

a singularity of X , and (Ũ,ΓU , ϕU ) be a chart with the coordinate neighborhood U ∋ x. Denote by XU the lift of X to Ũ
under the map ϕU : Ũ → U ⊂ N . Then the vector field XU has a singularity at x̃ ∈ (ϕU )−1(x). Let Ix̃(XU ) denote the index
of singularity of XU at x̃ in the usual sense. As known from [17, Section 3], the number Ix(X) = 1

|Γx|
Ix̃(XU ) is independent

of the choices of (Ũ,ΓU , ϕU ) and x̃. The number Ix(X) is called the index of singularity of X at x. Note that Ix(X) is not
necessarily integer.

In [17, Theorem 3], I. Satake proved the following generalization of the Poincaré–Hopf theorem: if X is a vector field
with singularities x1, . . . , xk on a compact orbifold N , then

χES(N ) =
k∑

i=1

Ixi (X), (2)

This formula may serve as an equivalent definition of the Euler–Satake characteristic of N .
One more, equivalent approach to the Euler–Satake characteristic for an orbifold N was presented by H. Ding [5]. He

introduced the concept of Euler characteristic of Fukaya–Ono type χ FO(N ) and proved that, for a compact orbifold N , this
characteristic χ FO(N ) coincides with the Euler–Satake characteristic χES(N ).

By [7, Section 2.2], if N is a connected ineffective orbifold, then

χES(N ) =
1

|K ef
N |
χES(N ef ), (3)

where K ef
N is the inefficiency group of N .

I. Satake showed that the Euler–Satake characteristic of an odd dimensional compact orbifold is zero [17, Theorem 4].
The Euler–Satake characteristic of an orbifold has the additivity and multiplicativity properties [7, Section 2.2]. Let K

be a good triangulation of an orbifold N . Suppose that N1 and N2 are closed subsets of N such that N1 ∪ N2 = N , and
the sets N1, N2, N1 ∩ N2 correspond to subcomplexes of K; then

χES(N1 ∪ N2) = χES(N1)+ χES(N2)− χES(N1 ∩ N2).

The Euler–Satake characteristic of the product N1×N2 of compact orbifolds N1 and N2 is equal to the product of their
Euler–Satake characteristics, i.e.

χES(N1 × N2) = χES(N1) · χES(N2).

The following statement is given in [7, Lemma 2.2] without a proof. It is stated in [19, Proposition 13.3.4] in Section
13.3 ‘‘Two-dimensional orbifolds" with a short proof. In view of importance of the statement for the sequel, we give its
new proof here.
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Proposition 2. Let f :N ′ → N be a regular covering of a compact orbifold N whose deck transformations group G is finite.
Then

χES(N ) =
1
|G|
χES(N ′). (4)

Proof. Consider the case when N is an effective orbifold. Then N ′ is also effective. Let X be a vector field on N with finitely
many singular points {x1, . . . , xk}. Denote X ′ to be the lift of X to N ′ under the covering f and f −1(xi) = {xi1, . . . , ximi}.
Then each xij ∈ f −1(xi) is a singular point of X ′. Since the points xi1, . . . , ximi belong to the same orbit of G, their isotropy
groups are pairwise isomorphic, and the number mi is equal to |G/Gxi1 | = |G|/|Gxi1 |. Moreover, since the notion of the
index of singularity is local, Ixi1 (X

′) = · · · = Iximi
(X ′), where Ixij (X

′) is the index of singularity of X ′ at xij, i = 1, . . . , k,
j = 1, . . . ,mi.

By the definition of a covering orbifold, for points xi ∈ N and xi1 ∈ N ′, there are charts (Ũ,ΓU , ϕU ) and (Ũ ′,ΓU ′ , ϕU ′ )
with the following properties: (a) Ũ = Ũ ′ and ΓU ′ is a subgroup of the group ΓU ; (b) xi ∈ U = ϕU (Ũ) and xi1 ∈ U ′ =
ϕU ′ (Ũ ′); (c) f |U ′◦ϕU ′ = ϕU . As above, let Γxi and Γxi1 denote the orbifold groups at xi and xi1 respectively. Without loss of
generality, we assume that Γxi1 ⊂ Γxi . It is easy to see that the isotropy group Gxi1 is isomorphic to the quotient group
Γxi/Γxi1 . Therefore, mi = |G|/|Gxi1 | =

|G||Γxi1 |
|Γxi |

.

Let XU be the lift of X to Ũ . Then XU is also the lift of X ′ to Ũ ′ = Ũ . Therefore, Ixi1 (X
′) = 1

|Γxi1 |
Ix̃i (XU ), where x̃i ∈ (ϕU )−1(xi).

Thus, using (2), we get the following chain of equalities:

χES(N ′) =
k∑

i=1

mi∑
j=1

Ixij (X
′) =

k∑
i=1

miIxi1 (X
′) =

k∑
i=1

|G||Γxi1 |

|Γxi |
·

1
|Γxi1 |

Ix̃i (XU ) =

= |G|
k∑

i=1

1
|Γxi |

Ix̃i (XU ) = |G|
k∑

i=1

Ixi (X) = |G|χ
ES(N ).

Suppose that N and N ′ are ineffective. Since f :N ′ → N is a covering, it is necessary K ef
N
∼= K ef

N ′ . Therefore, by (3), the
formula (4) remains valid in this case. □

Corollary 1. Let G be a finite group acting on a compact manifold M and let N = M/G be a very good orbifold. Then

χES(N ) =
1
|G|
χ (M),

where χ (M) is the topological Euler characteristic of the manifold M.

2.4. The topological and orbifold Euler characteristics

Let N be a compact orbifold. The Euler characteristic of the underlying topological space of N is called the topological
Euler characteristic of N and is denoted by χ (N ). Note that χ (N ) is always an integer. If N is a manifold, then χES(N )
coincides with χ (N ).

Let G be a finite group acting on a compact manifold X . Then the compact quotient space N = X/G admits an orbifold
structure. Recall that, in this case, the orbifold N is called very good. As known (see, for example, [9]), the topological
Euler characteristic of a very good orbifold N can be calculated by the following formula

χ (N ) =
1
|G|

∑
g∈G

χ (Xg ), (5)

where Xg is the fixed point set of g ∈ G. It is well-known that Xg is a smooth submanifold of X which is disconnected in
general.

L. Dixon, J. A. Harvey, C. Vafa, E. Witten [6] introduced the orbifold Euler characteristic χ orb(N ) for a very good compact
orbifold N = X/G. Denote by [g] the conjugacy class of an element g ∈ G. Let C(g) be the centralizer of g in G. As
known [9], the orbifold Euler characteristic χ orb(N ) of N can be calculated by the formula

χ orb(N ) =
∑
[g]

χ (Xg/C(g)), (6)

where χ (Xg/C(g)) is the topological Euler characteristic of the quotient Xg/C(g).
If the action of G on X is free, then χ (N ) = χ orb(N ). If G is an abelian group, then the conjugacy class [g] consists of

the element g , C(g) = G and the formula (6) can be rewritten in the following form

χ orb(N ) =
∑
g∈G

χ (Xg/G). (7)

In contrast with the Euler–Satake characteristic, the orbifold Euler characteristic is always an integer.
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Remark 3. Generalized Euler characteristics for orbifolds are defined in [7,8].

3. Equivalence of Chern’s conjecture to its analog for affine orbifolds

3.1. A linear connection as a Cartan geometry

Let us first recall the definition of a Cartan geometry [20]. Let G be a Lie group and H be a closed subgroup of G. Denote
by g and h the Lie algebras of G and H respectively. Let N be a smooth (not necessarily connected) manifold. A Cartan
geometry on N of type (G,H) (or g/h) is a principal right H-bundle P(N,H) with the projection p : P → N and a g-valued
1-form β on P , satisfying the following conditions:

(c1) the map βw : TwP → g is an isomorphism of vector spaces for every w ∈ P (nondegeneracy of β);
(c2) R∗hβ = AdG(h−1)β for all h ∈ H , where AdG : G→ GL(g) is the adjoint representation of G on g (equivariance of β);
(c3) β(A∗) = A for any A ∈ h, where A∗ is the fundamental vector field associated with A.

This Cartan geometry is denoted by ξ = (P(N,H), β).
Let us consider the homogeneous space G/H and let G act on G/H by left translations. If there exists an AdG(H)-invariant

vector subspace V of g such that g = h ⊕ V , then G/H is called reductive. A Cartan geometry ξ = (P(N,H), β) of type
(G,H), where G/H is a reductive homogeneous space, is called a reductive Cartan geometry.

A g-valued 2-form Ω = dβ + [β, β] is said to be the curvature of a Cartan geometry ξ = (P(N,H), β). If Ω = 0, the
Cartan geometry ξ is called flat.

Cartan geometries form a category Car, where morphisms of two Cartan geometries ξ = (P(M,H), β) and ξ ′ =
(P ′(M ′,H), β ′) of the same type (G,H) are principle H-bundles morphisms Γ : P(M,H) → P ′(M ′,H), satisfying the
condition Γ ∗β ′ = β .

Denote by Aff (An) the group of all affine transformations of the n-dimensional affine space An. Elements of Aff (An) can
be represented in the form ⟨B, b⟩, where B ∈ GL(n,R) and b ∈ Rn. The group operation in Aff (An) is defined by the formula
⟨B, b⟩⟨C, c⟩ = ⟨BC, Bc + b⟩ ∀⟨B, b⟩, ⟨C, c⟩ ∈ Aff (An). Therefore, Aff (An) = GL(n,R) ⋉ Rn is the semidirect product of the
subgroup GL(n,R) and the normal subgroup Rn.

Further, we put G = Aff (An) and H = GL(n,R). The Lie algebra g of G is the semidirect sum of the Lie algebra h of
GL(n,R) and the Lie algebra p of Rn. By the AdG(H)-invariance of p, G/H is reductive. Consider the frame bundle T (M,H)
over an n-dimensional manifoldM . Recall that an H-connection in this bundle is an H-invariant n-dimensional distribution
Q on T (M,H). We emphasize that there is a one-to-one correspondence between linear connections ∇ on M and
H-connections Q in T (M,H). Note that, in the notation introduced above, a linear connection ∇ on M can be considered
as a reductive Cartan geometry ξ = (T (M,H), β) of type G/H with β = ω + θ , where ω is the h-valued 1-form of the
connection Q associated with ∇ and θ is the p-valued soldering 1-form of Q .

3.2. Affine orbifolds

Let N be an n-dimensional orbifold with atlas A = {(Ũ,ΓU , ϕU )}. Suppose that for every chart (Ũ,ΓU , ϕU ) ∈ A, the set
Ũ is an open subset of the affine space An and the group ΓU acts on Ũ by restrictions of transformations from the affine
group Aff (An). This action may be ineffective. If every embedding ϕVU : Ũ → Ṽ , satisfying ϕV ◦ ϕVU = ϕU , is a restriction
of an affine transformation of An, then N is called an affine orbifold.

3.3. The holonomy group of an affine orbifold

In the sequel, we assume that the orbifolds under consideration are effective unless otherwise stated. We present
another approach to the concept of affine orbifold. The definition of a fiber bundle over an orbifold is known (see for
example [1,2]). The total space of a fiber bundle over an orbifold N is an orbifold P and its projection π : P → N is a
submersion in the category Orb. Here we will only work with principal bundles whose total spaces are manifolds.

We consider H-spaces, where a Lie group H acts on the right.
Let a Lie group H act properly and almost freely on a manifold P . Then there exists an orbifold structure on the quotient

space P/H such that the quotient map f : P → P/H is a submersion in the orbifold category Orb. This structure is unique
up to isomorphisms in Orb. Let h : P/H → N be an isomorphism of orbifolds. Then we say that we have a good principal
H-bundle P over the orbifold N with the projection π = h ◦ f : P → N and use the notation P(N ,H).

The frame bundle T (N ,H) over an n-dimensional orbifold N is an example of a good principal H-bundle over N ,
where H = GL(n,R). By analogy with the manifold case, an H-connection Q in T (N ,H) is an H-invariant n-dimensional
distribution Q on T . We emphasize the correspondence between linear connections ∇ on N and H-connections Q in the
frame bundle T (N ,H).

Consider an affine geometry on an orbifold N as a Cartan geometry ξ = (T (N ,H), β) defined in Section 3.1, where β
is a nondegenerate g-valued equivariant 1-form on T . A diffeomorphism h of T is an automorphism of the affine orbifold
N if h∗β = β and h ◦ Ra = Ra ◦ h ∀a ∈ H .



A.V. Bagaev and N.I. Zhukova / Journal of Geometry and Physics 142 (2019) 80–91 87

Note that an n-dimensional orbifold N is affine if and only if there exists a flat torsion free linear connection ∇ on
N . The vanishing both of the torsion and of the curvature of the affine geometry on N is equivalent to the vanishing
of the curvature of the associated Cartan geometry: Ω = 0. Using properties of the curvature of a Cartan geometry
[20, Section 1.5], it is easy to check the equality

Ωu(Xu, Yu) = [βu(Xu), βu(Yu)] − βu([X, Y ]u), X, Y ∈ X(T ), u ∈ T . (8)

In other words, Ω may be interpreted as a measure of the difference between the Lie algebra brackets and the brackets
of the corresponding vector fields on T .

Fix a basis Ei, i = 1, . . . , n, of the vector space p ∼= Rn. The vector fields Ei, where Ei|u= (βu)−1(Ei), u ∈ T ,
belong to XQ (T ) and {Ei|u} is a basis of Qu. Since Ω = 0 and [A, B] = 0 for all A, B ∈ p, by (8), it is necessary
[Ei, Ej]u = β−1u ([Ei, Ej]) = 0 for each i, j ∈ {1, . . . , n} and for every u ∈ T . This implies that [X, Y ] ∈ XQ (T ) for every
vector fields X, Y ∈ XQ (T ). By the Frobenius theorem, the distribution Q is integrable. Thus, (N ,∇) is an affine orbifold
if and only if the H-connection Q on T defined by the linear connection ∇ is an integrable distribution, i.e. there exists
an n-dimensional foliation (T , F ) such that TF = Q . This foliation is called horizontal. The H-invariance of Q = TF implies
the H-invariance of the foliation (T , F ).

Definition 3. Take any x ∈ N and u ∈ π−1(x). Let L = L(u) be the leaf of (T , F ) through u. The subgroup
Φ(u) = {a ∈ H | Ra(L) = L} of the group H = GL(n,R) is called the holonomy group at u of the affine orbifold N .

If u′ = ub, b ∈ H , then Φ(u′) = b−1Φ(u)b. Thus, the holonomy group of N is defined up to conjugacy in H .

Remark 4. In the case when N is an affine manifold, Definition 3 is equivalent to the usual definition of the holonomy
group ([13, Chap II, Section 4]).

Proposition 3. Let N be an n-dimensional affine orbifold which is not necessarily compact. Let π : T → N be the projection
of the frame bundle T (N ,H). Then:

(i) the affine connection on N defines an integrable H-invariant distribution Q tangent to the foliation (T , F );
(ii) for every leaf L = L(u) of (T , F ), u ∈ T , the restriction π |L: L → N is a regular covering whose deck transformation

group is the holonomy group Φ(u).

Proof. The statement (i) was proved above in this section.
(ii) Let us describe the local structure of the principal H-bundle π : T → N . Take any x ∈ N and a linearized orbifold

chart (Ũ,ΓU , ϕU ) at x. In this case, ΓU can be considered as a subgroup of H . Hence, ΓU acts freely on Ũ×H by the formula
γ (y, a) := (γ (y), γ−1·a), (y, a) ∈ Ũ×H . The quotient manifold (Ũ×H)/ΓU as well as the projection rU : (Ũ×H)/ΓU → Ũ/ΓU
are defined. Denote by ΓU .(y, a) the ΓU -orbit of (y, a) ∈ Ũ × H . The equality ΓU .(y, a) · b := ΓU .(y, a · b), b ∈ H defines
a right action of H on (Ũ × H)/ΓU . Since ΓU acts freely on H , we have a locally trivial bundle with the projection
(Ũ × H)/ΓU → H/ΓU and with the standard fiber Ũ ∼= Rn. The fibers of this bundle form a simple foliation, which
is called horizontal.

Thus, we have the following commutative diagram

π−1(U)
pU

−−−−→ (Ũ × H)/ΓU⏐⏐↓π |π−1(U)

⏐⏐↓rU

U
qU

←−−−− Ũ/ΓU ,

where pU :π−1(U) → (Ũ × H)/ΓU is an isomorphism both of the induced principal H-bundles and of the horizontal
foliations. Let us identify π−1(U) with (Ũ × H)/ΓU via pU .

Let u ∈ π−1(x) and L = L(u) be the leaf of (T , F ). Therefore, (π |L)−1(U) = L ∩ π−1(U) =
∐

Vi, where Vi ∼= Rn are
local leaves of the horizontal foliation, and there exists a diffeomorphism si: Vi → Ũ , satisfying π |Vi= ϕU ◦ si. Therefore.
π |Vi : Vi → U ⊂ π (L) is a diffeomorphism. This means that the restriction π |L: L→ π (L) is a covering onto an open subset
π (L) in N .

Let us show that π (L) = N . Suppose that there is x′ ∈ N \ π (L). Take u′ ∈ π−1(x′). Let L′ be the leaf of (T , F ) through
u′. As proved above, π (L′) is open in N . Assume that there exists x0 ∈ π (L) ∩ π (L′). Then there are y ∈ π−1(x0) ∩ L
and y′ ∈ π−1(x0) ∩ L′. Since H acts transitively on every fiber of π : T → N , there exists b ∈ H such that Rb(y′) = y. The
H-invariance of (T , F ) implies Rb(L′) = L. Therefore π (L′) = π (L). This contradicts with the choice of x′, hence π (L)∩π (L′) =
∅. Thus, for any x′ ∈ N \ π (L), there is an open neighborhood π (L′) belonging to N \ π (L), hence π (L) is a closed subset
in N . Since π (L) is an open-closed subset in N , the connectivity of N implies π (L) = N .

Therefore, π |L: L → N is a covering. The transitivity of the H-action on every fiber π−1(x), x ∈ N , implies the
transitivity of the action of the holonomy group Φ(u) on every fiber (π |L)−1(x). This means that Φ(u) is the deck
transformation group of this covering. Thus N = L/Φ(u), hence π |L: L→ N is a regular covering. □
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3.4. The structure of affine orbifolds

We call an affine orbifold N very good, if there exist an affine manifold M and a finite group Ψ of automorphisms of
M such that N = M/Ψ .

Proposition 4. Every compact n-dimensional affine orbifold is very good.

Proof. Let N be a compact n-dimensional affine orbifold. By Proposition 3, there exists a regular covering f : L → N ,
where L is a manifold and the deck transformation group Φ = Φ(u) is a subgroup of H = GL(n,R). Therefore, Φ is a
matrix group.

If ν: L0 → L is a universal cover for L, then k = f ◦ ν: L0 → N is a universal cover for N . Since f : L→ N is a regular
covering, by Proposition 1, the deck transformation group Φ is isomorphic to the quotient group π orb

1 (N )/π orb
1 (L). Recall

([10, p. 132]) that the fundamental group of a compact orbifold is finitely generated. Therefore, the group Φ is finitely
generated as the quotient group of the finitely generated group π orb

1 (N ) by π orb
1 (L).

According to a fundamental result of A. Selberg [18], a finitely generated linear group over a field of characteristic
zero is virtually torsion-free. Therefore, the finitely generated matrix group Φ has a normal subgroup Φ0 without finite
subgroups such that the quotient group Ψ = Φ/Φ0 is finite.

It is easy to see that the affine structure on N induces an affine structure on L such that the deck transformation group
Φ becomes a group of affine automorphisms of L. Since N = L/Φ , the group Φ acts on L properly discontinuously. Hence,
the torsion-free subgroup Φ0 of Φ acts freely and properly discontinuously on L. Therefore, the group Ψ = Φ/Φ0 acts on
the affine quotient manifold M = L/Φ0 as an automorphism group, and N = M/Ψ . The quotient maps s: L→ L/Φ0 = M
and q:M → M/Ψ = N satisfy f = q ◦ s. Thus, N = M/Ψ , where M is an n-dimensional affine manifold and Ψ is a finite
group of its automorphisms. □

3.5. The proof of Theorem 1

Let N be an effective n-dimensional compact affine orbifold. By Proposition 4, N is very good and there exist an
n-dimensional affine manifold M and a finite automorphism group Ψ of M such that N = M/Ψ . By Proposition 2, the
Euler–Satake characteristic χES(N ) of N satisfies the equality

χES(N ) =
1
|Ψ |

χ (M), (9)

where χ (M) is the Euler characteristic of M .
If N is ineffective and has the inefficiency group K ef

N , then there exists the associated effective orbifold N ef . In this
case, by the formula (3), we obtain the following equality

χES(N ) =
1

|Ψ ||K ef
N |
χ (M). (10)

The equalities (9) and (10) imply the equivalence of Chern’s conjecture with its analog for the Euler–Satake character-
istic of compact affine orbifolds stated above. □

4. Proofs of Theorems 2–4

Since the Euler–Satake characteristics of a compact affine orbifold N and the associated effective orbifold N ef satisfy
the equality χES(N ) = 1

|K ef
N |
χES(N ef ), it is sufficient to prove Theorems 2–4 for effective orbifolds. Therefore, without loss

of generality, we will further assume that all orbifolds under consideration are effective.

4.1. Special affine orbifolds

First, we prove the following lemma. As above, we put H = GL(n,R).

Lemma 2. Let M be an n-dimensional compact affine manifold admitting a finite automorphism group Ψ effectively acting on
M. Let N = M/Ψ and let q:M → M/Ψ = N be the quotient map. Denote by ξ̂ = (P(M,H), α) and ξ = (T (N ,H), β) the
Cartan geometries defined by the affine structures on M and N respectively. Then:

(i) The induced automorphism group Ψ̂ ∼= Ψ of ξ acts on P such that T = P/Ψ̂ and the quotient map q̂ : P → P/Ψ̂ = T
satisfies the conditions:

Ra ◦ q̂ = q̂ ◦ Ra ∀a ∈ H; q̂∗(Q̂ ) = Q ,

where q̂∗ is the differential of q̂, Q̂ and Q are the H-connections given by the affine structures on M and N respectively.
(ii) The holonomy groups Φ̂ (̂u), û ∈ P, and Φ(u), u = q̂(̂u) ∈ T , satisfy the inclusions

Φ̂ (̂u) ⊂ Φ(u) ⊂ H. (11)
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Proof. Denote by p : P → M the projection of the frame bundle P(M,H). If û = {X1, . . . , Xn} is a frame of TxM , then
û ∈ P and p(̂u) = x. Every element ψ ∈ Ψ defines a diffeomorphism of P by the formula ψ̂ (̂u) = (ψ∗xX1, . . . , ψ∗xXn),
where ψ∗x is the differential of ψ at x. As known, ψ̂ is an isomorphism of the frame bundle, ψ̂ ◦ Ra = Ra ◦ ψ̂ for every
a ∈ H . By ([13, Chap VI, Proposition 1.3]), ψ̂ satisfies the condition ψ̂∗α = α, where ψ̂∗ is the codifferential of ψ̂ . Thus, ψ̂
is an automorphism of the affine structure considered as a Cartan geometry. Thus, ψ̂ generates an automorphism group
Ψ̂ = ⟨ψ̂⟩ isomorphic to Ψ , which lies over Ψ with respect to p : P → M . The equality q̂∗(Q̂ ) = Q follows from the
condition ψ̂∗α = α. Thus. the statement (i) is proved.

Denote by (P, F̂ ) and (T , F ) the foliations such that T F̂ = Q̂ and TF = Q . By the property q̂∗(Q̂ ) = Q of the projection
q̂ : P → T , it is necessary q̂(̂L) = L, where L̂ = L̂(̂u) and L = L(u), u = q̂(̂u) ∈ T are the leaves of the foliations (P, F̂ ) and
(T , F ) respectively.

Consider the holonomy group Φ̂ (̂u) of the H-connection Q̂ at û. Let u = q̂(̂u) and let Φ(u) be the holonomy group of
the H-connection Q at u. By the definition of the holonomy group Φ̂ (̂u), for any a ∈ Φ̂ (̂u), the equality Ra (̂L) = L̂ holds.
Therefore, we have the following chain of equalities: Ra(L) = Ra (̂q(̂L)) = (Ra ◦ q̂)̂L = (̂q ◦ Ra )̂L = q̂(Ra (̂L)) = q̂(̂L) = L. This
means that a ∈ Φ(u), hence, the inclusions (11) hold true. □

Proof of Theorem 2. Let N be an effective compact n-dimensional affine orbifold. Assume that N is special, i.e. the holon-
omy group of N belongs to the special linear subgroup SL(n,R). By Proposition 4, there exist a compact
n-dimensional affine manifold M and a finite group Ψ of its automorphisms such that N = M/Ψ . Therefore, by
Proposition 2, χES(N ) = 1

|Ψ |
χ (M). By Lemma 2, using the notations introduced above, the holonomy groups Φ̂ (̂u) and

Φ(u) of M and N are related by the inclusions Φ̂ (̂u) ⊂ Φ(u). Since Φ(u) ⊂ SL(n,R), we have Φ̂ (̂u) ⊂ SL(n,R). Therefore,
the affine manifold M is also special. As proved by B. Klingler [12], the Euler characteristic of any special compact affine
manifold is zero. Therefore χES(N ) = 1

|Ψ |
χ (M) = 0. □

4.2. The application to flat pseudo-Riemannian orbifolds

Proofs of Theorem 3. Assume that (N , g) is a compact n-dimensional pseudo-Riemannian orbifold, and the Levi-Civita
connection ∇ of g is flat. Therefore, (N , g) is a compact affine orbifold.

Let (r, s) be the signature of the pseudo-Riemannian metric g . Since (N , g) is a pseudo-Riemannian orbifold, its frame
bundle has a reduction R(N ,O(r, s)) to the pseudo-orthogonal subgroup O(r, s), r+ s = n, of H = GL(n,R), and ∇ defines
an O(r, s)-connection on R. Denote by Φ(u), u ∈ R, the holonomy group of (N ,∇). Then Φ(u) is a subgroup of O(r, s). It
is well known that the determinant of any matrix from O(r, s) is equal to ±1.

First, assume (N , g) is oriented. Then the determinant of every matrix from the holonomy group Φ(u), u ∈ R, is equal
to 1. Therefore, N is special. By Theorem 2, χES(N ) = 0.

Let (N , g) be non-oriented. There is a 2-fold regular covering f :N ′ → N such that N ′ is an oriented orbifold. Let
g ′ be the induced pseudo-Riemannian metric on N ′. Then the deck transformation group isomorphic to Z2 becomes an
isometry group of (N ′, g ′). By Proposition 2, it is necessary χES(N ) = 1

2χ
ES(N ′). As proved above, χES(N ′) = 0, hence

χES(N ) = 0. □

4.3. Complete affine orbifolds

Definition 4. Let N be an n-dimensional affine orbifold. It is called complete, if its universal covering space is the affine
space An.

Proof of Theorem 4. Let N be an effective n-dimensional compact complete affine orbifold. By Proposition 4, N is very
good. Thus, there are a compact affine manifold M and a finite group Ψ of automorphisms of M such that N = M/Ψ and
the quotient map satisfies the relation ν = q◦k, where k: An

→ M , ν: An
→ N are universal covers and q:M → N = M/Ψ

is the quotient map. Completeness of An implies completeness of M . By [14], the Euler characteristic of the complete
compact affine manifold M is zero, i.e. χ (M) = 0. By Corollary 1, χES(N ) = 1

|Ψ |
χ (M), hence χES(N ) = 0. □

5. Examples

5.1. Affine orbifolds which are neither special nor complete

Example 1. Fix λ ∈ (0, 1) and a natural number n ≥ 3. Consider the homothety ϕ: An
\{0} → An

\{0}, ϕ(x) = λx,
x ∈ An

\{0}. The group Φ ∼= Z generated by ϕ acts on An
\{0} freely and properly discontinuously. Therefore, the quotient

map ν: An
\{0} → (An

\{0})/Φ = M is a regular covering and the compact quotient space M = (An
\{0})/Φ admits a

structure of n-dimensional affine manifold. Since An
\{0} is incomplete, the affine manifold M is also incomplete. The

homothety ϕ does not preserve the volume form of An
\{0}, hence M is not special. Remark that M is diffeomorphic to

the product Sn−1 × S1, therefore χ (M) = χ (Sn−1 × S1) = χ (Sn−1) · χ (S1) = 0, because χ (S1) = 0.
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Let γ̃ : An
\{0} → An

\{0} be the rotation of An
\{0} given by

γ̃ (x1, x2, x3, . . . , xn) = (x1 cos
2π
k
− x2 sin

2π
k
, x1 sin

2π
k
+ x2 cos

2π
k
, x3, . . . , xn),

where (x1, x2, x3, . . . , xn) ∈ An
\{0} and k ∈ N, k ≥ 2. Since γ̃ ◦ ϕ = ϕ ◦ γ̃ , the affine automorphism γ̃ defines an

automorphism γ of the affine manifold M such that γ ◦ ν = ν ◦ γ̃ . Denote by Γk the group generated by γ . Remark that
Γk ∼= Zk. Since Γk is an affine automorphism group of M , the compact quotient space Nk = M/Γk admits a structure of
n-dimensional affine orbifold.

For n = 3, the singular points of Nk form two 1-dimensional strata diffeomorphic to the circle S1.
For n ≥ 4, the orbifold Nk has the following stratification ∆ = {∆n,∆n−2}, where the stratum ∆n−2 is diffeomorphic

to Sn−3 × S1.
Since χ (M) = 0, Corollary 1 implies χES(Nk) = χ (M)/|Γk| =

1
kχ (M) = 0. Since M is neither special nor complete, Nk

is also neither special nor complete, however χES(Nk) = 0.

Example 1 shows that the analog of Chern’s conjecture stated above is still open.

5.2. Special affine orbifolds

Further, we construct some special affine orbifoldsN and compute their Euler–Satake characteristic χES(N ), topological
Euler characteristic χ (N ) and orbifold Euler characteristic χ orb(N ).

Example 2 (n-Dimensional Pillow). Consider the n-dimensional affine torus X = T n as the quotient space An/Zn of the
affine space An by the integer lattice Zn. Denote by [x1, x2, . . . , xn] the image of (x1, x2, . . . , xn) ∈ An under the quotient
map An

→ An/Zn
= T n. Let G ∼= Z2 be the group generated by the involution

g: T n
→ T n: [x1, x2, . . . , xn] ↦→ [−x1,−x2, . . . ,−xn].

The compact quotient space N = X/G admits a structure of n-dimensional affine orbifold.
Let Xg be the fixed point set of g . Obviously, Xg consists of the 2n points [x1, x2, . . . , xn] ∈ T n, where xi ∈ {0, 1/2}, i =

1, . . . , n. Let us denote them by Ai, i = 1, . . . , 2n. Therefore, the set of singular points of N consists of the 2n points q(Ai),
where q: X → N is the quotient map.

By Corollary 1, χES(N ) = 1
|Z2|
χ (T n) = 0, because χ (T n) = 0.

Using the fact that

|G| = |Z2| = 2, χ (X e) = χ (T n) = 0, χ (Xg ) = χ (
2n⨆
i=1

Ai) =
2n∑
i=1

χ (Ai) = 2n

and applying the formula (5), we get

χ (N ) =
1
|G|

(χ (X e)+ χ (Xg )) =
2n

2
= 2n−1. (12)

By (7), we get

χ orb(N ) = χ (X e/G)+ χ (Xg/G) = χ (N )+ χ (Xg ) = 2n−1
+ 2n

= 3 · 2n−1. (13)

Thus, for the n-dimensional orbifold N constructed above, we obtain

χES(N ) = 0, χ (N ) = 2n−1, χ orb(N ) = 3 · 2n−1.

In particular, for n = 2, the orbifold N is the 2-dimensional pillow with the underlying topological space homeomor-
phic to the 2-dimensional sphere S2, and χES(N ) = 0, χ (N ) = 2, χ orb(N ) = 6.

For n = 4, the orbifold N is the Kummer surface [1], and χES(N ) = 0, χ (N ) = 8, χ orb(N ) = 24.

Example 3. Let X = T 2
= R2/Z2 be the 2-dimensional affine torus T 2 constructed in Example 2 for the case n = 2. Take

two reflections of the torus T 2
:

τ1([x1, x2]) = [1− x1, x2], τ2([x1, x2]) = [x1, 1− x2] ∀[x1, x2] ∈ T 2.

Let the group G be generated by τ1, τ2. Then G ∼= Z2 × Z2. The compact quotient space N = X/G admits a structure
of 2-dimensional affine orbifold which can be considered as a square on the plane. Four vertices of the square are the
0-dimensional strata of N , four sides (without the vertices) of the square are the 1-dimensional strata of N .

By Corollary 1, we have χES(N ) = 1
|Z2×Z2|

χ (T 2) = 0.
The fixed point set X τi of the reflection τi is the disjoint sum of two circles S1 ⊔ S1, i = 1, 2. Hence, χ (X τi ) =

χ (S1 ⊔ S1) = 2χ (S1) = 0. The composition τ1 ◦ τ2 = τ2 ◦ τ1 has four fixed points X τ1◦τ2 = ⊔4i=1Ai. Therefore,
χ (X τ1◦τ2 ) = χ (⊔4i=1Ai) = 4χ (Ai) = 4. Using |G| = |Z2 × Z2| = 4, χ (X e) = χ (T 2) = 0 and the formula (5), we get

χ (N ) =
1
|G|

(χ (X e)+ χ (X τ1 )+ χ (X τ2 )+ χ (X τ1◦τ2 )) = 1.
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Since the restriction τk|Xτl fixes four points ⊔4i=1Ai = X τ1◦τ2 , k ̸= l, we have χ (X τk/G) = χ (X τk/Z2) = 1
2 (χ (X

τk ) +
χ (X τ1◦τ2 )) = 2, k = 1, 2. Note that X e/G = N , X τ1◦τ2/G = X τ1◦τ2 . By (7), we obtain

χ orb(N ) = χ (X e/G)+ χ (X τ1/G)+ χ (X τ2/G)+ χ (X τ1◦τ2/G) = 1+ 2+ 2+ 4 = 9.

Thus, we have χES(N ) = 0, χ (N ) = 1, χ orb(N ) = 9.

Examples 2 and 3 show that the direct analog of Chern’s conjecture for the topological and orbifold Euler characteristics
does not exist.
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