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Abstract

A fixed set of n agents share a random object: the distribution µ of the profile of utilities is IID
across periods, but arbitrary across agents. We consider a class of online division rules that learn
the realized utility profile, and only know from µ the individual expected utilities. They have no
record from past realized utilities, and do not know either if and how many new objects will appear
in the future. We call such rules prior-independent.

A rule is fair if each agent, ex ante, expects at least 1/n-th of his utility for the object if it is
a good, at most 1/n-th of his disutility for it if it is a bad. Among fair prior-independent rules
to divide goods (bads) we uncover those collecting the largest (lowest) total expected (dis)utility.
There is exactly one fair rule for bads that is optimal in this sense. But for goods the set of optimal
fair rules is one dimensional. Both in the worst case and in the asymptotic sense, our optimal rules
perform much better than the natural Proportional rule (for goods or for bads), and not much
worse than the optimal fair prior-dependent rule that knows the full distribution µ in addition to
realized utilities.

1 Online and Fair division rules

A rule to allocate resources in an intertemporal context is online1 if the allocation taking place in
each period relies only on the information available at this particular time and possibly on the record
of past allocations, but not on any precise expectations about the future periods. Critically, it is not
known how long the process will continue, if at all.

We compare here the performance of a family of online fair division rules that are both history-
and prior-independent (as explained below), with that of the best rule that an omniscient manager
– with full knowledge of the past and the best available statistical information about the future –
can design. We find that the gap in performance is small, which is a strong argument in favor of
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University of Rochester, and HSE St.Petersburg are gratefully acknowledged. Remarks of William Thomson and Yossi
Azar were especially helpful. The numerical simulations reported in Sections 8 are due to Yekaterina Rzhewskaya, PhD
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Support from the Basic Research Program of the National Research University Higher School of Economics is gratefully
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1 The term “online” originates in the computer science literature: online algorithms deal with sequences of requests
that emerge dynamically and are not known in advance ([13]).
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the prior-independent rules, much easier to implement as they eschew the potentially difficult and/or
costly acquisition and processing of complex information.

We consider the fair division of one or more random objects. When an object arrives in a given
period it must be divided (physically, or by means of a lottery if it is indivisible) between a fixed set of
agents. The (random) profiles of individual utilities are probabilistically independent across periods,
but typically not across agents. If the object is a desirable “good” the design goal is to maximize total
relative utility while ensuring that each participant receive a Fair Share of the resources: that is, an
agent’s expected utility is no less than 1

n -th of his expected utility for the full object.2 If the object
is a non disposable ”bad” (chore) we wish symmetrically to minimize total relative disutility while
ensuring that no one gets to cover more than a fair share of the chore.

Think of a dispatcher distributing randomly arriving customers across the fleet of taxis, or more
generally, to a fixed set of specialists serving the customers one at a time. For efficiency she wishes to
assign customers where they generate the most benefit, while fairness requires that each member of
the cooperative be guaranteed a significant share of total business. Online allocation rules may well
be the only feasible rules here. Symmetrically, the online distribution of workloads is compelling if
we assign emergency care patients between hospitals, refugees between shelters and so on. Here the
concern is to minimize costs while making sure no one receives an unduly large burden of tasks. See
more examples in the literature review.

The relative (dis)utility of agent i is the ratio of i’s realized (dis)utility to his expected (dis)utility
with respect to the distribution common to every arrival of a new object. We assume that upon the
arrival of each object, the corresponding profile of relative (dis)utilities is revealed, it is the input
of our online rules. In other words the rule learns how lucky or unlucky each agent would be to
receive the object that just appeared. There are no incentives considerations in our model, we do not
allow strategic misreports by the agents. This is realistic in the above examples where the interaction
between dispatcher and receivers of the objects is one of mutual trust.

We similarly measure the efficiency performance of a rule by the expected sum of relative
(dis)utilities: interpersonal comparisons of absolute (dis)utilities have no normative meaning, but
comparing relative (dis)utilities does.

If the online rule only learns absolute (dis)utilities, but is unable to calibrate them with respect to
their expected value, the only way to ensure Fair Share in expectation is to divide the object equally.
Contrast this with the options available when relative (dis)utilities are known. Say the object is a
good, worth more than its average value to Ann, and less to Bob: we can give a bigger share to Ann
than to Bob and still guarantee that, in expectation (at the ex ante stage), Bob gets at least one
half of his average value for the good. We need of course to return the favor to Bob if and when his
relative utility is higher than average while Ann’s is below average. And this discriminating policy
clearly pushes up the expected total relative utility of our two agents.

Here we develop the full possibilities opened up by this simple insight. We define a history-and-
prior-independent online rule as a one period division rule based on nothing more than the realized
profile of relative (dis)utilities. Its expected fairness and efficiency performances in any period are
the same as in the stationary dynamic context where new objects may or may not arrive tomorrow,
and if they do the probability distribution of (dis)utility profiles are independent across periods. By
contrast, a prior-dependent rule has full knowledge of the probability distribution of the profile of
(dis)utilities in each period. Both types of rules seek to optimize total relative utility under the Fair

2This mild and uncontroversial test of fairness goes back to the earliest modern discussion of fair division by Steinhaus
([26]).

2



Share constraint.
Since vectors of (dis)utilities are independent and identically distributed across periods, a prior-

dependent rule cannot gain from conditioning the current allocation on the history. Thus a one-period
division problem is enough to compare history-and-prior-independent online rules (for brevity: prior-
independent rules) to the best prior-dependent rule.

2 Our results

Equal split, irrespective of (dis)utilities, relative or absolute, is the simplest way to ensure Fair Share
(FS). It is easy to guarantee FS and achieve a much higher total relative (dis)utility than Equal Split
does. The simplest method is the Proportional rule, where the probability that an agent gets the
good (resp. bad) is proportional (resp. inversely proportional) to her relative utility (resp. disutility):
Proposition 1.

Many other prior-independent rules guarantee FS, and some of them have a better efficiency
performance than the Proportional one. Our main results, Theorems 1 and 2 in Sections 5 and 6,
describe the optimal ones. Optimality here is the following (strong) ex post statement: if a prior-
independent division rule ϕ guaranteeing FS is not optimal, there is at least one optimal rule ϕ∗

such that, in every realization of the profile of relative utilities (for a good), ϕ collects (weakly) less
total relative utility than ϕ∗; and the inequality is sometimes strict. These inequalities are of course
reversed for a bad.

The set of optimal prior-independent rules to divide goods is infinite and one-dimensional; it is
given in closed form by Theorem 1. We call these rules Top Heavy because they put as much weight
on the agents with high relative utility as permitted by the Fair Share constraint. For two-agent
problems, and only those, there is a single Top Heavy rule as follows: if the relative utilities of the
agents for the good are x1, x2 and x1 ≤ x2, the shares (y1, y2) are (0, 1) if x1

x2
≤ 1

2 and (1− x2
2x1

, x22x1
) if

1
2 ≤

x1
x2
≤ 1.

When we divide bads, we speak of a Bottom Heavy rule. For two-agent problems, it is the mirror
image of the Top Heavy rule above: with relative disutilities x1 ≤ x2, the shares are (1, 0) if x1

x2
≤ 1

2

and ( x22x1
, 1 − x2

2x1
) if 1

2 ≤
x1
x2
≤ 1. But for problems with three or more agents, surprisingly, there is

a single optimal Bottom Heavy rule to divide bads, given in closed form by Theorem 2.3 This rule
collects, ex post, less relative disutility than any other prior-independent rule meeting FS.

By contrast, the most efficient prior-dependent division rule meeting FS cannot in general be
represented in closed form because it processes more complex information through a straightforward
linear program.

The rest of our results compare the efficiency performance of our Top (resp. Bottom) Heavy rules
to that of the optimal prior-dependent rules ensuring Fair Share, and show that the gap is often very
small. Two types of results sustain this claim.

First, in Section 7, we use the relevant “worst case” performance index to compare rules. For
brevity call the expected total relative utility collected by a rule for goods, whether prior-independent
or prior-dependent, its relative gain; in the case of bads the relative loss is similarly the expected total
relative disutility collected by the rule.

3Unexpected differences between the fair division of goods and that of bads have already emerged in the deterministic
fair division of several commodities: see [11] and [12].
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Fix a prior-independent rule ϕ to divide goods and meeting Fair Share. Its Price of Independence
(PoI) is the largest possible ratio of the relative gain of an prior-dependent rule ξ meeting FS, to that
of ϕ. If the prior-independent rule ϕ, or prior-dependent rule ξ, meets FS, its Price of Fairness
(PoF) is the largest ratio of the optimal relative gain unconstrained by FS,4 to the relative gain of ϕ
or ξ.

If we divide bads, the PoI of the prior-independent rule ϕ is the largest possible ratio of the
relative loss of ϕ to that of a prior-dependent rule ξ meeting FS. And the PoF of ϕ or ξ is the largest
ratio of their relative loss to the smallest feasible relative loss unconstrained by FS.

We observe first that the two indices PoI and PoF coincide for any prior-independent rule, for
goods or for bads: Lemma 1.

Proposition 4 looks at the division of goods. Between two agents (n = 2), the PoI=PoF of the
Proportional rule is 121%, that of the Top Heavy rule is 109%, and the PoF of the best prior-dependent

rule is 108%. As n grows, the PoF of the best prior-dependent rule grows as
√
n

2 , see [14]; this is also
the growth rate of the PoF for the Proportional rule and for some of the Top Heavy rules (for other
TH rules, the rate is faster). This rate is much slower than n, which is the PoI=PoF of the Equal
Split rule, the worst possible among all prior-independent rules meeting FS.

In Proposition 5 we divide bads. Between two agents, the PoI=PoF of Equal Split is unbounded,
that of the Proportional rule is 2, but for the optimal Top Heavy rule it is 112.5%, exactly like the
PoF of the best prior-dependent rule. As n grows, the PoI=PoF of the Proportional rule is n, the
PoI=PoF the optimal Bottom Heavy rule increases as n

4 , just like the PoF of the best prior-dependent
rule.

In Section 8 we discuss asymptotic probabilistic results, assuming that individual (dis)utilities are
statistically independent and drawn from familiar distributions: uniform, exponential, etc.

The utilitarian performance of the best Top Heavy rules, and of the single optimal Bottom Heavy
rule proves to be strong. These rules collect, independently of n, a substantial fraction of the maximal
relative gain (or minimal relative loss) bounded away from zero. For example, when n is large the
maximal gain is only 132% more than the gain captured by the Top Heavy rule for the uniform
distribution and and 288% for the exponential.

We conclude that the collection of detailed statistical information in our simple fair division prob-
lem brings little utilitarian gain, when compared with the performance of the prior-independent rules
we discovered: the best prior-dependent rule typically garners not much more utilitarian surplus
than the best fair prior-independent rule. This conclusion translates to history-dependent5 rules as
well. Such a rule can improve upon history-and-prior-independent rules but cannot outperform the
best prior-dependent rule in IID environment. Therefore dependence on history gives only a tiny
improvement over our history-independent Top Heavy (for goods) and Bottom Heavy (for bads) rules.

3 Literature review

Problems of dynamic (online) resource-allocation have attracted some attention in the computer sci-
ence and economic communities, but the literature is still sparse.

An early and influential reference on the efficiency aspect of online resource allocation is [23] in the
matching context; follow-up work include [18], and [17]. The fairness aspect was touched only recently.

4Obtained by dividing any object only between the agents with the highest utility.
5A history-dependent prior-independent rule may learn something of the underlying distribution from the past allo-

cations. Optimal rules in this full-fledged online context appear to be quite complicated.
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In the food bank problem of [2], like in our setting, objects are arriving online and are allocated to
a fixed population of agents, under a fairness constraint and toward the efficiency objective. Thanks
to the simplifying assumption that agents have dichotomous preferences, i.e., they either “like” or
“dislike” the kind of food delivered right now, the space of possible rules is finite-dimensional and
they find some with appealing properties. In the algorithmic paper [6] agents have additive valuations
over indivisible objects and fairness is achieved without lotteries by a complicated derandomization
technique; the resulting algorithm provides no welfare guarantees.

The study of a “dual” setting where the resources to allocate are known in advance but agents
arrive online was initiated by the model of online fair cake-cutting of [29]. The division of a single
unit of durable resource (unlike here) between agents randomly arriving and departing is discussed
in [19] and [20], where the goal is to maintain approximate fairness while disrupting the allocation
of as few agents as possible in each period. When allocating several computational resources in a
cloud among different clients [21] it is natural to assume agents have Leontief preferences (they need
CPU and memory in a given proportion): online algorithms ensuring fairness for such preferences are
constructed by [24]. Then [10] discusses the case of additive preferences.

In economics, the impact of changing the set of agents entitled to a share of a fixed bundle
of resources has been discussed extensively since [27] in the static and deterministic version of fair
division.

Matching markets are another popular area where the arrival of agents (e. g., job-seekers and firms)
can be modeled as “online”: [1],[4], [5], [3]. See also the dynamic kidney exchange model in [28], where
both agents and objects arrive online but preferences are only on one side of the market. This literature
is concerned about the welfare implications of strategic behavior, of congestion (waiting is costly but
leads to a better match), and of various signaling policies. For a fixed population of prioritized agents
and online objects’ arrival, these questions were also studied by [9].

Our approach to online fair division is methodologically close to the design of prior-
independent [16] and prior-free auctions [22] and the applications of robust-optimization to contract
theory [15]. There, as here, in contrast to the classical Bayesian approach where the designer knows
the prior distribution, either no information about prior is available at all or it is known that the prior
belongs to a certain wide class of distributions. Hence the optimal worst-case behavior becomes the
design objective.

Measuring the trade-off between fairness and the utilitarian objective by the Price of Fairness
(PoF) was suggested by [14] and [7] in the context of offline cake cutting and bargaining, respectively.
A similar idea of comparing online and offline rules (the latter with full information about the future
and the past) by the worst-case ratio of collected welfare is known as competitive analysis [13].

4 The model

Definitions 1 to 4 apply to the division of a good or a bad.
Definition 1

A fair division problem P = (N,µ,X) is described by the fixed set N of n agents, the probability
distribution µ ∈ ∆(RN+ ), and the random variable X in RN+ with distribution µ. We always assume
that the expectations Eµ(Xi) is bounded and positive for each i.

We interpret Xi, i ∈ N , as agent i’s random utility or disutility for the object realized at a
certain period. We impose no additional restriction on the probability space or the distribution of X:

5



(dis)utilities Xi may be arbitrarily correlated across agents. We write Xr
i = 1

Eµ(Xi)
Xi for agent i’s

relative utility or disutility.

Definition 2
A prior-independent6 division rule is a measurable mapping from ϕ : RN+→∆(N), symmetric in N .7

Given a realization xr ∈ RN+ of the relative (dis)utility profile Xr, agent i gets the share ϕi(x
r) of the

object.
A prior-dependent division rule is a collection of measurable mappings ξP : RN+ → ∆(N), one for
each problem P; it is symmetric in N . Given P and the realisation xr ∈ RN+ agent i gets the share
ξPi (xr).

Here “dividing the object” can be interpreted either literally if the object is divisible, or as assigning
probabilistic shares, or time shares.

The fairness constraint of our division rules, whether prior-independent or prior-dependent, sets
a lower (resp. upper) bound on every agent’s expected utility (resp. disutility).

Definition 3
The division rule rule ϕ or ξ guarantees Fair Share (FS) if every agent’s expected (dis)utility is at
least (at most) 1

n -th of his expected (dis)utility for the entire object. If the object is a good this means,
for each agent i

Eµ(ϕi(X
r) ·Xi) ≥

1

n
Eµ(Xi) ; Eµ(ξPi (Xr) ·Xi) ≥

1

n
Eµ(Xi) for each P (1)

These inequalities are reversed if we divide a bad.

Our design goal, conditional upon meeting Fair Share, is to maximize the expected relative util-

itarian welfare
∑

i∈N
Eµ(ϕi(X

r)·Xi)
Eµ(Xi)

in case of a good, or to minimize this quantity in case of a bad

(and similarly for a prior-dependent rule). For a prior-dependent rule, this is a straightforward op-
timization problem related to previous literature about cake division, and with an essentially unique
solution (see [14]).

Definition 4 We call the problem P normalized if Eµ(Xi) = 1 for all i ∈ N .

In the rest of the paper it is very convenient and causes no confusion to restrict attention to
such problems, where absolute and relative (dis)utilities coincide. All proofs are given for normalised
problems and extend automatically to general problems by replacing everywhere Xi by Xr

i = 1
Eµ(Xi)

Xi.

If S ⊆ N we use repeatedly the notation zS =
∑

j∈S zj , and eS for the vector eSi = 1 if i ∈ S, = 0
if i /∈ S. Finally x� y means xi > yi for all i.

Two benchmark examples The Equal Split rule, ϕes(x) = 1
ne

N for all x, is the simplest prior-
independent rule of all, and it implements Fair Shares. To see that its utilitarian performance is poor,
we compare it to the natural Proportional rule:

Proposition 1
i) The Proportional rule for a good is

ϕproi (x) =
xi
xN

for a good if x 6= 0 and ϕpro(0) =
1

n
eN

6If X is observable while Xr is not, then, for a prior-independent rule, we must additionally know EXi, i ∈ N . In
this case, by calling a rule prior-independent, we abuse terminology since we still need a collection of simple statistics of
the prior.

7A permutation of the agents permutes their shares accordingly.
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The Proportional rule for a bad is

ϕproi (x) =
1
xi∑
j∈N

1
xj

if x� 0

ϕpro(x) =
1

|S|
eS if xi = 0 for i ∈ S and xj > 0 for j /∈ S ; ϕpro(0) =

1

n
eN

In both cases it guarantees Fair Shares.

ii) For goods, there are utility profiles x where
∑
i∈N ϕproi (x)·xi∑
i∈N ϕesi (x)·xi = n. For bads, there are disutility profiles

where
∑
i∈N ϕesi (x)·xi∑
i∈N ϕproi (x)·xi

is arbitrarily large.

Proof. Statement i) for a good. Suppose P is normalised and apply the Cauchy-Schwartz in-

equality to the two variables
X2
i

XN
and XN :

Eµ
(
X2
i

XN

)
· Eµ(XN ) ≥ (EµXi)

2

Now the left most expectation is simply Eµ(ϕproi (X) · Xi), agent i’s expected utility, while by the
normalisation the other two terms are respectively n and 1.
Statement i) for a bad. Agent i’s expected utility under ϕpro is now

Eµ (ϕproi (X) ·Xi) = Eµ

(
1∑

j∈N
1
Xj

)
=

1

n
Eµ(X̃)

where X̃ is the harmonic mean of the Xi-s. The conclusion follows from the inequality X̃ ≤ 1
nXN

between harmonic and arithmetic means.
Statement ii). It is enough to take for a good the utility profile x = e1; and for a bad the disutility
profile x = εe1 + eN�1, where ε is arbitrarily small. �

Remark: The rules assigning probabilities to agents in proportion (or inverse proportion) to some
strictly higher power q of their relative (dis)utilities improve efficiency in our utilitarian sense, but
they fail FS.8

5 Goods: the family of optimal prior-independent rules

Our first main result (Theorem 1 below) compares prior-independent rules for goods meeting Fair
Share in terms of their relative utilitarian performance. We use the following binary relation.

Definition 5: Fix two prior-independent rules ϕ1 and ϕ2 for dividing a good. We say that ϕ1

dominates ϕ2 if it always collects, ex post (for every realization of the relative utilities) at least as
much utilitarian surplus, and sometimes strictly more∑

i∈N
ϕ2
i (x) · xi ≤

∑
i∈N

ϕ1
i (x) · xi for all x ∈ RN+ , with a strict inequality for some x (2)

8Say we divide a good and µ picks, for each i ≥ 2, the vector xi = e1 + (n − 1)ei with probability 1
n−1

. Then the

expected utility of agent 1 is 1
1+(n−1)q

, below 1
n

for n ≥ 3. The proof for a bad is similar.
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The key step toward Theorem 1 characterizes the restriction imposed by Fair Share on any prior-
independent rule ϕ. Given a vector x in RN+ , we write its arithmetic average as x = 1

nxN .

Proposition 2
The prior-independent rule ϕ dividing a good satisfies Fair Share if and only if there exists a number
θ, 0 ≤ θ ≤ 1, such that

ϕi(x) ≥ max

{
1

n
+

θ

n− 1
(1− x

xi
), 0

}
for all i ∈ N and x ∈ RN+ (3)

(where we use 1
0 = +∞)

Proof
Statement if: Assume the division rule ϕ for a good satisfies (3), that implies

ϕi(x) · xi ≥
1

n
xi +

θ

n− 1
(xi − x) for all x

For an arbitrary normalised problem P (Definition 4) we have Eµ(Xi −X) = 0 so the first inequality
in (1) follows. If P is not normalised the random variables Xr

i define a normalised problem and we
are done.

Statement only if: Assume the rule ϕ meets Fair Share and define the real valued function f(x) =
ϕ1(x)·x1. Symmetry of ϕ implies f(eN ) = 1

n . Consider a convex combination in RN+ , with an arbitrary

number of terms, such that
∑K

k=1 µky
k = eN . The problem P in which X = yk with probability µk is

normalised and FS implies
K∑
k=1

µkf(yk) ≥ 1

n
= f(eN )

The convexification g of f at x is g(x) = inf{
∑K

k=1 µkf(yk)}, over all convex combinations such that∑K
k=1 µky

k = x, see [25].
The inequality above says g(eN ) ≥ f(eN ) and the opposite inequality is true by definition of g,

so g(eN ) = f(eN ). Because g is convex and finite at eN there exists a vector α ∈ RN supporting its
graph at (eN , g(eN )), i. e. such that for all x ∈ RN+ :

g(x) ≥ g(eN ) + α · (x− eN ) =⇒ f(x) = ϕ1(x) · x1 ≥
1

n
+ α · (x− eN )

Apply the inequality above to x = λeN for any λ > 0. By symmetry of ϕ we get

1

n
λ ≥ 1

n
+ (λ− 1)α · eN for any λ > 0

implying α · eN = 1
n , therefore ϕ1(x) · x1 ≥ α · x for all x

Again symmetry of ϕ implies that we can take αj = αi for all i, j ≥ 2. Indeed if x′ obtains from x
by permuting coordinates i, j we have

ϕ1(x) · x1 = ϕ1(x′) · x1 ≥
1

2
(α · x+ α · x′) = α̃ · x

where α̃i = α̃j and α̃ · eN = 1
n is preserved.
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Figure 1: The geometric intuition behind the proof of Proposition 2. Right figure: the convexification
of a function f coincides with f at x = e if the graph of f is supported by a linear function. Left
figure illustrates necessity of this condition.

Set β = αi for all i ≥ 2 and note that β ≤ 0 because of the inequality x1 ≥ ϕ1(x) · x1 ≥
α1x1 + βxN�1. Combining this with α · eN = 1

n we see that there is a non negative constant γ such
that

ϕ1(x) · x1 ≥ α · x =
1

n
x1 + γ((n− 1)x1 − xN�1)

Changing the parameter γ to δ = nγ this gives

=⇒ ϕi(x) ≥ 1

n
+ δ

(
1− x

xi

)
for all i ∈ N and x ∈ RN+

It remains to find the bounds on γ derived from the fact that ϕ(x) is in ∆(N). For all x� 0 the
inequalities above (and ϕ(x) ≥ 0) imply∑

i∈N
max

{
1

n
+ δ

(
1− x

xi

)
, 0

}
≤ 1 for all x ∈ RN+ (4)

which is equivalent to the following property:

for all S ⊆ N :
∑
i∈S

1

n
+ δ

(
1− x

xi

)
= |S|

(
1

n
+ δ

)
− δx

(∑
i∈S

1

xi

)
≤ 1 for all x ∈ RN+

The infimum of x(
∑

i∈S
1
xi

) is |S|
2

n , achieved for any x parallel to eS , therefore

|S|
(

1

n
+ δ

)
≤ 1 + δ

|S|2

n
⇐⇒

(
1− |S|

n

)
(δ|S| − 1) ≤ 0

and we conclude that δ ≤ 1
n−1 . This gives the desired inequality (3) by setting θ = (n− 1)δ.�

Armed with Proposition 2, it is now easy to identify the undominated prior-independent division
rules (Definition 5) meeting FS for goods.

We fix θ, 0 < θ ≤ 1, and use the corresponding inequalities (3) to define the canonical Top Heavy
rule ϕθ for goods. For any x ∈ RN+ we write x∗ = (x∗1, · · · , x∗n) for the order statistics of x,9 and

9The vector with the same set of coordinates as x, rearranged in increasing order.
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τ(x) = {i ∈ N |xi = maxj∈N xj ⇐⇒ xi = x∗n} for the set of agents with largest utility. Then we set

ϕθj(x) = max

{
1

n
+

θ

n− 1
(1− x

xj
), 0

}
for all j ∈ N�τ(x)

ϕθi (x) =
1

|τ(x)|

1−
∑

j∈N�τ(x)

ϕθj(x)

 for all i ∈ τ(x) (5)

Inequality (4) guarantees that the highest share above is non negative. It also implies that the i-
sequence of shares ϕθi (x) is co-monotonic with that of utilities xi.

10

The rule ϕθ converges to Equal Split when θ goes to zero, but Equal Split is clearly dominated by
any rule ϕθ for θ > 0. This is why we excluded 0 from the range of θ.

Note that all rules ϕθ are discontinuous at any x where at least two agents have the highest utility
(x∗(n−1) = x∗n).

Theorem 1 for goods
i) If n = 2 the Top Heavy rule ϕ1 dominates every other prior-independent rule meeting Fair Share.
ii) If n ≥ 3: every prior-independent rule meeting Fair Share is dominated by, or equal to, one Top
Heavy rule ϕθ,0 < θ ≤ 1; the Top Heavy rules themselves are undominated.

iii) The proportional rule is dominated by the Top Heavy rule ϕ
n−1
n , but not by any other rule ϕθ.

For two agent problems the rule ϕ1 has a simple expression. By symmetry it is enough to define
it when x1 ≤ x2:

ϕ1(x) = (0, 1) if
x1

x2
≤ 1

2
; =

(
1− x2

2x1
,
x2

2x1

)
if

1

2
≤ x1

x2
≤ 1 (6)

Figure 2: The amount of the good received by the first agent under the TH rule ϕ1 for two agents
as a function of the ratio t = x1

x2
. If the ratio is below 1

2 or above 2, the TH rule coincides with the
utilitarian one, which gives the whole good to the agent with higher value. If the relative values are
closer, both agents receive a non-zero amount of the good: ϕ1 = 1− 1

2t on
[

1
2 , 1
]

and ϕ1 = 1
2 t on [1, 2].

10This is clear if we compare the shares of two agents i, k outside τ(x) ; if i /∈ τ(x) and k ∈ τ(x) inequality ϕθi (x) ≤ ϕθk(x)
is

|τ(x)|ϕθi (x) +
∑

j∈N�τ(x)

ϕθj (x) ≤ 1

which follows from ϕθi (x) = max{ 1
n

+ δ(1− Ex
xi

), 0} and (4).
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Proof of Theorem 1
Statement i) Fix θ < θ′ and x1 ≤ x2. , the definition (5) implies ϕθ1(x) ≥ ϕθ′1 (x) because the coefficient
of θ in ϕθ1(x) is 1

2(1− x2
x1

) ≤ 0, therefore ϕθ2(x) ≤ ϕθ′2 (x) and inequality (2) follows; both can be strict as
well. Note that this argument does not extend to the case n ≥ 3 because if agent i’s utility is neither
the smallest nor the largest, the sign of the coefficient of θ in ϕθi (x) is ambiguous.

Thus ϕ1 dominates ϕθ for θ < 1. The fact that it also dominates other prior-independent rules
meeting FS follows from the proof of Statement ii).

Statement ii) Fix a prior-independent rule ϕ satisfying FS. There is a θ, 0 ≤ θ ≤ 1, s. t. the
inequalities (3) hold for all i and x (Proposition 2). If θ = 0, our rule is Equal Split, which we already
noticed is dominated by each rule ϕθ. If θ > 0, these inequalities imply ϕi(x) ≥ ϕθi (x) for all x and all
i /∈ τ(x). Hence (ϕi(x)−ϕθi (x))xi ≤ (ϕi(x)−ϕθi (x))x∗n for all i /∈ τ(x). Summing up these inequalities
and adding

∑
j∈τ(x)(ϕi(x)−ϕθi (x))xj on both sides gives the desired weak inequalities in (2). If none

of the inequalities in (2) is strict, we deduce ϕi(x) = ϕθi (x) for all x and all i /∈ τ(x) s.t. xi > 0. If
there is some i s. t. xi = 0 and ϕi(x) > 0 (while ϕθi (x) = 0) then ϕ(x) has less weight to distribute
on τ(x) than ϕθ, contradicting our assumption. Because ϕ is symmetric, we conclude ϕ(x) = ϕθ(x).

We check now that no TH rule ϕθ dominates another TH rule ϕθ
′
. Assume 0 < θ < θ′ and consider

first the profile xi = 3
4 if i 6= n, xn = 1 + n−1

4 . Then x = 1 and all coordinates of ϕθi (x) and ϕθ
′
i (x) are

strictly positive. Compute ϕθi (x)− ϕθ′i (x) = θ′−θ
3(n−1) > 0 for all i 6= n, so that ϕθ

′
collects more surplus

at x than ϕθ.
To show an instance of the reverse comparison, we choose

x1 =
θ

3
; xi = 1 +

3
4 −

θ
3

n− 2
for 2 ≤ i ≤ n− 2 ; xn =

5

4

Thus x = 1 and x < xi < xn for 2 ≤ i ≤ n− 2. This implies ϕθ1(x) = ϕθ
′

1 (x) = 0, ϕθi (x) < ϕθ
′
i (x), and

ϕθn(x) > ϕθ
′
i (x).

Statement iii) In the previous proof we showed the the rule ϕ is dominated by ϕθ if it satisfies

inequalities (3). Thus the rule ϕpro is dominated by the TH rule ϕ
n−1
n if for all x ∈ RN+ we have

x2
1

xN
≥ 1

n
+

1

n

(
1− x

xi

)
⇐⇒ x2

1

xN
+
xN
n2
≥ 2

n
x1

and the latter inequality is easily checked.
To check for instance that ϕpro is not dominated by the TH rule ϕ1, we pick a profile x =

(0, a, a, · · · , a, b) in RN+ such that a < b and

ϕpro2 (x) =
a

(n− 2)a+ b
< ϕ1

2(x) =
1

n
+

1

n− 1

(
1− (n− 2)a+ b

na

)
for instance if a = 2, b = 3. Then ϕpro puts less weight than ϕ1 on each xi, 2 ≤ i ≤ n − 1, and more
on xn = b. �
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6 Bads: the unique optimal prior-independent rule

We adapt the relation of domination between two prior-independent rules ϕ1 and ϕ2 for dividing a
bad, by simply reversing the inequality (2): ϕ1 dominates ϕ2 iff∑

i∈N
ϕ2
i (x) · xi ≥

∑
i∈N

ϕ1
i (x) · xi for all x ∈ RN+ , with a strict inequality for some x (7)

Next we adapt the characterization of prior-independent rules meeting Fair Share.

Proposition 3
The prior-independent rule ϕ dividing a bad satisfies Fair Share if and only if there exists a number
θ, 0 ≤ θ ≤ 1, such that

ϕi(x) ≤ min

{
1

n
+

θ

n− 1

(
x

xi
− 1

)
, 1

}
for all i ∈ N and x ∈ RN+ (8)

(where we use 1
0 = +∞)

Our proof of Proposition 3 resembles the one for Proposition 1 about goods and can be found in
Appendix A.

For each θ, 0 < θ ≤ 1, we can now use inequality (8) to construct, as in the previous section, the
canonical Bottom Heavy rule ϕθ placing as much weight on the smallest disutilities as permitted by
(8). The construction relies on the same order statistics x∗, but is slightly more involved. We write
σ(x; t) = {i ∈ N |xi = x∗t} (so σ(x;n) = τ(x)) and use the convention σ(x; 0) = ∅. Note that the
minimum of

∑
N

x
xi

over RN+ is n, and is achieved by any x parallel to eN , and only by those: for such

a vector, symmetry imposes ϕθ(x) = 1
ne

N . For all other vectors x the inequality
∑

N
x
xi
> n implies∑

i∈N ( 1
n + θ

n−1( xxi − 1)) > 1.

There is a unique t̃, 0 ≤ t̃ ≤ n− 1 s. t.∑
i:xi≤x∗t̃

(
1

n
+

θ

n− 1

(
x

xi
− 1

))
≤ 1 <

∑
i:xi≤x∗(t̃+1)

(
1

n
+

θ

n− 1

(
x

xi
− 1

))
(9)

Indeed the left inequality holds by our convention at t̃ = 0, and the right one holds at t̃ = n − 1 as
we just saw. A simple induction argument proves the existence of t̃. Uniqueness comes from the fact
that each term ( 1

n + θ
n−1( xxi − 1)) is non negative (by Proposition 3, or directly from x

xi
≥ 1

n).

We define now the Bottom Heavy rule ϕθ(x):

ϕθi (x) =
1

n
+

θ

n− 1

(
x

xi
− 1

)
for all i s. t. xi ≤ x∗t̃ (10)

ϕθj(x) =
1

|σ(x; t̃+ 1)|

1−
∑

i:xi≤x∗t̃
ϕθi (x)

 for all j s. t. xj ∈ σ(x; t̃+ 1) (11)

ϕθj(x) = 0 if xj > x∗(t̃+1) (12)

We note, for future reference, a few facts about ϕθ.
The sequence of shares ϕθi (x) is anti-monotonic to the sequence of disutilities xi.

12



If t̃ = 0 the only agents with a positive share are those in σ(x; 1), who have the smallest disutility,
so ϕθ selects an optimal utilitarian allocation.

Finally ϕθj(x) < 1
n+ θ

n−1( xxj −1) for each agent j in σ(x; t̃+1). And the mapping ϕθ is discontinuous

at x if and only if |σ(x; t̃+ 1)| > 1.

Theorem 2 for bads
For any n ≥ 2, the Bottom Heavy rule ϕ1 dominates every other prior-independent rule for bads
meeting Fair Share.

The proof of Theorem 2 proves more difficult than in the case of goods, see Appendix A.
If n = 2, the dominant BH rule ϕ1 for bads is the mirror image of the dominant TH rule ϕ1 (6):

ϕ1(x) = (1, 0) if
x1

x2
≤ 1

2
; =

(
x2

2x1
, 1− x2

2x1

)
if

1

2
≤ x1

x2
≤ 1

Figure 3: The share of the first agent under the BH rule ϕ1 for two agents as a function of x1
x2

.

If n ≥ 3, the definition of ϕ1 in (10) takes a simpler form because 1
n + 1

n−1( xxi − 1) = 1
n(n−1)

xN�i
xi

.

If x ∈ RN+ is not parallel to eN , there is a unique t̃, 0 ≤ t̃ ≤ n− 1 s. t.

1

n(n− 1)

∑
i:xi≤x∗t̃

xN�i
xi
≤ 1 <

1

n(n− 1)

∑
i:xi≤x∗(t̃+1)

xN�i
xi

Then we set

ϕ1
i (x) =

1

n(n− 1)

xN�i
xi

if xi ≤ x∗t̃

and ϕ1
j (x) for j such that xj > x∗t̃ is given by (11) and (12) as above.

7 Worst case performances

Notation. We write Φ(FS) for the set of prior-independent rules ϕ meeting Fair Share; Ξ for the set
of prior-dependent rules ξ; and Ξ(FS) for that of prior-dependent rules meeting FS. See Definitions
2 and 3. Next Πn is the set of normalised problems with n agents (Definition 4). Finally the relative
gain (or loss) of the prior-independent and prior-dependent rules ϕ and ξ at problem P are

π(ϕ,P) = Eµ

(∑
i∈N

ϕi(X) ·Xi

)
; π(ξ,P) = Eµ

(∑
i∈N

ξPi (X) ·Xi

)
.

13



Definition 6
The n-Price of Independence (PoI n) of the rule ϕ ∈ Φ(FS) is

goods: PoIn(ϕ) = sup
ξ∈Ξ(FS)

sup
P∈Πn

π(ξ,P)

π(ϕ,P)

bads: PoIn(ϕ) = sup
ξ∈Ξ(FS)

sup
P∈Πn

π(ϕ,P)

π(ξ,P)

For a good, the utilitarian performance of the rule ψ ∈ Φ(FS) ∪ Ξ(FS) at a problem P is the ratio
of the the optimal unconstrained relative gain to the gain collected by ψ. For a bad it is the ratio of
the relative loss generated by ψ to the optimal relative loss:

goods: R(ψ,P) =
Eµ maxiXi

π(ψ,P)
bads: R(ψ,P) =

π(ψ,P)

Eµ miniXi
.

The n-Price of Fairness (PoFn) of ψ ∈ Φ(FS) ∪ Ξ(FS) is its worst-case utilitarian performance

PoFn(ψ) = inf
P∈Πn

R(ψ,P) ≥ 1.

It should be clear that the restriction to normalised problems in this Definition is without loss of
generality.

Lemma 1 If the prior-independent rule ϕ ∈ Φ(FS) divides goods, we have

PoIn(ϕ) = PoFn(ϕ) = sup
x∈RN+

maxi xi∑
i∈N ϕi(x) · xi

If ϕ ∈ Φ(FS) divides bads, we have

PoIn(ϕ) = PoFn(ϕ) = sup
x∈RN+

∑
i∈N ϕi(x) · xi

mini xi

Proposition 4 for goods
i) The PoI n of any rule ϕ ∈ Φ(FS) is at most n; the PoI of Equal Split is exactly n.

ii) The PoI n of the Proportional rule is
√
n+1
2 ; for instance 121% for n = 2.

iii) The PoI n of the Top Heavy rule ϕθ is decreasing in θ. Moreover:

PoIn(ϕ1) =
n

2
√
n− 1

=

√
n

2
+

1

4
+O

(
1√
n

)
PoIn(ϕθ) =

n

2
√

(n− 1 + θ)θ + 1− 2θ
≥ PoIn(ϕ1)

For instance PoI2(ϕ1) ' 109% for n = 2.
iv) The smallest feasible PoFn of a prior-dependent rule in Ξ(FS) is such that

n

2
√
n− 1

≥ inf
ξ∈Ξ(FS)

PoFn(ξ) ≥ n

2
√
n− 1

2

=

√
n

2
+

1

8
+O

(
1√
n

)
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For n = 2 it is 108%.

Statements iii) and iv), together with Lemma 1, make clear that the PoFn of the TH rule ϕ1 is
essentially the best PoFn of any fair prior-dependent rule.

Proposition 5 for bads
i) The PoI n of Equal Split is unbounded (for any fixed n); that of the Proportional rule is n;
ii) The PoI n of the Bottom Heavy prior-independent rule ϕ1 is such that

n

4
+

5

4
≥ PoIn(ϕ1) ≥ n

4
+

1

2
+

1

4n

It is 109% for n = 2.
iii) The smallest feasible PoFn of a prior-dependent rule in Ξ(FS) is

inf
ξ∈Ξ(FS)

PoFn(ξ) =
n

4
+

1

2
+

1

4n

For n = 2 it is 108%.

Again, the last two statements and Lemma 1 imply that the PoFn of the BH rule ϕ1 is essentially
the best PoFn of any fair prior-dependent rule.

All three results (Lemma 1 and Propositions 5,6) are proved in Appendix B.

8 Asymptotic performance for standard distributions

We evaluate the utilitarian performance of the TH, the BH, and the Proportional rules in the bench-
mark setting, where the number of agents is large and their values are given by independent identically
distributed (IID) random variables.

Fix a distribution ν ∈ ∆(R+) with unit mean and assume that the vector X = (Xi)i=1,..,n of
values is distributed according to µ = ⊗ni=1ν, i.e., the values are independent random variables with
distribution ν. The corresponding problem Pn(ν) is both normalised and symmetric.

In Appendix C we derive the somewhat cumbersome general formulas describing the utilitarian
performance R(ϕ,Pn(ν)) for these three rules when n is large. Here we discuss examples and corollaries
of the general results.

8.1 Goods

8.1.1 Bounded support: ν is the uniform distribution on [0, 1].

In this case the TH rule ϕ1 and the Proportional rule ϕpro have similar utilitarian performances.
For n = 2 the TH almost achieves the optimal welfare level; the Proportional rule is 10% behind:

simple computations show that R(ϕ1,P2(uni[0, 1])) = 8
5+4 ln 2 ≈ 1.03 and R(ϕpro,P2(uni[0, 1])) =

2
ln 2−1 ≈ 1.13. Compare these numbers with the worst-case guarantees from Proposition 4:

PoF2(ϕpro) =
√

2+1
2 ≈ 1.21 and PoF2(ϕ1) = 2

2
√

2−1
≈ 1.09. We see that the Proportional rule

captures less welfare for the uniform distribution that the TH rule for any distribution.
For n → ∞, Proposition 6 from Appendix C and Lemma 3 below imply that the utilitarian

performances of our two rules converge as follows

R(ϕ1,P∞(uni[0, 1])) =
1

1
16 + ln 2

≈ 1.32 and R(ϕpro,P∞(uni[0, 1])) = 1.5
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This result is in a sharp contrast with the worst-case behavior (Section 7): there are problems P
with n agents such that the TH rule collects only a 2/

√
n fraction of the optimal relative gain. Our

next result generalizes this observation.

8.1.2 The TH rule keeps a positive fraction of the optimal relative gain.

This holds in general, not just in the above example. Fix a distribution ν with mean 1 and with
average absolute deviation D(ν) =

∫
|x− 1|dν(x).

Lemma 2: If ν has mean 1 and a finite moment
∫
R+
xβdν(x) < 0 for some β > 2, then the

utilitarian performance of the TH rule converges to a limit value which satisfies the following upper
bound11

R(ϕ1,P∞(ν)) ≤ 2

D
+

4

D2
(13)

If in addition ν has unbounded support, then

R(ϕ1,P∞(ν)) ≥ 1

D
(14)

Proof in Appendix C.

For instance if ν is the exponential distribution we find

R(ϕ1,P∞(exp)) =
1

1− 2e−
1
2 − Ei(−1/2)

≈ 2.88

where Ei stands for a special function, the exponential integral. Contrast this with the situation for
the Proportional rule.

Lemma 3: Under the assumptions of Lemma 2

R(ϕpro,Pn(ν)) =
Eµ maxiXi

Eν(X1)2
(1 + o(1)), as n→∞.

(where an = o(1) means that an → 0, as n→∞)
Indeed, by the law of large numbers

π(ϕpro,Pn(ν)) = Eµ
∑
i∈N

Xiϕ
pro
i (X) = n · Eµ

(X1)2∑
i∈N Xi

→ Eµ
(X1)2

EµX1
= Eν(X1)2.

Lemma 3 implies that R(ϕpro,P∞(ν)) tends to +∞ if ν has unbounded support, because
Eµ maxiXi tends to infinity. For instance R(ϕpro,Pn(exp)) = lnn

2 (1 + o(1)).
Of course this limit is positive and finite if the support of ν is bounded.

8.2 Bads

When a bad is divided, the performance of the BH and the Proportional rule is determined by the
behaviour of the distribution at the leftmost point of the support. Both rules generate a bounded
multiple of the optimal relative loss when 0 does not belong to the support of ν and the TH rule
does also well when ν has a non-zero density at 0. However both rules have poor performance if the
support touches 0 but ν has not enough ”weight” near 0. Here we give three examples to illustrate
the general asymptotic results in Appendix C.

11Note that D is at most 2 so this upper is never below 2.
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8.2.1 The support does not touch zero: ν is uniform on [1
2 ,

3
2 ].

By Proposition 7 in Appendix C, the utilitarian performances of the BH and the Proportional rules
converge to limit values which are pretty close to each other:

R(ϕ1,P∞(uni[
1

2
,
3

2
])) = e− 1 ≈ 1.72 and R(ϕpro,P∞(uni[

1

2
,
3

2
])) =

2

ln 3
≈ 1.82

8.2.2 The support touches zero but there is not enough weight around it: ν has density
3
4x(2− x) on [0, 2].

For this distribution the optimal relative loss tends to zero while the losses of the BH and the Propor-
tional rules remain positive. Proposition 7 shows that the utilitarian performances of both rules tend
to infinity at the speed of

√
n while their ratio converges to 1√

3
≈ 0.58:

R(ϕ1,Pn(ν)) =
2

3
√
π

√
n(1 + o(1)) = R(ϕpro,Pn(ν))

1√
3

(1 + o(1))

8.2.3 The distribution has non-zero density at 0 (e.g., ν is uniform on [0, 2]).

Then the BH rule outperforms the Proportional one in the limit.
Lemma 4: Assume the distribution ν has a continuous density f on an interval [0, a] and f(0) > 0.
Then R(ϕ1,Pn(ν)) converges to a finite positive limit as n becomes large, whereas Rn(ϕpro,Pn(ν)) =

Ω
(

n
ln(n)

)
as n→∞.12

A similar result for the case when the density is infinite at x = 0 is the object of Lemma 5 in
Appendix C.

The statement about the BH rule follows from the asymptotic result for the order statistic: the
expected values of X∗k for small numbers k are equal to k

f(0)·n(1 + o(1)) as n → ∞.13 Therefore, on
average only a bounded number of agents with smallest Xi receive a non-zero portion of a bad, which
implies that the utilitarian performance is bounded away from infinity.

For the Proportional rule we have π(ϕpro,Pn(ν)) = n · E 1∑
k

1

X∗k
. For large n we can estimate the

denominator from below by the harmonic series; taking into account that EX∗1 = 1
f(0)·n(1 + o(1)) we

get the desired asymptotic formula.

9 Concluding comments

Envy Freeness An alternative, much more demanding interpretation of fairness in our model is (ex
ante) Envy-Freeness, which means, in the case of goods:

Eµ(ϕi(X
r) ·Xi) ≥ Eµ(ϕj(X

r) ·Xi) for all i, j and P

The critical Proposition 2 can be adapted as follows. Set g(x) = (ϕ1(x) − ϕ2(x)) · x1 so that Envy
Freeness means Eµ(g(Y )) ≥ g(eN ) = 0 whenever Eµ(Y ) = eN , and deduce in the same way that

12Recall that an = Ω(bn) if there exist n0 and C > 0 such that |an| ≥ C|bn| for all n ≥ n0.
13The order statistic X∗k has the same distribution as F−1(Y ∗k), where F is the distribution function of ν and Yi,

i ∈ N , are IID random variables uniformly distributed on [0, 1]. By symmetry, EY ∗k = k
n+1

.

17



there is a vector β ∈ Rn such that (ϕ1(x) − ϕ2(x)) · x1 ≥ β · (x − eN ) for all x. Symmetry of ϕ
and ϕ(x) ∈ ∆(N) imply promptly the existence of θ ≥ 0 such that, for any x with weakly increasing
coordinate:

θ

(
1− xi−1

xi

)
≤ ϕi(x)− ϕi−1(x) ≤ θ

(
xi
xi−1

− 1

)
for all i = 1, · · · , n.

Applying this when xi is a geometric sequence with a large exponent gives θ ≤ 2
n(n−1) , and by choosing

θ∗ = 2
n(n−1) and defining ϕ appropriately, we guarantee a worst case utilitarian performance of the

order of O( 1
n), comparable to the Price of Envy Freeness for a prior dependent rule: [14].

Similarly for bads we find that, if the coordinates of x are weakly increasing, an Envy Free rule ϕ
is such that

θ

(
1− xi−1

xi

)
≤ ϕi−1(x)− ϕi(x) ≤ θ

(
xi
xi−1

− 1

)
for all i = 1, · · · , n

where again the parameter θ is at most 2
n(n−1) . But this time the utilitarian performance of such a

rule is fairly poor as one can see with θ∗ = 2
n(n−1) and the disutility profile xi = 2i−1 for all i. The

most efficient profile of share is then ϕi(x) = (n − i)θ∗ and the ratio 1
x1

(
∑n

1 ϕi(x)xi) is then in the

order of 2n

n2 !

Asymmetric rules If the agents are endowed with unequal ownership rights on the objects,
captured by the shares λ ∈ ∆(N), it is natural to adapt Fair Share as follows (for goods):
Eµ(ϕi(X

r)·Xi) ≥ λiEµ(Xi) for all i. We can again adapt the argument in Proposition 2 to characterize
this constraint by the existence, for each i, of a linear form lower bounding the function x→ ϕi(x) ·xi.
But these linear forms move in a space of high dimension and the characterization of the undominated
fair rules is much more difficult.
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A Proofs for Section 6

A.1 Proof of Proposition 3

Statement if: The proof is the same as in Proposition 2 for goods, upon reversing inequalities.

Statement only if: Again the proof mimics that of the only if statement in Proposition 2. Fix a
prior-independent rule ϕ meeting FS and define f(x) = ϕ1(x) · x1; by symmetry f(eN ) = 1

n . For

any convex coefficients µ ∈ ∆(K) and convex combination
∑K

k=1 µky
k = eN in RN+ , we apply FS to

the normalised problem in which X = yk with probability µk and obtain
∑K

k=1 µkf(yk) ≤ f(eN ).
Therefore the concavification g of f coincides with f at eN , and there is some α ∈ RN supporting its
graph at (eN , g(eN )), which means

ϕ1(x) · x1 ≤ α · (x− eN ) +
1

n
for all x ∈ RN+

The same symmetry arguments show that α takes the form α = (α1, β, β, · · · , β) and α ·eN = 1
n . This

time the inequality 0 ≤ ϕ1(x) · x1 ≤ α1x1 + βxN�1 implies α ≥ 0. Setting δ = nβ and rearranging we
get finally:

ϕi(x) ≤ 1

n
+ δ

(
x

xi
− 1

)
for all i ∈ N and x ∈ RN+

Because x
xi
≥ 1

n the inequality ϕi(x) ≥ 0 holds everywhere if it holds at x = ei, and there it implies

the bound δ ≤ 1
n−1 . Then the change of parameters θ = (n − 1)δ implies the desired inequality (8).

Finally we note that the inequality
∑

N ϕi(x) = 1 ≤
∑

N ( 1
n + θ

n−1( xxi − 1)) holds automatically for

any x and δ, because minx∈RN+

∑
N

x
xi

= n. �
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A.2 Proof of Theorem 2

Step 1 We prove first that if the prior-independent rule ϕ meets inequalities (8) for some θ, 0 ≤ θ ≤ 1,
then ϕθ dominates ϕ or equals ϕ. In Step 2 we show that ϕ1 dominates ϕθ if θ < 1.

First for θ = 0, inequalities (8) imply that ϕ itself is Equal Split i. e., ϕ0. From now on we assume
θ > 0.

Along the ray through eN the rules ϕ and ϕθ coincide by Symmetry. Now we fix x ∈ RN+ not

parallel to eN and let t̃ be defined by (9). From (8) we get ϕi(x) ≤ ϕθi (x) for all i s. t. xi ≤ x∗t̃, hence∑
i:xi≤x∗t̃

(ϕi(x)− ϕθi (x))xi ≥
∑

i:xi≤x∗t̃
(ϕi(x)− ϕθi (x))x∗(t̃+1) (15)

Next we have
∑

i:xi≥x∗(t̃+1) ϕ
θ
i (x)xi =

∑
i:xi≥x∗(t̃+1) ϕ

θ
i (x)x∗(t̃+1) because ϕθi (x) = 0 if xi > x∗(t̃+1).

Thus ∑
i:xi≥x∗(t̃+1)

(ϕi(x)− ϕθi (x))xi ≥
∑

i:xi≥x∗(t̃+1)

(ϕi(x)− ϕθi (x))x∗(t̃+1) (16)

Summing up these two inequalities gives the corresponding weak inequality (7).
Assume finally that all inequalities (7) are equalities. If at least one xi is zero, (8) implies that

ϕ(x) does not put any weight outside σ(x, 1), so ϕ(x) = ϕθ(x). If each xi is strictly positive our

assumption implies that (15) is an equality; but (9) implies x∗t̃ < x∗(t̃+1) therefore ϕi(x) = ϕθi (x) as

long as xi ≤ x∗t̃. Now (16) cannot be an equality if ϕ(x) puts any weight on agents with disutilities

larger than x∗(t̃+1), and we conclude ϕ(x) = ϕθ(x) by symmetry of ϕ.

Step 2. We show that ϕθ
+

dominates ϕθ
−

if θ+ > θ− > 0. We write these rules ϕ+ and ϕ− for
simplicity, and fix x ∈ RN+ . So for ε = +,−, inequalities (9) define the integer tε for ϕε(x).

We use the notation

δi =
1

n− 1

(
x

xi
− 1

)
and ψεi =

1

n
+ θεδi

We prove inequality (7) between ϕ+ and ϕ− for a vector x with no two equal coordinates. This
will be enough because each mapping ϕθ is only discontinuous at x if |σ(x, t̃ + 1)| > 1, and the total
disutility

∑
N ϕ

θ
i (x)xi is continuous at such points.

Finally we label the coordinates of x increasingly, so that xi = x∗i for all i, and the definition of
ϕε(x) is notationally simpler: ϕεi (x) = ψεi > 0 for 1 ≤ i ≤ tε; 0 ≤ ϕεtε+1(x) < ψεtε+1 ; ϕεj(x) = 0 for
j > tε + 1.

We claim first t+ ≤ t−, and if t+ = t− = t then λ =
ϕ+

t++1
(x)

ψ+

t++1

< µ =
ϕ−
t−+1

(x)

ψ−
t−+1

where 0 ≤ λ, µ < 1.

To prove this we compute

1 =
t+∑
1

ψ+
i + λψ+

t++1
=
t+ + λ

n
+ θ+(δ{1,··· ,t+} + λδt++1)

As t++λ
n < 1, this implies δ{1,··· ,t+} + λδt++1 > 0, therefore

1 >
t+ + λ

n
+ θ−(δ{1,··· ,t+} + λδt++1)
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But by repeating the computation above for ϕ−(x) we get

1 =
t− + µ

n
+ θ−(δ{1,··· ,t−} + µδt−+1)

We see that t− < t+ brings a contradiction between the last two statements. And if t− = t+ = t they
imply λψ−t+1 < µψ−t+1 so λ < µ because ψ−i > 0 for all i. The claim is proved.

Now we evaluate the difference ∆ in total disutility collected by our two rules:

∆ =
∑
N

(ϕ+
i (x)− ϕ−i (x))xi

=
t+∑
1

(ψ+
i − ψ

−
i )xi + (λψ+

t++1
− ψ−

t++1
)xt++1 −

t−∑
t++2

ψ−i xi − µψ
−
t−+1

xt−+1

where we have assumed t+ < t−; if instead t+ = t− = t the last three terms of the sum reduce to
(λψ+

t+1 − µψ
−
t+1)xt++1. As xi increases in i we have

∆ ≤
t+∑
1

(ψ+
i − ψ

−
i )xi + λψ+

t++1
xt++1 − (ψ−{t++1,...,t−} + µψ−

t−+1
)xt++1

and from ϕ+
N (x) = ϕ−N (x) we get ψ−{t++1,...,t−} + µψ−

t−+1
=
∑t+

1 (ψ+
i − ψ

−
i ) + λψ+

t++1
. Rearranging the

right hand term in the inequality above, and going back to the definition of ψεi this gives

∆ ≤
t+∑
1

(ψ+
i − ψ

−
i )(xi − xt++1) = (θ+ − θ−)

t+∑
1

δi(xi − xt++1)

We show finally that the right hand term above is strictly negative, as desired.
The sequence δi is (strictly) decreasing and initially positive. As δ{1,··· ,t+} + λδt++1 > 0, we have

δ{1,··· ,t+} > 0. The sequence γi = xt++1 − xi is positive and (strictly) decreasing. These facts imply

that
∑t+

1 δiγi strictly positive. Let δi∗ be the first strictly negative term in the sequence δi: we have∑i∗−1
1 δiγi ≥

∑i∗−1
1 δiγi∗ as all terms are non negative and γi decreases; also

∑t+

i∗ δiγi >
∑t+

i∗ δiγi∗ as

δi < 0 and γi < γi∗ . Thus −∆ =
∑t+

1 δiγi > δ{1,··· ,t+}γi∗ .

B Proofs for section 7

B.1 Proof of Lemma 1

Step 1. For goods. The inequality PoIn(ϕ) ≤ PoFn(ϕ) is clear. Next, for any P ∈ Πn, not necessarily
symmetric, there exists some x ∈ RN+ such that

Eµ(maxiXi)

π(ϕ,P)
≤ maxi xi∑

i∈N ϕi(x) · xi

This proves PoFn(ϕ) ≤ supx∈RN+
maxi xi∑
i∈N ϕi(x)·xi . Now we pick an arbitrary x ∈ RN+ and check the

inequality maxi xi∑
i∈N ϕi(x)·xi ≤ PoIn(ϕ), thus completing the proof.

22



Consider the symmetric problem P ∈ Πn that selects each of the n! permutations of 1
xx with equal

probability 1
n! . By Symmetry of ϕ we have π(ϕ,P) =

∑
i∈N ϕi(x) · xi. It will be enough to construct

a rule ξ ∈ Ξ(FS) such that π(ξ,P) = maxi xi, because π(ξ,P)
π(ϕ,P) ≤ PoIn(ϕ). To this end we note that

the utilitarian rule utξ, that for each P ∈ Πn divides the good equally between all agents with highest
utility, violates FS in general but not if the problem P is symmetric (the distribution µ is symmetric
in all variables xi).

14 Thus we can pick to choose ξ equal to utξ for symmetric problems, and meeting
FS elsewhere.

The similar argument for bads is omitted.

B.2 Proof of Proposition 4

Statement i) Pick ϕ ∈ Φ(FS) and P ∈ Πn. The FS property implies

π(ϕ,P) =
∑
i∈N

Eµ(ϕi(X) ·Xi) ≥
1

n

∑
i∈N

EµXi ≥
1

n
Eµ(max

i
Xi)

and the first claim follows. If ϕ is the Equal Split rule, the first inequality above is an equality, and
the second one is an equality if the random variable X is uniform over the coordinate profiles ei.

Statement ii) By Lemma 1 we must evaluate supx∈RN+�0

∑
i∈N xi∑
i∈N x2i

maxi xi. By rescaling x we can assume

x1 = 1 = maxi≥2 xi, then we must show

sup
1 +

∑n
2 xi

1 +
∑n

2 x
2
i

=

√
n+ 1

2

where the supremum is on all x2, · · · , xn ∈ [0, 1]. We omit the straightforward argument.

Statement iii) We fix θ, 0 < θ ≤ 1, set N = {1, · · · , n} and rewrite inequalities (3) as

ϕθi (x) ≥ max

{(
1

n
+

θ

n− 1

)
− θ

n(n− 1)

xN
xi
, 0

}
for all i and x ∈ RN+

By Lemma 1 we must evaluate the smallest feasible value of 1
x∗n {

∑n
i=1 ϕ

θ
i (x) · xi} in RN+ . As noted

already, this function is continuous in x (even though ϕθ itself is not at those profiles where several
agents have the highest utility) so it will be enough to compute the infimum of this ratio for profiles
x such that xi < xn for all i ≤ n− 1.

We first compute the desired lower bound when ( 1
n + θ

n−1) − θ
n(n−1)

xN
xi
≥ 0 for all i, so that all

agents i ≤ n− 1 get exactly this share and agent n gets

ϕθn(x) = 1−
n−1∑
i=1

ϕθi (x) =
1

n
− θ +

θ

n(n− 1)

(n−1∑
i=1

1

xi

)
xn + n− 1 +

∑
{i,j}⊂{1,··· ,n−1}

(
xi
xj

+
xj
xi

)
In the right hand side, if we fix the sum

∑n−1
i=1 xi the first sum is minimal when all utilities are

equal; the second sum is also minimal and equal to (n− 1)(n− 2) when utilities are equal. It is also

14

Eµ(X1) ≤ Eµ(max
i
Xi) = π(utξ,P) =

∑
i

Eµ(utξPi (X) ·Xi) = nEµ(utξP1 (X) ·X1)
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clear that for i, j ≤ n− 1 the sum ϕθi (x) · xi + ϕθj(x) · xj is constant when we equalize xi and xj while
keeping their sum constant. Thus we can assume that xi = y for 1 ≤ i ≤ n − 1, so that the share of
agent n is

ϕθn(x) =
1

n
− θ +

θ

n

(
xn
y

+ n− 1

)
=

1

n
(1− θ) +

θ

n

xn
y

Then we compute

1

xn

(
n∑
i=1

ϕθi (x) · xi

)
= ϕθn(x) + (n− 1)

ϕθ1(x)

xn
=

1

n

(
(1− 2θ) + θ

xn
y

+ (n− 1 + θ)
y

xn

)

and the minimum in xn, y of this expression is achieved for xn
y = ( (n−1+θ)

θ )
1
2 (which is larger than 1

as needed) and its value is
1

n

(
(1− 2θ) + 2

√
(n− 1 + θ)θ

)
as stated. Clearly it decreases in θ.

It remains to consider the case where for some i∗ ≤ n− 1 we have, for all i ≤ i∗− 1 and all j ≥ i∗:(
1

n
+

θ

n− 1

)
− θ

n(n− 1)

xN
xi

< 0 ≤
(

1

n
+

θ

n− 1

)
− θ

n(n− 1)

xN
xj

Observe that if we decrease xi to zero for all i ≤ i∗ − 1, without changing other coordinates, the
share of each agent j, i∗ ≤ j ≤ n − 1, increases (strictly if some xi is positive), while that of agent
n decreases, therefore the ratio 1

x∗n {
∑n

i=1 ϕ
θ
i (x) · xi} decreases. Thus it is enough to assume xi = 0

for all i ≤ i∗ − 1. Computing the share of agent n and the total utility
∑n

i=1 ϕ
θ
i (x) · xi is then more

tedious but very similar, and the argument that we can assume xi = y for i∗ ≤ i ≤ n−1 is unchanged.
In turn we find

ϕθn(x) =
i∗

n

(
1− n− i∗

n− 1
θ

)
+

n− i∗

n(n− 1)
θ
xn
y

1

xn

(
n∑
i=1

ϕθi (x) · xi

)
=
i∗

n
− (n− i∗)(i∗ + 1)

n(n− 1)
θ +

n− i∗

n(n− 1)

(
θ
xn
y

+ (n− 1 + i∗θ)
y

xn

)
of which the minimum in xn, y is

i∗

n
− (n− i∗)
n(n− 1)

(
(i∗ + 1)θ − 2

√
(n− 1 + i∗θ)θ

)
and this quantity increases in i∗ because (i∗ + 1)θ − 2

√
(n− 1 + i∗θ)θ does. Therefore the wost case

is for i∗ = 1, and we are done.

Statement iv) Clearly infξ∈Ξ(FS) PoFn(ξ) ≤ infϕ∈Φ(FS) PoFn(ϕ) ≤ PoFn(ϕ1), so the inequality
infξ∈Ξ(FS) PoFn(ξ) ≤ n

2
√
n−1

follows from Lemma 1 and statement iii).
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Next we fix n, p, 1 ≤ p ≤ n − 1 and consider the problem P(n, p) ∈ Πn with n agents and p
equiprobable states:

utilities:

state ω1 · · · ωp
proba 1/p · · · 1/p
X1 p 0 0
· · · 0 p 0
Xp 0 0 p
Xp+1 1 1 1
· · · 1 1 1
Xn 1 1 1

Let N1 be the set of the p “single-minded” agents and N2 that of the other n− p “indifferent” agents.

Fix an arbitrary prior-dependent rule ξ ∈ Ξ(FS) and write Eµ(Yi) = Eµ(ξ
P(n,p)
i (X) ·Xi) the expected

utility of agent i.
We call λk the total share ξ gives to N2 at state ωk. Then Eµ(YN2) = 1

p

∑p
k=1 λk and Fair Share

implies
∑p

k=1 λk ≥
p(n−p)
n . If ξ gives the remaining shares to single minded agent k in state ωk, then

Eµ(YN1) = 1
p

∑p
k=1(1 − λk)p = p −

∑p
k=1 λk. This is the best ξ can do for the utilitarian objective.

Compute

Eµ(YN ) =

(
p−

p∑
k=1

λk

)
+

(
1

p

p∑
k=1

λk

)
= p− p− 1

p

p∑
k=1

λk

≤ p− (p− 1)(n− p)
n

=
p2

n
− p

n
+ 1

=⇒
(
Eµ(maxiXi)

Eµ(YN )

)−1

=
Eµ(YN )

p
≤ p

n
+

1

p
− 1

n

The minimum of p
n + 1

p −
1
n over real numbers is achieved for p =

√
n, and is worth 2√

n
− 1

n =

(PoIn(ϕ1))−1. As p is integer and p → f(p) = p
n + 1

p is convex, the minimum over integers is

at most α = max{f(
√
n + 1

2), f(
√
n − 1

2)}. Routine computations show α ≤ 2√
n

+ 1
2n therefore

[
Eµ(maxiXi)
Eµ(YN ) ]−1 ≤ 2

√
n− 1

2
n and the proof is complete.

B.3 Proof of Proposition 5

Statement i) If ϕ is the Equal Split rule, then 1
mini xi

(
∑

i∈N ϕi(x) · xi) = xN
n·mini xi

for all x ∈ RN+ , and
this ratio is clearly unbounded, so the claim follows by Lemma 1.

Recall from Proposition 1 that the prior-independent rule ϕpro is efficient at any profile x ∈ RN+
with at least one zero coordinate. For x � 0 we have 1

mini xi
(
∑

i∈N ϕ
pro
i (x) · xi) = 1

mini xi
n∑

i∈N
1
xi

=

x̃
mini xi

where x̃ is the harmonic mean of the xi. The inequality x̃ ≤ nmini xi is always true, and
becomes an equality when x1 = mini xi, and all other coordinates are equal and go to infinity. So the
PoI(ϕpro) is indeed n.

Statement ii) The lower bound follows from the lower bound on infξ∈Ξ(FS) PoFn(ξ) (statement iii
proven below) and from PoIn(ϕ1) = PoFn(ϕ1) ≥ infξ∈Ξ(FS) PoFn(ξ).
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To prove the upper bound PoFn(ϕ1) ≤ n
4 + 5

4 , we fix an arbitrary profile x and majorize
1

mini xi
(
∑

i∈N ϕ
1
i (x) · xi). Because ϕ1 is homogeneous of degree zero and symmetric, and ϕ1 is effi-

cient if x1 = 0, we can without loss assume x1 = 1 and xi increases weakly in i. We must bound
UN (x) =

∑
i∈N ϕ

1
i (x) · xi.

By definition of ϕ1 there exists an index s+ 1 such that

1

n(n− 1)

s+1∑
i=1

xN�i
xi
≤ 1 <

1

n(n− 1)

s+2∑
i=1

xN�i
xi

and ϕ1
i (x) = 1

n(n−1)

xN�i
xi

for i ≤ s+ 1.

We set ∆ = n(n− 1)−
∑s+1

i=1
xN�i
xi

, ∆ ≥ 0, and develop UN (x) as follows

n(n− 1)UN (x) =

s+1∑
i=1

xN�i + ∆xs+2 = s

s+1∑
i=1

xi + (s+ 1)

n∑
j=s+2

xj + ∆xs+2

Say we replace each xi, 2 ≤ i ≤ s + 1 by their average y = 1
s

∑s+1
i=2 , ceteris paribus: this will

decrease the total weight given by ϕ1 to these coordinates, which is xN
n(n−1)(

∑s+1
2

1
xi

), and increase the

weight to coordinates xs+2 and beyond. Therefore this move increases UN (x), so we can assume that
these s coordinates are all equal to y. We also set

∑n
j=s+2 xj = w. Now we try to bound

n(n− 1)UN (x) = s(1 + sy) + (s+ 1)w + ∆xs+2

under the constraints

∆ = n(n− 1) + s+ 1− (1 + sy + w)(1 +
s

y
) ≥ 0 ; 0 ≤ ∆xs+2 ≤ 1 + sy + w ; w ≥ (n− s− 1)y

where the second inequality comes from the fact that ∆ ≤ xN�(s+2)

xs+2
and the third one from the fact

that the coordinates of x increase weakly. These inequalities imply

n(n− 1)UN (x) ≤ (s+ 1)(1 + sy) + (s+ 2)w

(1 + sy + w)

(
1 +

s

y

)
≤ n(n− 1) + s+ 1 =⇒

(
1 +

s

y

)
w ≤ n(n− 1)− s

(
y +

1

y

)
+ s− s2

=⇒ w ≤ (n(n− 1) + s)
y

y + s
− sy

Combining w ≥ (n− s− 1)y and the upper bound above gives

(n− s− 1)y ≤ (n(n− 1) + s)
y

y + s
− sy =⇒ y + s ≤ n+

s

n− 1
≤ n+ 1

Next we combine the upper bound on n(n− 1)UN (x) with that on w:

n(n− 1)UN (x) ≤ (s+ 1)(1 + sy) + (s+ 2)(n(n− 1) + s)
y

y + s
− (s+ 2)sy

= s+ 1− sy + (s+ 2)(n(n− 1) + s)
y

y + s
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We now majorize the upper bound above in the two real variables s, y such that y + s ≤ n + 1.
Observe first this bound increases in y because its derivative has the sign of (s+2)(n(n−1)+s)

(y+s)2
− 1 and

(s+2)(n(n−1)+s)
(y+s)2

≥ 3(n2−n+1)
(n+1)2

. Thus we can take y+ s = n− 1 and use the inequality s+2
n+1 ≤ 1 to deduce

the bound

n(n− 1)UN (x) ≤ s+ 1 +
n(n− 1)(s+ 2)y

n+ 1
+ sy

(
s+ 2

n+ 1
− 1

)
≤ n+

n(n− 1)

n+ 1
(s+ 2)(n+ 1− s)

The maximum in s of (s+ 2)(n+ 1− s) is (n+3)2

4 for s = n−1
2 , therefore

=⇒ UN (x) ≤ 1

n− 1
+

(n+ 3)2

4(n+ 1)
=
n

4
+

5

4
− 2

n2 − 1

completing the proof of statement ii).

Statement iii)
Step 1. lower bound on infξ∈Ξ(FS) PoFn(ξ). Consider the normalised problem P with two equally
probable states ω, ω′, and the corresponding profiles of disutilities

x1 =
4

n+ 1
, xi = 2 for 2 ≤ i ≤ n ; x′1 = 2

n− 1

n+ 1
, x′i = 0 for 2 ≤ i ≤ n

Without the FS constraint total disutility is minimized by giving to agent 1 the whole bad in state ω,
and no share at all in state ω′, so that Eµ(miniXi) = 2

n+1 . The FS constraint caps the share of agent

1 at n+1
2n in state ω so at least n−1

2n goes to the other agents and expected total disutility is at least
1
n + 1

2
n−1
2n 2 = n+1

2n . Therefore for any ξ ∈ Ξ(FS) we have

π(ξ,P)

Eµ(miniXi)
≥ (n+ 1)2

4n
=
n

4
+

1

2
+

1

4n

Step 2. upper bound on infξ∈Ξ(FS) PoFn(ξ). We omit for brevity the proof that the above lower bound
is achieved by the rule in Ξ(FS) with the smallest utilitarian disutility at each P ∈ Πn.15 In any event
the upper bound on PoFn(ϕ1) in statement ii) applies to infξ∈Ξ(FS) PoFn(ξ) as well.

C Asymptotic results and missing proofs for Section 8

C.1 Goods

Proposition 6 Fix a distribution ν of Xi with EνX1 = 1 and Eν(X1)β < ∞ for some β > 2.
Consider a problem Pn(ν) with n agents and µ = ⊗ni=1ν. Then the utilitarian performance of the TH
rule ϕθ, θ ∈ (0, 1], satisfies

R(ϕθ,Pn(ν)) =
1

1− Eν
(

1 + θ − θ
X1

)
+

+
Eν(X1(1+θ)−θ)+
Eµ maxiXi

(
1 + +O

(
1

n
1
2
− 1
β

))
, (17)

for large number of agents16 n. Here (y)+ denotes max{y, 0}.
Note that the only dependence on n in formula (17) is through the expected value of X∗n =

maxi=1,..,nXi and the error-term.

15It is actually the PoF of a general normalized bargaining set; see the discussion in [7], [8].
16an = O(bn) if there exist n0 and C > 0 such that |an| ≤ C|bn| for all n ≥ n0.
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C.1.1 Proof of Proposition 6

To simplify heavy formulas we assume that θ = 1 (proof for other values of θ follows the same logic).
By the definition of the TH rule ϕ1 we can represent the relative gain as

∑
i

Xiϕ
1
i (X) =

n∑
i=1

Xi

(
2

n
− XN −Xi

n(n− 1)Xi

)
+

+X∗n

(
1−

n∑
i=1

(
2

n
− XN −Xi

n(n− 1)Xi

)
+

)

= A+X∗n −B.

Consider the contribution of A first. Since all Xi have the same distribution EµA =

Eµ
(

2X1 −
∑
j 6=1Xj
n−1

)
+

. Let us show that ∆0 = EµA − Eν (2X1 − 1)+ is small. The function ( · )+

is Lipschitz with constant one, thus by the Cauchy inequality and independence of Xj

|∆0| ≤ Eµ
∣∣∣∣1−

∑
j 6=1Xj

n− 1

∣∣∣∣ =
1

n− 1
Eµ

∣∣∣∣∣∣
∑
j 6=1

(Xj − 1)

∣∣∣∣∣∣
≤ 1

n− 1

√√√√√Eµ
∑
j 6=1

(Xj − 1)

2

=

√
VνX1√
n− 1

= O

(
1√
n

)
if the variance Vν of X1 is finite.

Now we will check that EµB is close to EµX∗n ·Eν(2− 1/X1)+ (as if X∗ is independent of Xi and∑
Xj approximately equals its expectation). This is done in two steps:
Step 1: proving that EµB does not change much if we put (2−1/X1)+ instead of (2−

∑
j 6=1Xj/(n−

1)X1)+

Step 2: showing that the random variables X∗n and (2− 1/X1)+ can be decoupled; the expected
value of the product is close to the product of expectations.
Step 1. Proving that

∑
j 6=1Xj/(n− 1) can be replaced by its expectation:

Since Xj are IID we have

EµB = EµX∗n
(

2−
∑

j 6=1Xj

(n− 1)X1

)
+

= EX∗n
(

2− 1

X1

)
+

+ ∆1,

where

∆1 = EµX∗(n)

((
2−

∑
j 6=1Xj

(n− 1)X1

)
+

−
(

2− 1

X1

)
+

)
= EµX∗nh(X)

Consider two cases depending on how far is the sum
∑

j 6=1Xj from its expected value. Let Q be the

event that
∣∣∣∑j Xj
n−1 − 1

∣∣∣ > 1
2 . Then the probability of Pµ(Q) is at most 8VνX1

n−1 by Markov inequality.

Let us represent ∆1 as EµX∗nh(X)1Q + EµX∗nh(X)1Q̄. For the first term we use the estimate h ≤ 2
and then apply Holder inequality:

EµX∗n|h(X)|1Q ≤ 2EµX∗n1Q ≤
(
Eµ|X∗n|q

′
) 1
q′

(Pµ(Q))
1
q .
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To bound the second term consider the following inequality for y, z ≤ 2: ||y|+ − |z|+| ≤ (1y≥0 +
1z≥0)|y − z|. Applying it to h we get:

|h(x)| ≤

(
1{

1
x1
≤ 2(n−1)∑

j 6=1 xj

} + 1{ 1
x1
≤2
}
)∣∣∣∣

∑
j 6=1 xj

(n− 1)x1
− 1

x1

∣∣∣∣
For x ∈ Q̄ the function h is non-zero only if 1

x1
≤ 4

3 . Thus for such x we have |h(x)| ≤ 8
3

∣∣∣∑j 6=1(xj−1)

n−1

∣∣∣ .
Finally we get

EµX∗n|h(X)|1Q̄ ≤
8

3(n− 1)
EµX∗n

∣∣∣∣∣∣
∑
j 6=1

(Xj − 1)

∣∣∣∣∣∣ ≤ 8

3(n− 1)

√
Eµ|X∗n|2

√√√√√E
∑
j 6=1

(Xj − 1)

2

Combining all the estimates together, we see that |∆1| = O

(√
Eµ|X∗n|2√

n

)
. We will estimate Eµ|X∗n|2

at the end of the proof.
Step 2. Decoupling X∗n and (2− 1/X1)+:

Now we continue withB. We proved thatB is close to EµX∗n(2−1/X1)+. Now we want to decouple

the two factors and show that B is close to EµX∗nEν(2−1/X1)+. Define ∆2 = EµX∗n ·Eν
(

2− 1
X1

)
+
−

EµX∗n
(

2− 1
X1

)
+
. The random variable ξ = maxi=2...nXi is independent from

(
2− 1

X1

)
+

. Therefore

∆2 = Eµ(X∗n − ξ) · Eν
(

2− 1

X1

)
+

− Eµ(X∗n − ξ)
(

2− 1

X1

)
+

By the definition X∗n is greater than ξ. Hence |∆2| ≤ 2Eµ(X∗n − ξ). To estimate the difference of
expectations define X∗n−j as maxk=1...n, j 6=iXk. Then EX∗∗n−j = Eξ for all j. If Xi is the maximal
over i = 1, · · · , n, then all X∗n−j except the one with j = i coincide and are equal to X∗n. Thus

nEξ = E
∑

j=1..nX
∗n
−j ≥ E(n− 1)X∗n and EX∗n − Eξ ≤ EX∗n

n . Finally |∆2| = O
(
EµX∗n
n

)
.

To estimate Emu (X∗n)α we use the standard approach. For α > 0 we have Eµ (X∗n)α =
−
∫∞

0 tαdPµ(X∗n ≥ t) and integration by part gives

α

∫ ∞
0

tα−1Pµ(X∗n ≥ t)dt =

∫ T

0
+

∫ ∞
T

.

The first integral does not exceed Tα. To estimate the second one we combine the union bound

with Markov inequality: Pµ(X∗n ≥ t) ≤ nPν(X1 ≥ t) ≤ nEν(X1)β

tβ
. Therefore

α

∫ ∞
T

tα−1Pµ(X∗n ≥ t)dt ≤ αnEν(X1)β
∫ ∞
T

tα−β−1dt =
α

β − α
nEν(X1)β

1

T β−α

for β > α. Optimizing over T we get Eµ (X∗n)α ≤
(

β
β−α

) (
nEν(X1)β

)α
β = O

(
n
α
β

)
.

It remains to put all pieces together:

∆0 + ∆1 + ∆2 = O

(
1√
n

)
+O

(√
Eµ|X∗n|2√

n

)
+O

(
EµX∗n

n

)
= O

(
1

n
1
2
− 1
β

)
for any β > 2 such that Eν(X1)β <∞. This implies formula (17) for θ = 1.
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C.1.2 Proof of Lemma 2

For unbounded distributions EmaxiXi tends to +∞ and thus by Proposition 6 the utilitarian perfor-

mance of ϕ1 converges to

(
1− Eν

(
2− 1

X1

)
+

)−1

. Thus the lower bound immediately follows from

the inequality |x1 − 1| ≥ x1 −
(

2− 1
x1

)
+

.

For the upper bound we have(
R(ϕ1,P∞(ν))

)−1 ≥ Eν
(
X1 −

(
2− 1

X1

)
+

)
≥ Eν

(
X1 −

(
2− 1

X1

)
+

)
1X1≥1 =

= Eν
(
X1 +

1

X1
− 2

)
1X1≥1 = Eν

(
(X1 − 1)2

X1

)
1X1≥1 = Eνg(X1)1X1≥1,

where 1A stands for the indicator of the event A. In order to relate the expected value of g(X1) to D
we apply the Cauchy inequality

D

2
= Eν |X1 − 1|1X1≥1 = Eν

(√
g(X1)1X1≥1 ·

|X1 − 1|1X1≥1√
g(X1)

)
≤

≤
√
Eνg(X1)1X1≥1

√
Eν

(X1 − 1)2

g(X1)
1X1≥1.

The second factor on the right hand side can be estimated as follows

Eν
(X1 − 1)2

g(X1)
1X1≥1 = EνX11X1≥1 = Eν |X1 − 1|1X1≥1 + Eν1X1≥1 ≤

D

2
+ 1,

which completes the proof.

C.2 Bads

C.2.1 Not much weight around zero

Proposition 7 Consider a distribution ν such that EνX1 = 1 and Eν
1
X1

<∞. Then the utilitarian
performance of the BH rule can be represented as

R(ϕ1,Pn(ν)) =
Pν(X1 < T ) + γPν(X1 = T )

Eµ miniXi
(1 + o(1)), n→∞, (18)

where T > 0 and γ, 0 ≤ γ < 1 are defined by the following condition17

Eν
1{X1<T}

X1
+ γP(X1 = T )

1

T
= 1.

For the proportional rule

R(ϕpro,Pn(ν)) =
1

Eµ miniXi · Eν 1
X1

(1 + o(1)). (19)

17Formulas simplify for continuous distribution because P(Xi = T ) = 0 for all T and thus we can always pick γ = 0.
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As in the proof of Proposition 6, symmetry of the problem implies π(ϕ1,Pn(ν)) = nEµX1ϕ
1
1(X)

and hence it is enough to estimate the contribution of one agent. We will calculate this expectation
in two steps: assuming first that X1 = z is fixed and averaging over Xj , j ≥ 2 and then averaging
over z.

Consider Eµ
(
nX1ϕ

1
1(X) | X1 = z

)
. By the definition of the BH rule we get

n ·X1ϕ1(X)
∣∣
X1=z

=
XN\1

(n− 1)
· 1Q + z ·

1−
∑

j:Xj<z
1
n

XN\j
(n−1)Xj

|j ∈ N : Xj = z|/n
· 1Q′ , (20)

where Q is the event that
∑

j:Xj≤z
XN\j

n(n−1)Xj
≤ 1 (in other words i belongs to the group of agents

whose share is given by equation (10)) and the event Q′ tells that the share of agent 1 comes from

equation (11), i.e,
∑

j:Xj<z
XN\j

n(n−1)Xj
< 1 <

∑
j:Xj≤z

XN\j
n(n−1)Xj

.

Let us apply the strong law of large numbers to (20). Hence
XN\1
n−1 converges to 1 almost surely,

the sum
∑

j:Xj≤z
XN\j

n(n−1)Xj
from the definition of Q converges to Eν

(
1
Xj
· 1{Xj≤z}

)
. Therefore the

first summand of (20) tends to 1z<T , where T is defined as inf

{
T ′ | Eν

(
1Xj≤T ′

Xj

)
≥ 1

}
. Thus the

contribution of the first term to π(ϕ1,P) is Pν(X1 < T ).
Similar application of the law of large numbers allows to compute the contribution of the second

summand. We omit these computations.

C.2.2 Singularity at zero

Lemma 5: If a distribution ν has an atom at zero, then the BH and the Proportional rules collect
the optimal relative gain in the limit:

R(ϕ1,P∞(ν)) = R(ϕpro,P∞(ν)) = 1.

If there is no atom and ν has a continuous density f on (0, a], but this density is unbounded,
f(x) = λ

xα (1 + o(1)) as x→ +0 for some λ > 0 and α ∈ (0, 1), then

R(ϕ1,P∞(ν)) = 1, however, R(ϕpro,Pn(ν)) = Ω (n) .

In case of an atom, there is an agent i having Xi = 0 with high probability for large n. In such
situation both rules ϕ1 and ϕpro coincide with the utilitarian optimum and therefore their performance
is 1.

The second statement is proved similarly to Lemma 4. For such ν the expected value of the order

statistic X∗k for small k equals
(

1−α
λ

k
n

) 1
1−α · (1 + o(1)). Therefore only the agent i with Xi = minj Xj

receives a bad under the BH rule with high probability, which gives R(ϕ1,P∞(ν)) = 1. We omit a
similar argument for the Proportional rule.
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