
Finding an appropriate generalization for a

fuzzy thematic set in taxonomy

Dmitry Frolov

Dept. of Data Analysis and AI,

National Research University

“Higher School of Economics”

Moscow, Russian Federation

dmitsf@gmail.com

Boris Mirkin

Dept. of Data Analysis and AI,

National Research University

“Higher School of Economics”

Moscow, Russian Federation

Dept. of Computer Science,

Birkbeck University of London UK

bmirkin@hse.ru

Susana Nascimento

Dept. of CS and NOVA LINCS

Universidade Nova de Lisboa

Caparica, Portugal

snt@fct.unl.pt

Trevor Fenner

Dept. of Computer Science

Birkbeck University of London

London, UK

trevor@dcs.bbk.ac.uk

Abstract

This paper proposes a novel method, referred to as ParGenFS, for
finding a most specific generalization of a query set, represented by
a fuzzy set of topics assigned to leaves of the rooted tree of a taxon-
omy. This generalization lifts the query set to one or several “head
subjects” in the higher ranks of the taxonomy. The head subject
is supposed to ”tightly” cover the query set, however dispersed that
can be over branches of the tree, possibly bringing in some “gaps”,
that are taxonomy nodes covered by the head subject but irrelevant
to the set. To balance that, we admit some “offshoots”, that are
nodes belonging to the query set but not covered by the head sub-
ject. The method globally minimizes the total number of head sub-
jects and gaps and offshoots, differently weighted. Our algorithm is
applied to the structural analysis and description of a collection of
17685 abstracts of research papers published in 17 Springer journals

1

on data science for the 20-years period 1998-2017. Our taxonomy of
Data Science (DST) is extracted from the Association of Computing
Machinery Classification of Computing Subjects 2012 (ACM-CCS),
a six-layer hierarchical taxonomy manually developed by a team of
ACM experts. The DST also involves a number of additions detail-
ing the leaves of the ACM-CCS taxonomy and added by ourselves.
We find fuzzy clusters of leaf topics over the text collection, with a
specially developed machinery. Three of the clusters are thematic
indeed, relating to Data Science sub-areas: (a) learning, (b) informa-
tion retrieval, and (c) clustering. These three clusters are lifted with
ParGenFS in the DST, which allows us to make some conclusions of
the tendencies of the developments in these areas.

Keywords: hierarchical taxonomy, parsimony, generalization, ad-
ditive fuzzy cluster, spectral clustering, annotated suffix tree

2

Contents

1 Introduction 4

2 Parsimoniously lifting a fuzzy thematic
cluster in a taxonomy: model and method 6
2.1 Statement of the problem . 6
2.2 Algorithm ParGenFS for finding

a most specific generalization 11
2.3 Illustrative examples . 14

2.3.1 Computing a parsimonious lift (illustrative case) . . . 14
2.3.2 Computing a parsimonious lift (real-world case) 16
2.3.3 Effects of changing weights: modeling prejudices . . . 19

3 Applying ParGenFS to structuring
and conceptualizing a collection of research papers 20
3.1 Scholarly text collection . 21
3.2 DST Taxonomy . 22
3.3 Evaluation of relevance between texts

and key phrases . 23
3.4 Defining and computing fuzzy clusters of taxonomy topics . . 28

3.4.1 Co-relevance topic-to-topic similarity score 29
3.4.2 Additive fuzzy spectral clustering 30
3.4.3 FADDIS thematic clusters 33

3.5 Results of lifting clusters L, R, and C within DST 34
3.6 Making conclusions . 39

4 Conclusion 40

5 References 43

6 APPENDIX: Taxonomy of Data Science
according to CCM-CCS 2012 48

3

1 Introduction

The issue of automation of structurization and interpretation of digital text
collections is of ever-growing importance because of both practical needs
and theoretical necessity. This paper concerns an aspect of this, the issue
of generalization as a unique feature of human cognitive abilities. We use
this term in the meaning pointed out by the Merriam-Webster dictionary,
which defines “to generalize” as “to give a general form to” (1) or “to
derive or induce (a general conception or principle) from particulars” (2a)
(see https://www.merriam-webster.com/, last visited 28 November 2018).

The existing approaches to computational analysis of structure of text
collections usually involve no generalization as a specific aim. The most
popular tools for structuring text collections are cluster analysis and topic
modelling. Both involve features of the same level of granularity as indi-
vidual words or short phrases in the texts, thus no generalization as an
explicitely stated goal.

Nevertheless, the hierarchical nature of the universe of meanings is re-
flected in the flow of publications on text analysis. We can distinguish
between at least three directions at which the matter of generalization is
addressed. First of all, one should mention activities related to develop-
ing taxonomies, especially those involving hyponymic/hypernymic relations
(see, for example, [38, 39, 45], and references therein). A recent paper [42]
should be mentioned here too, as that devoted to supplementing a taxonomy
with newly emerging research topics.

Another direction is part of conventional activities in text summariza-
tion. Usually, summaries are created using a rather mechanistic approach
of sentence extraction. There is, however, also an approach for building
summaries as abstractions of texts by combining some templates such as
subject-verb-object (SVO) triplets (see, for example, [17, 27]).

Yet one more field of activities is what can be referred to as operational
generalization. In this direction, the authors use generalized case descrip-
tions involving taxonomic relations between generalized states and their
parts to achieve a tangible goal such as improving characteristics of text
retrieval (see, for example, [26] and [44].)

This paper falls in neither of these approaches, as we do not attempt
to change any taxonomy. We rather try to use a taxonomy for straightfor-
wardly implementing the idea of generalization. According to the Merriam-
Webster dictionary cited above, the term “generalization” refers to deriving
a general conception from particulars. We assume that a most straightfor-

4

ward medium for such a derivation, a taxonomy of the field, is given to us.
A taxonomy, in this setting, is a rooted tree over key concepts of a domain
tagging the tree nodes. The tree bears a main hyponymic/hypernymic re-
lation in the domain, so that an A-tagged node is the parent of a B-tagged
node if relation “B is an A” is true. The situation of our concern is a case at
which we are to generalize a fuzzy set of taxonomy leaves representing the
essence of some empirically observed phenomenon. Specifically, one may be
interested in patterns of novel research in a domain like Data Science. Data
Science is a newly emerging area of Computer Science. The most popu-
lar Computer Science taxonomy is manually developed by the world-wide
Association for Computing Machinery, a most representative body in the
domain; the latest release of the taxonomy has been published in 2012 as
the ACM Computing Classification System (ACM-CCS) [1]. We take its
part related to Data Science, as presented in a slightly modified form by
adding a few leaves in [24]. We add a few more leaves to better reflect the
research papers being analyzed, and present it in the Appendix.

As an evidence of the research being conducted in Data Science, we take
a collection of research papers published for a recent period in a set of jour-
nals representative of the domain of our concern. We are going to extract
tight clusters of ACM-CCS topics according to the collection, each repre-
senting core tendencies of the development of the domain as reflected in the
collection. It should be expected that the clusters are fuzzy, in accordance
with the fuzzy nature of semantics. A major issue emerging then would be
of interpretation of such a fuzzy cluster. Among various ways for addressing
the challenge, we choose a most straightforward approach of generalization,
prompted by the case illustrated in Figure 1 (a).

Figure 1: A taxonomy fragment with black boxes corresponding to a query
set; a straightforward case (a) and a more complex case (b).

5

This Figure represents a taxonomy fragment with a leaf cluster fully
covering all the children of the parental node A. Of course, the taxonomy
concept assigned to A is a most natural generalization of the cluster in this
case suggesting an interpretation of the cluster as all those topics that fall
in the concept A. We are going to extend this approach to generalize less
obvious cases such as that in Figure 1 (b) and see how this approach can
be applied to real-world scenarios.

The rest of the paper is organized accordingly. Section 2 presents a math-
ematical formalization of the generalization problem as of parsimoniously
lifting of a given query fuzzy leaf set to higher ranks of the taxonomy and
provides a recursive algorithm leading to a globally optimal solution to the
problem. Section 3 describes an application of this approach to deriving
tendencies in development of the data science, that can be discerned from
a set of about 18000 research papers published by the Springer Publishers
in 17 journals related to data science for the past 20 years. Its subsections
describe our approach to finding and generalizing fuzzy clusters of research
topics. Specifically, the taxonomy of data science (DST) used in this paper
is presented in Section 3a (see also Appendix); a method for developing a
matrix of topic-to-paper relevance values based on automated processing of
the text collection is described in Section 3b; Section 3c describes a spectral
method for finding fuzzy clusters of research topics from DST using the rele-
vance data; Section 3d presents results of lifting of three most homogeneous
clusters out of six found in the DST taxonomy; and Section 3e presents
our conclusions on the tendencies in the development of the corresponding
parts of Data Science drawn from the lifting results. Section 4 concludes
the paper.

2 Parsimoniously lifting a fuzzy thematic
cluster in a taxonomy: model and method

2.1 Statement of the problem

Mathematically, a taxonomy is a rooted tree whose nodes are annotated by
taxonomy topics. We consider the following problem. Given a fuzzy set
S of taxonomy leaves, find a node t(S) of higher rank in the taxonomy,
that covers the set S as tight as possible. Such a “lifting” problem is a
mathematical explication of the human facility for generalization, that is,
“the process of forming aconceptualform” of a phenomenon represented, in
this case, by a fuzzy leaf subset.

6

The problem is not as simple as it may seem to be. Consider, for the sake
of simplicity, a hard set S shown with five black leaf boxes on a fragment of
a tree in Figure 1 (b). Figure 2 illustrates the situation at which the set of
black boxes is lifted to the root, which is shown by blackening the root box,
and its offspring, too. If we accept that set S may be generalized by the
root, this would lead to a number, four, white boxes to be covered by the
root and, thus, in this way, falling in the same concept as S even as they do
not belong in S. Such a situation will be referred to as a gap. Lifting with
gaps should be penalized. Altogether, the number of conceptual elements
introduced to generalize S here is 1 head subject, that is, the root to which
we have assigned S, and the 4 gaps occurred just because of the topology of
the tree, which imposes this penalty. Another lifting decision is illustrated
in Figure 3: here the set is lifted just to the root of the left branch of the
tree. We can see that the number of gaps has drastically decreased, to just
1. However, another oddity emerged: a black box on the right, belonging
to S but not covered by the root of the left branch at which the set S is
mapped. This type of error will be referred to as an offshoot. At this lifting,
three new items emerge: one head subject, one offshoot, and one gap. This
is less than the number of items emerged at lifting the set to the root (one
head subject and four gaps, that is, five), which makes it more preferable.
Of course, this conclusion holds only if the relative weight of an offshoot is
less than the total relative weight of three gaps.

Therefore, at lifting a fuzzy leaf set to taxonomic higher ranks there
may emerge two types of errors, gaps and offshoots. If one likens assigning
a general concept to the process of classification then gaps correspond to
false positives, and offshoots, to false negatives. Further on, we are going
to formulate an algorithm for producing the most parsimonious lifting to
involve arbitrary weights assigned to errors.

We are interested to see whether a fuzzy set S can be generalized by
a node t from higher ranks of the taxonomy, so that S can be thought
of as falling within the framework covered by the node t. If this is done
straightforwardly, for example, by picking up the last common ancestor t
of the nodes in S, the coverage of S by t would be unlikely as tight as it
might be desirable. To make the general concept more specific, one should
admit not only gaps, but also offshoots, that are leaves which do belong in
S but are not covered by t. The goal of finding an interpretable pigeon-
hole for S within the taxonomy can be formalized as that of finding one
or more “head subjects” t to cover S with the minimum number of all
the elements introduced at the generalization: head subjects, gaps, and

7

offshoots. This goal realizes the principle of Maximum Parsimony (MP) in
describing the phenomenon in question, and is popular in some domains
such as Bioinformatics [33].

Consider a rooted tree T representing a hierarchical taxonomy so that
its nodes are annotated with key phrases signifying various concepts. We
denote the set of its leaves by I. The relationship between nodes in the
hierarchy is conventionally expressed using genealogical terms: each node
t ∈ T is said to be the parent of the nodes immediately descending from t in
T , its children. We use χ(t) to denote the set of children of t. Each interior
node t ∈ T − I is assumed to correspond to a concept that generalizes the
topics corresponding to the leaves I(t) descending from t, viz. the leaves of
the subtree T (t) rooted at t, which is conventionally referred to as the leaf
cluster of t.

A fuzzy set on I is a mapping u of I to the non-negative real numbers
that assigns a membership value, or support, u(i) ≥ 0 to each i ∈ I. We
refer to the set Su ⊂ I, where Su = {i ∈ I : u(i) > 0}, as the base of u. In
general, no other assumptions are made about the function u, other than,
for convenience, commonly limiting it to not exceed unity. Conventional, or
crisp, sets correspond to binary membership functions u such that u(i) = 1
if i ∈ Su and u(i) = 0 otherwise.

Given a fuzzy query set u defined on the leaves I of the tree T , one can
consider u to be a (possibly noisy) projection of a higher rank concept, u’s
“head subject”, onto the corresponding leaf cluster. Under this assumption,
there should exist a head subject node h among the interior nodes of the
tree T such that its leaf cluster I(h) more or less coincides (up to small
errors) with Su. This head subject is the generalization of u to be found.
The two types of possible errors associated with the head subject if it does
not cover the base precisely, are false positives and false negatives, referred
to in this paper, as gaps and offshoots, respectively, are illustrated in Figures
2 and 3. Altogether, the total number of head subjects, gaps, and offshoots
has to be as small as possible. To this end, we introduce a penalty for each
of these elements. Assuming for the sake of simplicity, that the black box
leaves on Figure 1 (b) have membership function values equal to unity, one
can easily see that the total penalty at the head subject raised to the root
(Figure 2) is equal to 1+4γ where 1 is the penalty for a head subject and γ,
the penalty for a gap, since the lift on Figure 2 involves one head subject,
the root, and four gaps, the blank box leaves. Similarly, the penalty for the
lift on Figure 3 to the root of the left-side subtree is equal to 1+γ+λ where
λ is the penalty for an offshoot, as there is one copy of each, head subject,

8

gap, and offshoot, in Figure 3. Therefore, depending on the relationship
between γ and λ either lift on Figure 2 or lift on Figure 3 is to be chosen.
That will be the former, if 3γ < λ, or the latter, if otherwise.

Figure 2: Generalization of the query set from Figure 1 (b) by mapping it
to the root, with the price of four gaps emerged at the lift.

Figure 3: Generalization of the query set from Figure 1 (b) by mapping it
to the root of the left branch, with the price of one gap and one offshoot
emerged at this lift.

To properly define the concept of gap in general, let us first consider the
u-irrelevant nodes in the tree T . A node t ∈ T is referred to as u-irrelevant
if its leaf-cluster I(t) is disjoint from the base Su. Obviously, if a node is
u-irrelevant, all of its descendants are also u-irrelevant.

Consider a candidate node h in T and its meaning relative to fuzzy set u.
An h-gap is a node g of T (h), other than h, at which a loss of the meaning
has occurred, that is, g is a maximal u-irrelevant node in the sense that
its parent is not u-irrelevant. Conversely, establishing a node h as a head
subject can be considered as a gain of the meaning of u at the node. The
set of all h-gaps will be denoted by G(h).

9

An h-offshoot is a leaf i ∈ Su which is not covered by h, i.e., i /∈ I(h).
The set of all h-offshoots is Su − I(h).

Since no taxonomy perfectly reflects all the relevant real-world relations,
some fuzzy topic sets u may refer to general concepts that are not captured
in T (h). In such a case, two or more head subjects may be needed to cover
Su accurately, rather than just one. This motivates the following definition.

Given a fuzzy topic set u over I, a set of nodes H will be referred to as
a u-cover if: (a) H covers Su, that is, Su ⊆

⋃
h∈H I(h), and (b) the nodes

in H are unrelated, i.e. I(h) ∩ I(h′) = ∅ for all h, h′ ∈ H such that h 6= h′.
The interior nodes of H will be referred to as head subjects and the leaf
nodes as offshoots, so the set of offshoots in H is H ∩ I. The set of gaps in
H is the union of G(h) over all head subjects h ∈ H − I.

We associate a penalty with H, so that only the most parsimonious
generalizations are to be considered. A parsimonious generalization should
have as small a number of head subjects, gaps and offshoots as possible.
To reflect the relative importance of each of these, we use positive penalty
weights, λ and γ, for gaps and offshoots, respectively. A head subject is
assigned weight 1. The introduced concept of parsimonious generalization
is a mathematical explication of the idea of most specific generalization.

Of course, the penalty value associated with a node h ∈ H should take
into account the u-membership values of all its offspring, not just the the leaf
cluster I(h): the smaller they are, the less their effect should be. Therefore,
to properly define the overall penalty, we extend the u-membership values
from I to all the nodes in T . The algorithm ParGenFS (Parsimonious Gen-
eralization of Fuzzy Sets) for a parsimonious generalization of u, described
below, does not depend on the way the u-values are assigned, so any exten-
sion of the membership values to u(t) for t ∈ T − I is acceptable, provided
the value of u(t) is zero for all u-irrelevant nodes t. Although every gap
is assigned with a membership value of zero, we may consider some gaps
more important than others, depending on the membership values assigned
to their parents. A gap is less significant if its parent’s membership value
is smaller. Therefore, a measure v(g) of “gap importance” should also be
defined, to be reflected in the penalty function. We suggest defining the
gap importance as v(g) = u(par(g)), where par(g) is the parent of g. An
alternative definition would be to scale these values by dividing them by
the number of children of par(g). However, we note that the algorithm
ParGenFS below works for any definition of gap importance.

10

We, therefore, define the penalty function p(H) for a u-cover H as:

p(H) =
∑

h∈H−I

u(h) +
∑

h∈H−I

∑
g∈G(h)

λv(g) +
∑

h∈H∩I

γu(h). (1)

2.2 Algorithm ParGenFS for finding
a most specific generalization

The problem we address is to find a u-cover H that globally minimizes the
penalty p(H). Such a u-cover will be the parsimonious generalization of the
query set u.

Before applying an algorithm to minimize the total penalty, one needs to
execute a preliminary transformation of the tree by pruning it from all the
non-maximal u-irrelevant nodes, i.e. descendants of gaps. Simultaneously,
the sets of gaps G(t) and the internal summary gap importance V (t) =∑
g∈G(t) v(g) in Eq. (1) can be computed for each interior node t. We note

that the elements of Su are in the leaf set of the pruned tree, and the other
leaves of the pruned tree are precisely the gaps.

Assume that the tree T has already been pruned and all its nodes are
annotated by the membership values u(t). The sets G(t), and the gap
importance values, v(t) and V (t), are assigned as described above.

Now we can apply our lifting algorithm ParGenFS. For each node t, the
algorithm ParGenFS computes two sets, H(t) and L(t), containing those
nodes in T (t) at which respectively gains and losses of head subjects occur
(including offshoots). The associated penalty is computed as p(t) described
below.

An assumption of the algorithm is that no gain can happen after a loss.
Therefore, H(t) and L(t) are defined assuming that the head subject has
not been gained (nor therefore lost) at any of t’s ancestors. The algorithm
ParGenFS recursively computes H(t), L(t) and p(t) from the corresponding
values for the child nodes in χ(t).

Specifically, for each leaf node that is not in Su, we set both L(·) and
H(·) to be empty and the penalty to be zero. For each leaf node that is in
Su, L(·) is set to be empty, whereas H(·), to contain just the leaf node, and
the penalty is defined as its membership value multiplied by the offshoot
penalty weight γ.

To compute L(t) and H(t) for any interior node t, we analyze two pos-
sible cases: (a) when the head subject has been gained at t and (b) when
the head subject has not been gained at t.

11

In case (a), the sets H(·) and L(·) at its children are not needed. In this
case, H(t), L(t) and p(t) are defined by:

H(t) = {t}
L(t) = G(t)

p(t) = u(t) + λV (t).

(2)

In case (b), the sets H(t) and L(t) are just the unions of those of its
children, and p(t) is the sum of their penalties:

H(t) =
⋃

w∈χ(t)

H(w)

L(t) =
⋃

w∈χ(t)

L(w)

p(t) =
∑

w∈χ(t)

p(w).

(3)

To obtain a parsimonious lift, whichever case gives the smaller value of
p(t) is chosen.

When both cases give the same values for p(t), we may choose arbitrarily
– in the formulation of the algorithm below, we have chosen (a). The output
of the algorithm consists of the values at the root, namely, H – the set of
head subjects and offshoots, L – the set of gaps, and p – the associated
penalty.

Algorithm ParGenFS

• INPUT: u, T

• OUTPUT: H = H(root), L = L(root), p = p(root)

I Base Case

for each leaf i ∈ I
if u(i) > 0

H(i) = {i}
L(i) = �
p(i) = γu(i)

12

else

H(i) = �
L(i) = �
p(i) = 0

II Recursion

if u(t) + λV (t) ≤
∑
w∈χ(t) p(w)

H(t) = {t}
L(t) = G(t)

p(t) = u(t) + λV (t)

else

H(t) =
⋃
w∈χ(t)H(w)

L(t) =
⋃
w∈χ(t) L(w)

p(t) =
∑
w∈χ(t) p(w)

It is not difficult to see that the algorithm ParGenFS leads to an optimal
lifting indeed, as stated in the following proposition.

Theorem 1. Any u-cover H found by the algorithm ParGenFS is a (global)
minimizer of the penalty p.

Proof. We prove this result by induction over the number of nodes n in
the tree. If n = 1, there is only one node i and, in the Base Case of
ParGenFS, the definition of the sets H(i) and L(i) is such that the only
possible nonempty set is H(i) = {i}, when i ∈ Su. The penalty in this case
is γu(i), which is clearly the correct, and minimum, penalty. When i /∈ Su,
the penalty is obviously zero.

Let us now assume that the statement is true for all rooted trees with
fewer than n nodes. Consider a rooted tree T (t) with n nodes, where n > 1.
Each child w of the root t is itself the root of a subtree T (w) with fewer
than n nodes.

If the head subject is not gained at t, then the optimal H- and L-sets at
t are clearly the unions of the corresponding sets for the subtrees T (w); this
follows from the additive structure of the penalty function in (1). Clearly,
the minimum penalty for the subtree T (t) must be the smaller of the penalty
values p(t) = u(t)+λV (t) and p(t) =

∑
w∈χ(t) p(w), as it is in the algorithm.

The result now follows by induction on n.

13

2.3 Illustrative examples

2.3.1 Computing a parsimonious lift (illustrative case)

Let us apply ParGenFS algorithm to the case presented in Fig. 4(a). This
shows a three-layer tree whose nodes are labeled by letters A and B with
extensions, and a fuzzy query set u having support Su = {A1, A2,B1, B2},
with membership values shown in Fig. 4(b). The membership values are
given in thousandths for convenience of reading and are normalized accord-
ing to the quadratic condition defined further on in (15).

Fig. 4(b) shows the pruned tree, with the membership values extended
to all nodes and the associated gap importance values V (·) shown at the
higher rank nodes.

Tables 1 and 2 illustrate successive steps of the algorithm ParGenFS
at the interior nodes A, B (Table 1) and the root (Table 2), with penalty
weights λ = 0.2 and γ = 0.9. The computations leading to the smaller
penalty values are highlighted in bold face.

Table 1: Computational results of ParGenFS at nodes A and B of the pruned
tree for the fuzzy query set u in Fig. 4; the gap and offshoot penalty weights
are λ = 0.2 and γ = 0.9.

i H(i) L(i) p(i) t H(t) L(t) p(t)
A1 {A1} � 0.9× 0.105 Gain {A} {A3, A4} 0.106 + 0.2× 0.212

= 0.095 = 0.148
A2 {A2} � 0.9× 0.0105 A

= 0.009
A3 � � 0 No Gain {A1,A2} {A3,A4} 0.095 + 0.009

= 0.104
A4 � � 0
B1 {B1} � 0.9× 0.843 Gain {B} {B3} 0.994 + 0.2×0.994

= 0.759 = 1.193
B2 {B2} � 0.9× 0.527 B

= 0.474
B3 � � 0 No Gain {B1, B2} {B3} 0.759 + 0.474

= 1.233
C � � 0

Table 2 shows that the “No Gain” solution at the root corresponds to
the smaller penalty value 1.297. The query set u then leads to a u-cover
with just node B being a head subject, leaving A1 and A2 as offshoots.

14

Root

A

A1 A2 A3 A4 B1 B2 B3 C1 C2 C3 C4

CB

105 843011 527

Root

A

A1 A2 A3 A4 B1 B2 B3

CB

105

106/ (A)= 212V 994/ (B)= 994V

1000/ (Root)V =2206

0/ (C)=1000V

843011 0 0 0527

a)

b)

t G(t)

A {A3,A4}

B {B3}

C {C}

Root {A3,A4,B3,C}

Figure 4: (a) Illustrative taxonomy T and a fuzzy query set with mem-
bership values assigned to leaves in thousandths; (b) T after pruning and
annotating with membership values and gap importance values V (·).

Table 2: Computational results at the root for the fuzzy query set u in
Fig. 4, following the computations shown in Table 1; the gap and offshoot
penalty weights are λ = 0.2 and γ = 0.9.

t H(t) L(t) p(t) t H(Root) L(Root) p(Root)
A {A1, A2} {A3, A4} 0.104 Gain {Root} {A3, A4, B3, C} 1 + 0.2× 2.206

= 1.441
B {B} {B3} 1.193 Root No Gain {A1,A2,B} {B3} 0.104 + 1.193

= 1.297
C � � 0.00

15

2.3.2 Computing a parsimonious lift (real-world case)

Consider the following fragment of fuzzy cluster R, described later in Section
3.5, related to Computer Vision in DST taxonomy:

• image representations: 0.262,

• shape representations: 0.246,

• appearance and text representations: 0.177,

• hierarchical representations: 0.144,

• video segmentation: 0.209,

• image segmentation: 0.196.

At penalty values λ = 0.1 and γ = 0.9, the lifting results are presented in
Figure 5; the head subject is Computer vision. The penalty values involved
are presented in Table 3.

The cumulative penalty at the head subject is p(H) = 0.514 + 0.1 ∗ (8 ·
0.287) + 0.9 · |∅| = 0.743. If we do not lift the query set, the penalty would
be greater: p(H) = |∅| + 0.1 · |∅| + 0.9 · (0.262 + 0.246 + 0.177 + 0.144 +
0.209 + 0.196) = 1.214.

16

(1
)

c
o
m

p
u
te

r

v
is

io
n

u
=

0
.5

1
4

,
V
=

0
.5

1
4

p
=

0
.7

4
3

H
=

{
c
o
m

p
u
te

r
v
is

io
n
}

(3
)

c
o
m

p
u
te

r

v
is

io
n

p
ro

b
le

m
s

u
=

0
.2

8
7

,
V
=

0
.5

1
4

p
=

0
.3

6
5

H
=

{
im

a
g
e
 s

e
g
m

e
n
ta

ti
o
n
;v

id
e
o
 s

e
g
m

e
n
ta

ti
o
n
}

(1
0
)

8
 i
te

m
s

u
=

0
.0

,
V
=

0
.2

8
7

p
=

0
.0

H
=

{
}

(9
)

im
a
g
e

s
e
g
m

e
n
ta

ti
o
n

u
=

0
.1

9
6

,
V
=

0
.2

8
7

p
=

0
.1

7
7

H
=

{
im

a
g
e

s
e
g
m

e
n
ta

ti
o
n
}

(8
)

v
id

e
o

s
e
g
m

e
n
ta

ti
o
n

u
=

0
.2

0
9

,
V
=

0
.2

8
7

p
=

0
.1

8
8

H
=

{
v
id

e
o

s
e
g
m

e
n
ta

ti
o
n
}

(2
)

c
o
m

p
u
te

r

v
is

io
n

re
p
re

s
e
n
ta

ti
o
n
s

u
=

0
.4

2
6

,
V
=

0
.5

1
4

p
=

0
.4

2
6

H
=

{
c
o
m

p
u
te

r
v
is

io
n
 r

e
p
re

s
e
n
ta

ti
o
n
s
}

(7
)

h
ie

ra
rc

h
ic

a
l

re
p
re

s
e
n
ta

ti
o
n
s

u
=

0
.1

4
4

,
V
=

0
.4

2
6

p
=

0
.1

3

H
=

{
h
ie

ra
rc

h
ic

a
l
re

p
re

s
e
n
ta

ti
o
n
s
}

(6
)

a
p
p
e
a
ra

n
c
e

a
n
d
 t

e
x
tu

re

re
p
re

s
e
n
ta

ti
o
n
s

u
=

0
.1

7
7

,
V
=

0
.4

2
6

p
=

0
.1

6

H
=

{
a
p
p
e
a
ra

n
c
e
 a

n
d
 t

e
x
tu

re
 r

e
p
re

s
e
n
ta

ti
o
n
s
}

(5
)

s
h
a
p
e

re
p
re

s
e
n
ta

ti
o
n
s

u
=

0
.2

4
6

,
V
=

0
.4

2
6

p
=

0
.2

2
1

H
=

{
s
h
a
p
e

re
p
re

s
e
n
ta

ti
o
n
s
}

(4
)

im
a
g
e

re
p
re

s
e
n
ta

ti
o
n
s

u
=

0
.2

6
2

,
V
=

0
.4

2
6

p
=

0
.2

3
6

H
=

{
im

a
g
e

re
p
re

s
e
n
ta

ti
o
n
s
}

T
o
p
ic

 w
it
h
 m

in
o
r

s
u
p
p
o
rt

 0
<

u
(t

)<
=

0
.2

T
o
p
ic

w
it
h

m
e
d
iu

m
s
u
p
p
o
rt

0
.2

<
u
(t

)<
=

0
.4

T
o
p
ic

 w
it
h
 h

ig
h
 s

u
p
p
o
rt

 u
(t

)>
0
.4

T
o
p
ic

 w
it
h
 n

o
 s

u
p
p
o
rt

 (
u
(t

)=
0
)

G
a
p

H
e
a
d
 s

u
b
je

c
t

Figure 5: Lifting of the Computer Vision sub-cluster. Nodes are numbered
as in Table 3.

17

Table 3: Nodes and variable values for lifting the Computer Vision fuzzy
subcluster.

Node name u(t) p(t) v(t) H(t) V (t) L(t)
1 computer vision 0.514 0.743 0.514 computer vision interest point

and
interest point
and

salient region salient region
detections, detections,
shape inference, shape inference,
object detection, object detection,
object recogni-
tion, object

object recogni-
tion, object

identification, identification,
tracking, tracking,
reconstruction, reconstruction,
matching matching

2 computer vision 0.426 0.426 0.514 computer vision
representations representations

3 computer vision
problems

0.287 0.365 0.514 image segmenta-
tion,

interest point
and

video segmenta-
tion

salient region de-
tections,
shape inference,
object detection,
object recogni-
tion,
object identifica-
tion,
tracking,
reconstruction,
matching

4 image representa-
tions

0.262 0.236 0.426 image represen-
tations

5 shape representa-
tions

0.246 0.221 0.426 shape represen-
tations

6 appearance and 0.177 0.160 0.426 appearance and
texture represen-
tations

texture represen-
tations

7 hierarchical rep-
resentations

0.144 0.130 0.426 hierarchical rep-
resentations

8 video segmenta-
tion

0.209 0.188 0.287 video segmenta-
tion

9 image segmenta-
tion

0.196 0.177 0.287 image segmenta-
tion

10 interest point 0.000 0.000 0.287
and salient region
detections,

0.000 0.000 0.287

shape inference,
object detection
object recogni-
tion, object
identification,
tracking,
reconstruction,
matching

18

2.3.3 Effects of changing weights: modeling prejudices

It is well known that cognitive generalizations can be much biased because
a cognitive system may involve prejudices preventing that from an ade-
quate assessment of facts. Our model of generalization can imitate this
phenomenon.

To illustrate this, let us return to the tree in Fig. 4 and the query set
u presented in its part (b). The output of ParGenFS depends not on the
membership values only, but also on the interrelation between the topology
of the taxonomy tree and the penalty weights, too.

Table 4 presents the resulting u-covers for a number of different combi-
nations of membership values and penalty weights, leading to different inter-
pretations for the taxonomy T presented in Fig. 4(a). For the convenience
of reading, the membership values in the table are not normalized. The
membership values are extended to the interior nodes using the quadratic
normalization condition in (15) further on.

Table 4 exhibits all possible u-cover outcomes at the very same fuzzy
set u. Case 1 demonstrates a situation in which all the elements of the
optimal u-cover are offshoots, rarely a desirable outcome. By increasing the
membership value u(B2) from 0.01 to 0.1, we arrive at Case 2. The optimal
u-cover now includes B as a head subject. This case clearly demonstrates
how much the structure of the tree may affect the result. Indeed, the bulk
of the membership values is clearly in the subtree rooted at A, yet A is not
a head subject in this case! The slight asymmetry of the pruned tree and
the fact that B has fewer children than A are the causes of this change.

Table 4: Different membership values and penalty weights that lead to all
possible descriptions in rows 1 to 5 for the illustrative taxonomy of Fig.
4(a). The algorithm is run using the membership values normalized and
extended according to the quadratic condition in (15) further on.

u(A1) u(A2) u(B1) u(B2) γ λ H(Root) L(Root) P(Root)
1 0.8 0.5 0.1 0.01 0.9 0.2 {A1, A2, B1, B2} {} 1.34
2 0.8 0.5 0.1 0.1 0.9 0.2 {A1, A2, B} {B3} 1.40
3 0.8 0.5 0.1 0.01 0.9 0.1 {A,B1, B2} {A3, A4} 1.30
4 0.8 0.5 0.1 0.1 1.1 0.2 {A,B} {A3, A4, B3} 1.56
5 0.8 0.5 0.1 0.1 0.9 0.1 {Root} {A3, A4, B3, C} 1.31
6 0.1 0.01 0.8 0.5 0.9 0.1 {A1, A2, B} {B3} 1.20
7 0.1 0.1 0.8 0.5 0.9 0.1 {Root} {A3, A4, B3, C} 1.23
8 0.1 0.01 0.8 0.5 0.9 0.2 {A1, A2, B} {B3} 1.30

19

Case 2 can be transformed into either Case 4 or Case 5 by changing
just one or other of the weights. By changing γ from 0.9 to 1.1 (Case 4),
we obtain a u-cover that includes both A and B as head subjects. This
seems somewhat odd – because A and B are the only relevant children of
the root, one might think that here the root should be a head subject in an
optimal u-cover. Indeed, to achieve this “unnatural” result, we had to make
γ greater than unity, the penalty weight for a head subject. By reducing λ
from 0.2 in Case 2 to 0.1, we obtain Case 5, for which the root is the sole
head subject. A different change to the parameters in Case 1, now changing
the weight λ from 0.2 to 0.1 rather than changing the membership values,
leads to Case 3, in which A is now the sole head subject (i.e. Case 3 is like
Case 5, but reverting to the original membership values in Case 1).

Cases 6, 7 and 8 illustrate results that can be obtained by rearranging
the membership values so that the high values are moved from A1 and A2
to B1 and B2, and vice versa. Case 6 leads to a u-cover in which B is
the only head subject. Small changes to Case 6, by increasing either the
membership value of A2 (Case 7) or the weight λ (Case 8), may or may not
lead to changes in the result. The optimal u-cover makes the root a head
subject in Case 7, but there is no change from Case 6 to Case 8. Using
the quadratic normalization condition in (15) further on. Case 8 is just the
familiar fuzzy query set u illustrated in Fig. 4 and Tables 1 and 2.

3 Applying ParGenFS to structuring
and conceptualizing a collection of research papers

Being confronted with the problem of structuring and interpreting a set of
research publications in a domain, one can think of either of the following
two pathways to take. One is so-to-speak empirical and the other theoret-
ical. The first pathway tries to discern main categories from the texts, the
other, from knowledge of the domain. The first approach is exemplified by
the LDA-based topic modeling (see, for example, [6, 43]); the second ap-
proach, by using an expert-driven taxonomy such as ACM-CCS [1] (see, for
example, [14, 28]).

This paper follows the second pathway by moving, in sequence, through
the following stages:

• preparing a scholarly text collection;

• preparing a taxonomy of the domain under consideration;

20

• developing a matrix of relevance values between taxonomy leaf topics
and research publications from the collection;

• finding fuzzy clusters according to the structure of relevance values;

• lifting the clusters over the taxonomy to conceptualize them via gen-
eralization;

• making conclusions from the generalizations.

Each of the items is covered in a separate subsection further on.

3.1 Scholarly text collection

Because of a generous offer from the Springer Publisher, we were able to
download a collection of 17685 research papers together with their abstracts
published in 17 journals related to Data Science, in our opinion, for 20 years
from 1998-2017. We take the abstracts to these papers as a representative
collection. The list of the journals is in Table 5.

Table 5: List of Springer journals related to Data Science used as the source
for our text collection. Some journals start not in 1998, but later because
of unrelated issues.

Title Volumes Years
1 Pattern Analysis and Applications 1–20 1998–2017
2 Journal of Mathematical Imaging and Vision 14–29 2001–2017
3 World Wide Web 1–20 1998–2017
4 Artificial Intelligence Review 22–48 2004–2017
5 Annals of Mathematics and Artificial Intelligence 23–80 1998–2017
6 Pattern Analysis and Applications 1–20 1998–2017
7 Knowledge and Information Systems 1–52 1999–2017
8 Machine Learning 30–106 1998–2017
9 Swarm Intelligence 1–11 2007–2017
10 Applied Intelligence 14–47 1998–2017
11 Neural Processing Letters 7–45 1998–2017
12 Data Mining and Knowledge Discovery 2–31 1998–2017
13 Machine Vision and Applications 15–28 2004–2017
14 Social Network Analysis and Mining 1–7 2011–2017
15 International Journal on Document Analysis and Recognition 1–20 1998–2017
16 International Journal of Multimedia Information Retrieval 1–6 2012–2017
17 Pattern Recognition and Image Analysis 16–27 2006–2017

21

3.2 DST Taxonomy

Taxonomy is a form of knowledge engineering which is getting more and
more popular. Most known are taxonomies within the bioinformatics Geno-
me Ontology project (GO) [12], health and medicine SNOMED CT project
[16] and the like.

Mathematically, a taxonomy is a rooted tree, a hierarchy, whose all nodes
are labeled by main concepts of a domain. The hierarchy corresponds to a
relation of inclusion: the fact that node A is the parent of B means that B
is part, or a special case, of A. An important characteristic of a rooted tree
is that each node has only one parent.

There are two major approaches for developing a domain taxonomy:
automatic and manual. The latter currently is by far more mature and
developed. However, even this approach suffers of deficiences summarized
as follows: “Taxonomy design decisions regarding the used classification
structures, procedures and descriptive bases are usually not well described
and motivated.” [41]. The automatic approach can exploit a multitude of
digital resources and methods for semantic analysis. A rather comprehensive
attempt is described in [41]. Our preferences, at this moment, are with
taxonomies manually established by a representative body of specialists.
Indeed, such a taxonomy does not depend on purely empirical data utilized
by automatic methods.

Moreover, a manual taxonomy usually balances the theoretical insight
and practical experience accumulated in the community represented by the
body issuing it. Such is the Computing Classification System (ACM-CCS
2012) by the world-wide Association for Computing Machinery [1]. The
subdomain of our choice is Data Science, comprising such areas as machine
learning, data mining, data analysis, etc. We take that part of the ACM-
CCS 2012 taxonomy, which is related to Data Science, and add a few leaves
related to more recent Data Science developments. A major extract from
the taxonomy of Data Science is published in [24].

The higher ranks of the taxonomy are presented in Table 6 and its full
version, in Table 6 in the Appendix. The leaves added by the authors are
labeled with a star “*”.

22

Table 6: ACM Computing Classification System (ACM-CCS) 2012 higher
rank subjects related to Data Science.

Subject index Subject name
1. Theory of computation
1.1. Theory and algorithms for application domains
2. Mathematics of computing
2.1. Probability and statistics
3. Information systems
3.1. Data management systems
3.2. Information systems applications
3.3. World Wide Web
3.4. Information retrieval
4. Human-centered computing
4.1. Visualization
5. Computing methodologies
5.1. Artificial intelligence
5.2. Machine learning

3.3 Evaluation of relevance between texts
and key phrases

After ground-breaking discoveries of methods for automatically develop-
ing sets of topics relevant to collections of documents [5, 6], it has become
popular to concentrate on key-words taken from the documents being ana-
lyzed. We, however, prefer using topics produced manually by committees
of experts because of the obvious advantages: comprehensiveness and sta-
bility. Therefore, our list of key-phrases comprises lower-rank ACM-CCS
taxonomy topics related to data science. To take into account specifics
of the structure of the collection of texts being analyzed, one should fo-
cus on the relevance between taxonomy key-phrases and the texts. Most
popular and well established approaches to scoring keyphrase-to-document
relevance include the so-called vector-space approach [34] and probabilistic
text model approach [33]. These, however, rely on individual words and
text pre-processing.

We utilize a method, first developed by R. Pampapathi et al [30] and
further advanced by Chernyak and Mirkin [9,10], the AST method for eval-
uating keyphrase-to-text relevance score using purely string frequency in-

23

formation. An advantage of the method is that it requires no manual work,
but works rather reliably, as claimed by these authors.

An Annotated Suffix Tree (AST) is a weighted rooted tree used for
storing text fragments and their frequencies. To build an AST for a text
string, all suffixes from this string are extracted.

A k-suffix of a string x = x1x2 . . . xN of length N is a continuous end
fragment xk = xN−k+1xN−k+2 . . . xN . For example, a 3-suffix of string
INFORMATION is substring ION , and a 5-suffix, ATION . Each AST
node is assigned a symbol and the so-called annotation (frequency of the
substring corresponding to the path from the root to the node including the
symbol at the node). The root node of AST has no symbol or annotation
(see Figure 3.3). An algorithm for building an AST for any given string
x = x1x2 . . . xN is described below.

1. Initialize an AST to consist of a single node, the root: T .

2. Find all the suffixes of the given string:

{xk = xN−k+1xN−k+2 . . . xN |k = 1, 2, . . . , N}.

3. For each suffix xk find its maximal overlap, that is, a path from the
root in T coinciding with its beginning fragment xkmax . At each node
of the path for xkmax add 1 to the annotation. If the length of the
overlap xkmax is less than k, the path is extended by adding new
nodes corresponding to symbols from the remaining part of this suffix.
Annotations of all the new nodes are set to be 1.

To accelerate the working of the method, one should use efficient versions
of algorithms utilising suffix trees and suffix arrays (see, for example, [13]).

Having an AST T built, we can score the string-to-document relevance
over the AST. To do this, we follow [21] by computing the conditional
probability of node u in T :

p(u) =
f(u)

f(parent(u))
. (4)

For all the immediate offspring of the root (R), formula has the following
form:

p(u) =
f(u)∑

v∈T :parent(v)=R

f(v)
, (5)

24

where f(u) is the frequency annotation of the node u. Using the formula

above, one can calculate the probability of node u relative to all its siblings.
For each suffix xk of string x the relevance score s(xk, T) is defined as:

s(xk, T) =
1

kmax

kmax∑
i=1

p(xki). (6)

The AST relevance score of string x and text T is defined as the sum of
all the suffix scores:

S(x, T) =
1

N

N∑
k=1

s(xk, T). (7)

In practical computations, we split any document into a set of strings
(usually consisting of 2-3 consecutive words), create an empty AST for
the document and add these strings in the AST in sequence, by using the
algorithm above.

To lessen the effects of frequently occurring general terms, the scoring
function is modified by five-fold decreasing the weight of stop-words. The
list of stop-words includes: “learning, analysis, data, method” and a few
postfixes: “s/es, ing, tion”. After an AST for a document has been built,
the time complexity of calculating the string-to-document relevance score is
O(m2) where m is the length of the query string. This does not depend on
the document length, in contrast to the popular Levenstein-distance based
approaches.

Let us consider, for example, a “document” consisting of a string ‘infer-
ence’. We start from an AST consisting of a single node (Root), split the
document into short strings and sequentially add suffixes of these strings to
the AST. In the example, we should add all the suffixes of the only string
to the AST: from ‘inference’ to ‘nference’ to ‘ference’, etc., and to ‘e’ (see
Figures 6 and 7).

25

Root

i [1]

n [1]

f [1]

e [1]

r [1]

e [1]

n [1]

c [1]

e [1]

Figure 6: AST for string
‘inference’: step 1.

Root

i [1] n [1]

n [1]

f [1]

e [1]

r [1]

e [1]

n [1]

c [1]

e [1]

f [1]

e [1]

r [1]

e [1]

n [1]

c [1]

e [1]

Figure 7: AST for string
‘inference’: step 2.

The final AST for string ‘inference’ is shown in Figure 8.
Let us calculate the relevance score of a string ‘fence’ according to the

AST found above. The string has five suffixes: ‘fence’, ‘ence’, ‘nce’, ‘ce’,
‘e’. First of all, one needs to calculate relevance scores for these suffixes
according to formula 6. These scores are presented in Table 7. After that,
according to formula 7, we calculate score for the whole string:

S(fence, T) =
1

5
· (0.5555 + 0.7083 + 0.5740 + 0.5555 + 0.3333) ≈ 0.545

26

Root

i [1] n [2] f [1] e [3] r [1] c [1]

n [1]

f [1]

e [1]

r [1]

e [1]

n [1]

c [1]

e [1]

f [1] c [1]

e [1]

r [1]

e [1]

n [1]

c [1]

e [1]

e [1]

r [1]

e [1]

n [1]

c [1]

e [1]

r [1] n [1]

e [1]

n [1]

c [1]

e [1]

e [1]

n [1]

c [1]

e [1]

c [1]

e [1]

e [1]

e [1]

Figure 8: Final AST for string ‘inference’.

Consider another example, relevance score calculations for string ‘since’
(see Table 8). For the whole string, we have:

S(since, T) =
1

5
· (0 + 0.5555 + 0.5740 + 0.5555 + 0.3333) ≈ 0.404

27

Table 7: Computing the relevance scores for suffixes of a string ‘fence’.

Suffix Match Score

‘fence’ ‘fe’ 1
2 ·
(

1
9 + 1

1

)
≈ 0.5555

‘ence’ ‘ence’ 1
4 ·
(

3
9 + 1

2 + 1
1 + 1

1

)
≈ 0.7083

‘nce’ ‘nce’ 1
3 ·
(

2
9 + 1

2 + 1
1

)
≈ 0.5740

‘ce’ ‘ce’ 1
2 ·
(

1
9 + 1

1

)
≈ 0.5555

‘e’ ‘e’ 1
1 ·
(

3
9

)
≈ 0.3333

Table 8: Computing the scores for suffixes of string ‘since’.

Suffix Match Score

‘since’ ‘’ 0

‘ince’ ‘in’ 1
2

(
1
9 + 1

1

)
≈ 0.5555

‘nce’ ‘nce’ 1
3

(
2
9 + 1

2 + 1
1

)
≈ 0.5740

‘ce’ ‘ce’ 1
2

(
1
9 + 1

1

)
≈ 0.5555

‘e’ ‘e’ 1
1

(
3
9

)
≈ 0.3333

3.4 Defining and computing fuzzy clusters of taxonomy
topics

Clusters of topics should reflect co-occurrence of topics: the greater the
number of texts to which both topics t and t′ are relevant, the greater the
interrelation between t and t′, the greater the chance for topics t and t′ to
fall in the same cluster.

We have tried several popular clustering algorithms. Unfortunately, no
satisfactory results have been found. Therefore, we present here results
obtained with the FADDIS algorithm from [21] developed specifically for
finding thematic clusters.

28

This algorithm implements assumptions that are relevant to the task:

LN Laplacian Normalization: Similarity data transformation modeling –
to an extent – heat distribution and, in this way, making the cluster
structure sharper.

AA Additivity: Thematic clusters behind the texts are additive so that
similarity values are sums of contributions by different hidden themes.

AN Non-Completeness: Clusters do not necessarily cover all the key phrases
available as the text collection under consideration may be irrelevant
to some of them.

3.4.1 Co-relevance topic-to-topic similarity score

Given a keyphrase-to-document matrix R of relevance scores, it is con-
verted to a keyphrase-to-keyphrase similarity matrix A or scoring the “co-
relevance” of keyphrases according to the text collection structure. The
similarity score att′ between topics t and t′ can be computed as the in-
ner product of vectors of scores rt = (rtv) and rt′ = (rt′v) where v =
1, 2, . . . , V = 17685. The inner product is moderated by a natural weight-
ing factor assigned to texts in the collection. The weight of text v is defined
as the ratio of the number of topics nv relevant to it and nmax, the maximum
nv over all v = 1,2,...,V. A topic is considered relevant to v if its relevance
score is greater than 0.2 (a threshold found experimentally, see [9]). The
numbers of texts in our collection, that are relevant to 0, 1, or more topics,
are presented in Table 9.

Table 9: The numbers of relevant topics in our text collection.

Number of texts Number of relevant topics
1237 0
2353 1
7114 2,3, or 4
6124 5–11
857 12 or more

29

The accepted topic-to-topic similarity measure has the following prop-
erties [21]:

1. The similarity matrix is positive semi-definite.

2. The similarity between two topics can be positive if and only if there
is at least one text in which both are engaged.

3. The greater the individual relevance scores, the greater the similarity.

4. Given a pair of topics, the greater the set of texts relevant to both of
them, the greater the similarity.

3.4.2 Additive fuzzy spectral clustering

Let us denote the total set of leaf topics by T and assume that a fuzzy
cluster over T is represented by a fuzzy membership vector ~u = (ut), t ∈ T ,
such that 0 ≤ ut ≤ 1 for all t ∈ T , and an intensity µ > 0, a scale coefficient
to relate the membership scores to the similarity scores. For T being a
set of research topics and ~u = (ut), t ∈ T , a membership values vector
representing the a semantic substructure of a corpus of research papers
under consideration, the product (µut)(µut′) = µ2utut′ can be considered as
the contribution by the research direction represented by the cluster under
consideration to the total similarity score att′ between topics t and t′. The
additive fuzzy clustering model in [21] states that the entries in the topic-
to-topic similarity matrix A can be considered as resulting from additive
contributions of K fuzzy clusters, up to small errors to be minimized:

att′ =

K∑
k=1

µ2
kuktukt′ + ett′ , (8)

where ~uk = (ukt) is the membership vector of cluster k, and µk its inten-
sity. These assumptions require that clusters are extracted according to an
additive model. A method developed in [21], FADDIS, finds clusters in (8)
one-by-one, which accords with the assumptions above. Paper [21] provides
some theoretical and experimental computation results to demonstrate that
FADDIS is competitive over other fuzzy clustering approaches.

A fuzzy cluster (~u, µ) is extracted to minimize the one-cluster least-
squares criterion

30

E =
∑
t,t′∈T

(wtt′ − ξutut′)2 (9)

with respect to unknown positive ξ = µ2 and fuzzy membership vector
~u = (ut) for a given similarity matrix W = (wtt′).

Initially, W = A. Then the matrix W is changed by subtracting from
it that part of the similarities that is accounted for by the found cluster,
W ← W − µ2~u~u′, where µ and ~u are the intensity and membership vector
of the cluster.

In this way, A is step-by-step additively decomposed in accordance with
the model (8), so that the number of clusters K can be determined during
the process. The first-order optimality condition for the criterion E in (9)
states that an optimal ξ satisfies equation:

ξ =

∑
t,t′∈T wtt′utut′∑
t∈T u

2
t

∑
t′∈T u

2
t′
,

or, in matrix terms,

ξ =
~uTW~u

(~uT~u)
2 . (10)

By substituting this value of ξ in (9), we obtain

E = S(W)− ξ2
(
~uT~u

)2
,

where S(W) =
∑
t,t′∈T w

2
tt′ is the similarity data scatter.

Denoting the last term by G(~u), we have

G(~u) = ξ2
(
~uT~u

)2
=

(
~uTW~u

~uT~u

)2

, (11)

which provides for a decomposition of the similarity data scatter into ex-
plained and unexplained parts, according to the equation above:

S(W) = G(~u) + E. (12)

Therefore, to minimize E, one must maximize G(~u) in (11) or its square
root,

g(~u) = ξ~uT~u =
~uTW~u

~uT~u
, (13)

31

The value g(~u) in (13) is the so-called Rayleigh quotient whose maxi-
mum is the maximum eigenvalue of W reached at the corresponding eigen-
vector. This brings forward the celebrated spectral clustering approach [37].
According to this approach, one first solves the unconstrained problem of
maximizing g(~u) with respect to any u, to obtain the normalized eigenvector
~z corresponding to the maximum eigenvalue of W . Then its projection ~u
onto the set of nonnegative fuzzy membership vectors is found:

ut =

{
0, if zt ≤ 0;

zt, if 0 < zt ≤ 1.
(14)

As the criterion in (13) involves division over the squared Euclidean
norm of vector u, the Euclidean normalization condition is most natural for
the solution, so that the extracted cluster u is normalized accordingly:

~uT~u = 1. (15)

The process of one-by-one extracting fuzzy clusters stops when any of
the conditions below is satisfied:

1. The value of ξ given by (10) at the current step is negative.

2. The contribution of a single extracted cluster is too low. For example,
a cluster should contribute at least as much as an average entity, so
that the threshold 1/N should be considered a well-defined conserva-
tive value.

3. The residual scatter E becomes smaller than, say, 5% of the original
similarity data scatter.

4. A pre-specified number Kmax of clusters is reached.

To make the hidden cluster structure in similarity data sharper, we
apply the so-called Laplacian normalization [18, 37]. This normalization
usually applies with the so-called minimum normalized cut criterion, and,
thus, brings forward the minimum eigenvalue, whereas FADDIS uses the
maximum one. This is why this normalization is modified in [21] to involve
the inverse eigen-values. Specifically, the so-called Laplacian pseudo-inverse
transformation (Lapin, in short) is applied. Given a similarity matrix W ,
the N × N diagonal matrix D is computed, with (t, t)-th entry equal to
dt =

∑
t′∈T wtt′ , the sum of row t of W , and the Laplacian is defined as

32

Ln = I−D−1/2WD−1/2. Then the Laplace Pseudo INverse transformation
(Lapin) is defined as

L+
n = ZΛ̃−1ZT ,

where Z is the matrix of eigenvectors corresponding to non-zero eigenvalues,
from the spectral decomposition Ln = ZΛZT , and the diagonal matrix Λ̃ is
obtained from Λ by removing zero eigenvalues and replacing each non-zero
eigenvalue λ by 1/λ.

Lastly, the eigenvector corresponding to the maximum eigenvalue of L+
n

is taken to generate the fuzzy cluster for the model (9).

3.4.3 FADDIS thematic clusters

After computing the 317× 317 topic-to-topic co-relevance matrix, convert-
ing in to a topic-to-topic Lapin transformed similarity matrix, and apply-
ing FADDIS clustering, we sequentially obtained 6 clusters, of which three
clusters seem especially homogeneous. We denote them using letters L, for
’Learning’; R, for ’Retrieval’; and C, for ’Clustering’. These clusters are
presented in Tables 10, 11, and 12, respectively.

Table 10: Cluster L “Learning”: topics with membership values greater
than 0.15.

u(t) Code Topic
0.300 5.2.3.8. rule learning
0.282 5.2.2.1. batch learning
0.276 5.2.1.1.2. learning to rank
0.217 1.1.1.11. query learning
0.216 5.2.1.3.3. apprenticeship learning
0.213 1.1.1.10. models of learning
0.203 5.2.1.3.5. adversarial learning
0.202 1.1.1.14. active learning
0.192 5.2.1.4.1. transfer learning
0.192 5.2.1.4.2. lifelong machine learning
0.189 1.1.1.8. online learning theory
0.166 5.2.2.2. online learning settings
0.159 1.1.1.3. unsupervised learning and clustering

33

Table 11: Cluster R “Retrieval”: topics with membership values greater
than 0.15.

u(t) Code Topic
0.211 3.4.2.1. query representation
0.207 5.1.3.2.1. image representations
0.194 5.1.3.2.2. shape representations
0.194 5.2.3.6.2.1 tensor representation
0.191 5.2.3.3.3.2 fuzzy representation
0.187 3.1.1.5.3. data provenance
0.173 2.1.1.5. equational models
0.173 3.4.6.5. presentation of retrieval results
0.165 5.1.3.1.3. video segmentation
0.155 5.1.3.1.2. image segmentation
0.154 3.4.5.5. sentiment analysis

Table 12: Cluster C “Clustering”: topics with membership values greater
than 0.15.

u(t) Code Topic
0.327 3.2.1.4.7 biclustering
0.286 3.2.1.4.3 fuzzy clustering
0.248 3.2.1.4.2 consensus clustering
0.220 3.2.1.4.6 conceptual clustering
0.192 5.2.4.3.1 spectral clustering
0.187 3.2.1.4.1 massive data clustering
0.159 3.2.1.7.3 graph based conceptual clustering
0.151 3.2.1.9.2. trajectory clustering

3.5 Results of lifting clusters L, R, and C within DST

All obtained clusters are lifted in the DST taxonomy using ParGenFS al-
gorithm with the gap penalty λ = 0.1 and off-shoot penalty γ = 0.9.

The results of lifting Cluster L are shown in Figure 9. The cluster has
received three head subjects: machine learning, machine learning theory,
and learning to rank. These represent the structure of the general concept
“Learning” according to our text collection. The list of gaps obtained is less
instructive, reflecting probably a relatively modest coverage of the domain
by the publications in the collection (see in Table 13).

34

ro
o
t

le
a
rn

in
g

to

ra
n
k

th
e
o
ry

o
f

c
o
m

p
u
ta

ti
o
n

m
a
c
h
in

e
 l
e
a
rn

in
g
 t

h
e
o
ry

8

4

m
a
c
h
in

e
le

a
rn

in
g

9
m

a
c
h
in

e

le
a
rn

in
g

a
p
p
ro

a
c
h
e
s

7

3

le
a
rn

in
g
 s

e
tt

in
g
s

6

le
a
rn

in
g
 p

a
ra

d
ig

m
s

5

2
1

T
o
p
ic

w
it
h

m
in

o
r

s
u
p
p
o
rt

0
<

u
(t

)<
=

0
.2

T
o
p
ic

 w
it
h
 m

e
d
iu

m
 s

u
p
p
o
rt

 0
.2

<
u
(t

)<
=

0
.4

T
o
p
ic

 w
it
h
 h

ig
h
 s

u
p
p
o
rt

 u
(t

)>
0
.4

T
o
p
ic

 w
it
h
 n

o
 s

u
p
p
o
rt

 (
u
(t

)=
0
)

G
a
p

H
e
a
d

s
u
b
je

c
t

Figure 9: Lifting results for Cluster L: Learning. Gaps are numbered, see
Table 13.

35

Table 13: Gaps at the lifting of Cluster L.

Number Topics
1 ranking, supervised learning by classification,

structured outputs
2 sequential decision making in practice,

inverse reinforcement learning in practice
3 statistical relational learning
4 sequential decision making, inverse reinforcement learning
5 unsupervised learning
6 learning from demonstrations, kernel approach
7 classification and regression trees, kernel methods,

neural networks, learning in probabilistic graphical models,
learning linear models, factorization methods,
markov decision processes, stochastic games,
learning latent representations, multiresolution,
support vector machines

8 sample complexity and generalization bounds,
boolean function learning, kernel methods, boosting,
bayesian analysis, inductive inference,
structured prediction, markov decision processes,
regret bounds

9 machine learning algorithms

Similar comments can be made with respect to results of lifting of Cluster
R: Retrieval (see Figure 10). The obtained head subjects: Information
Systems and Computer Vision show the structure of “Retrieval” in the set
of publications under considerations. Gaps obtained for Cluster R are listed
in Table 14.

36

ro
o
t

a
rt
if
ic
ia
l

in
te
ll
ig
e
n
c
e

c
o
m
p
u
te
r

v
is
io
n

1
0

in
fo
rm
a
ti
o
n

s
y
s
te
m
s

in
fo
rm
a
ti
o
n

s
y
s
te
m
s

a
p
p
li
c
a
ti
o
n
s

1
4

w
o
rl
d

w
id
e

w
e
b 1
3

d
a
ta

m
a
n
a
g
e
m
e
n
t

s
y
s
te
m
s

1
2

9
8

3
2

7

1

in
fo
rm
a
ti
o
n

re
tr
ie
v
a
l

1
1

6
5

4

Figure 10: Lifting results for Cluster R. Gaps are numbered, see Table 14.
The meaning of elements in the Figure is explained in the legend to Fig. 9.

37

Table 14: Gaps at the lifting of Cluster R.

Number Topics
1 data streams, incomplete data, temporal data, uncertainty,

inconsistent data
2 multidimensional range search, point lookups,

unidimensional range search, proximity search
3 data compression, record and block layout
4 query intent, query suggestion, query reformulation
5 test collections, relevance assessment, retrieval effectiveness,

retrieval efficiency
6 question answering, document filtering,

recommender systems, information extraction,
expert search, clustering and classification,
summarization, business intelligence

7 relational database model, entity relationship models,
hierarchical data models, network data models,
physical data models

8 relational database query languages, mapreduce languages,
call level interfaces

9 data exchange, data cleaning, mediators and data integration,
entity resolution, data warehouses

10 interest point and salient region detections, shape inference,
object detection, object recognition, object identification,
tracking, reconstruction, matching

11 document representation, users and interactive retrieval,
retrieval models and ranking, specialized information retrieval

12 database management system engines
13 site wrapping, data extraction and integration,

traffic analysis, knowledge discovery
14 data cleaning, collaborative filtering, association rules,

clustering, data stream mining, graph mining, process mining,
text mining, data mining tools, sequence mining

We decided to show no drawing for the results of lifting of Cluster C,
because the corresponding taxonomy fragment is too large, whereas the
lifting results are too fragmentary. There are 16 (!) head subjects here:

• clustering,

• graph based conceptual clustering, item trajectory clustering,

• clustering and classification,

• unsupervised learning and clustering,

• spectral methods,

• document filtering,

• language models,

38

• music retrieval,

• collaborative search,

• database views,

• stream management,

• database recovery,

• mapreduce languages,

• logic and databases,

• language resources.

As one can see, the core clustering subjects are supplemented by methods
and environments in the cluster – this shows that the ever increasing role
of clustering activities perhaps should be better reflected in the taxonomy.

3.6 Making conclusions

We can see that the topic clusters found with the text collection do highlight
areas of soon-to-be developments. Three clusters under consideration closely
relate, in respect, to the following processes:

• theoretical and methodical research in learning, as well as merging the
subject of learning to rank within the mainstream;

• representation of various types of data for information retrieval, and
merging that with visual data and their semantics; and

• various types of clustering in different branches of the taxonomy re-
lated to various applications and instruments.

In particular, one can see from the “Learning” head subjects (see Figure
9 and comments to it) that main work here still concentrates on theory
and method rather than applications. A good news is that the field of
learning, formerly focused mostly on tasks of learning subsets and partitions,
is expanding currently towards learning of ranks and rankings. Of course,
there remain many subareas to be covered: these can be seen in and around
the list of gaps in Table 13.

Moving to the lifting results for the information retrieval cluster R (see
Figure 10 and Table 11), we can clearly see the tendencies of the contempo-
rary stage of the process. Rather than relating the term “information” to

39

texts only, as it was in the previous stages of the process of digitalization,
visuals are becoming parts of the concept of information. There is a catch,
however. Unlike the multilevel granularity of meanings in texts, developed
during millennia of the process of communication via languages in the hu-
mankind, there is no comparable hierarchy of meanings for images. One
may only guess that the elements of the R cluster related to segmentation
of images and videos, as well as those related to data management systems,
are those that are going to be put in the base of a future multilevel system of
meanings for images and videos. This is a direction for future developments
clearly seen from the picture in Figure 10.

Regarding the “clustering” cluster C with its 16 (!) head subjects, one
may conclude that, perhaps, a time moment has come or is to come real
soon, when the subject of clustering must be raised to a higher level in the
taxonomy to embrace all these “heads”. At the beginning of the Data Sci-
ence era, a few decades ago, clustering was usually considered a more-or-less
auxiliary part of machine learning, the unsupervised learning. Perhaps, soon
we are going to see a new taxonomy of Data Science, in which clustering is
not just an auxiliary instrument but rather a model of empirical classifica-
tion, a big part of the knowledge engineering. When discussing the role of
classification as a knowledge engineering phenomenon, one encounters three
conventional aspects of classification:

• structuring the phenomena;

• relating different aspects of phenomena to each other;

• shaping and keeping knowledge of phenomena.

Each of them can make a separate direction of research in knowledge engi-
neering.

4 Conclusion

This paper presents a formalization of the concept of generalization, an
important part of the human ability for conceptualization. According to
Collins Dictionary, conceptualization is “formation (of a concept or con-
cepts) out of observations, experience, data, etc.” We assume that such an
operation may require a coarser granularity of the domain structuring. This
is captured by the idea of lifting a query set to higher ranks in a hierarchical
taxonomy of the domain.

40

The hierarchical structure of taxonomy brings in possible inconsistencies
between a query set and the taxonomy structure. These inconsistencies can
be of either of two types, gaps or offshoots, potentially emerging at the
coarser “head subject” to cover the query set. A gap is such a node of
the taxonomy, that is covered by the head subject but does not belong in
the query set. An offshoot is a node of the taxonomy, that does belong in
the query set but is not covered by the head subject. The higher the rank
of a candidate for the conceptual head subject, the larger the number of
gaps. The lower is the rank of the head subject, the larger the number of
offshoots. Our algorithm ParGenFS allows to find a globally optimal lifting
to balance the numbers of head subjects, gaps, and offshoots depending on
relative penalties for these types of inconsistencies.

We illustrate usefulness of this approach on the set of 17685 abstracts
of research papers published by the Springer Publishers for 20 years, 1998–
2017, in 17 journals related to Data Science. We use this set to obtain
six fuzzy clusters of taxonomy topics according to their co-relevance. We
can easily interpret only three out of the found clusters, which probably
reflects the inherent randomness of research processes and presence in it of
an agenda not clearly manifested so far. It should be pointed out that find-
ing interpretable clusters of taxonomy topics over the textual data requires
using rather sophisticated methods involving spectral clustering, weighting
publications, Laplacian transformation and the like. This complexity per-
haps comes, at least partly, from the way we estimate the similarity between
concepts – by considering them as just strings and, thus, by removing any
imposed pre-structuring coming from pre-selected keywords or NLP con-
structions. Lifting of these clusters brings in several general conclusions
over the current research in Data Science. These conclusions, even if not
entirely unexpected, give as a glimpse into the hidden research processes,
as captured by the authorship of the Springer journals.

The proposed approach to generalization can be used in a number of
similar tasks such as positioning of a research project, interpretation of a
concept which is not present in the taxonomy, annotation of a set of research
articles. These all are parts of the processes of long-term research analysis
and planning at which our approach should be positioned.

Among major issues requiring further development in this direction, two
of the most relevant are:

• Taxonomy developments

• Specifying penalty weights

41

The former needs more attention both from research communities and plan-
ning committees. Specifically, most urgent directions for development here
are:

- developing better methods to automate the process of taxonomy mak-
ing (an interesting approach to this is described in [15]) ; and

- open discussion of the taxonomies at conferences and meetings of re-
search communities and committees(the need in this is pointed out in a
recent paper [25].

As to the latter, a reasonable computational progress over penalty weights
can be achieved, in our view, by replacing the criterion of maximum parsi-
mony by the criterion of maximum likelihood if each node of the taxonomy
can be assigned probabilities of “gain” and “loss” of topic events. We intend
pursuing this approach for the DST taxonomy in the near future.

Acknowledgment. Dmitry Frolov and Boris Mirkin acknowledge sup-
port by the Basic Research Program at the National Research University
Higher School of Economics (HSE) and by the International Decision Choice
and Analysis Laboratory (DECAN) NRU HSE in the framework of a sub-
sidy granted to the HSE by the Government of the Russian Federation for
the implementation of the Global Competitiveness Program.

42

5 References

[1] The 2012 ACM Computing Classification System. [Online]. Avail-
able:http://www.acm.org /about/class/2012 (Accessed 2018, 30 April).

[2] J. Ashraf, E. Chang, O. K. Hussain, F. K. Hussain, “Ontology us-
age analysis in the ontology lifecycle: A state-of-the-art review,”
Knowledge-Based Systems, vol. 80, pp. 34-47, 2015.

[3] D. Beneventano, N. Dahlem, S. El Haoum, A. Hahn, D. Montanari,
M. Reinelt, “Ontology-driven semantic mapping,” Enterprise Interop-
erability III, Part IV, Springer, pp. 329-341, 2008.

[4] J.C. Bezdek, R.J. Hathaway, M.P. Windham, “Numerical comparisons
of the RFCM and AP algorithms for clustering relational data,” Pattern
Recognition, 24, pp. 783-791, 1991.

[5] Blei D.M., Ng D.M., Jordan M.I. “Latent Dirichlet allocation,” The
Journal of Machine Learning Research, 3, pp. 993–1022, 2003.

[6] D. Blei, “Probabilistic topic models,”Communications of the ACM, 55
(4), pp. 77–84, 2012.

[7] R.K. Brouwer, “A method of relational fuzzy clustering based on pro-
ducing feature vectors using FastMap,” Information Sciences, 179, pp.
3561-3582, 2009.

[8] P. Buche, J. Dibie-Barthelemy, L. Ibanescu, “Ontology mapping using
fuzzy conceptual graphs and rules,” ICCS Supplement, pp. 17-24, 2008.

[9] Chernyak, Ekaterina. ”An approach to the problem of annotation of
research publications.” Proceedings of the eighth ACM international
conference on web search and data mining, ACM, 429-434, 2015.

[10] E. Chernyak, B. Mirkin, “Refining a Taxonomy by Using Annotated
Suffix Trees and Wikipedia Resources,” Annals of Data Science, 2(1),
pp. 61-82, 2015.

[11] M.J. Gacto, R. Alcalá, F. Herrera, “Interpretability of linguistic fuzzy
rule-based systems: An overview of interpretability measures,” Infor-
mation Sciences, vol. 181, pp. 4340-4360, 2011.

43

[12] Gene Ontology Consortium, “Gene ontology consortium: going for-
ward,” Nucleic Acids Research, vol. 43 D1049-D1056, 2015.

[13] R. Grossi and J.S. Vitter, “Compressed suffix arrays and suffix trees
with applications to text indexing and string matching,” SIAM Journal
on Computing, 35, 2 pp.378-407, 2005.

[14] Kapur, S., Ayman O. F., and R. E. Chatwin. ”Method and apparatus
for representing text using search engine, document collection, and
hierarchal taxonomy.” U.S. Patent No. 7,580,926. 2009.

[15] Klavans, Richard, and Kevin W. Boyack, ”Which type of citation anal-
ysis generates the most accurate taxonomy of scientific and technical
knowledge?”, Journal of the Association for Information Science and
Technology, 68(4), pp. 984-998, 2017.

[16] D. Lee, R. Cornet, F. Lau, N. De Keizer, “A survey of SNOMED CT
implementations,” Journal of Biomedical Informatics, vol. 46, no. 1,
pp. 87-96, 2013.

[17] Lloret, E., Boldrini, E., Vodolazova, T., Martnez-Barco, P., Munoz,
R., & Palomar, M. “A novel concept-level approach for ultra-concise
opinion summarization”, Expert Systems with Applications, 42(20), pp.
7148-7156, 2015.

[18] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, pp. 395-416, 2007.

[19] J.P. Mei, Y. Wang, L. Chen, and C. Miao, “Large scale document cat-
egorization with fuzzy clustering,” IEEE Transactions on Fuzzy Sys-
tems, 25(5), 1239-1251, 2017.

[20] B. Mirkin, Clustering: A Data Recovery Approach, Chapman and
Hall/CRC Press, 2012.

[21] Mirkin B. G., Chernjak E. L., Chugunova O. N. Metod an-
notirovannogo suffiksnogo dereva dlja ocenki stepeni vhozhdenija strok
v tekstovye dokumenty. [Annotated Suffix Tree as a Way of String-To-
Document Score Evaluating]. Business Informatics, 3 (21), pp. 31–41,
2012 (in Russian).

44

[22] B. Mirkin, S. Nascimento, “Analysis of Community Structure, Affinity
Data and Research Activities using Additive Fuzzy Spectral Cluster-
ing,” Technical Report 6, School of Computer Science, Birkbeck Uni-
versity of London, 2009.

[23] B. Mirkin, S. Nascimento, “Additive spectral method for fuzzy cluster
analysis of similarity data including community structure and affinity
matrices,” Information Sciences, vol. 183, no. 1, pp. 16-34, 2012.

[24] B. Mirkin, M. Orlov, “Three aspects of the research impact by a sci-
entist: measurement methods and an empirical evaluation.” In Opti-
mization, Control, and Applications in the Information Age, Springer,
Cham, pp. 233-259, 2015.

[25] F. Murtagh, M. Orlov, & B. Mirkin, ”Qualitative judgement of research
impact: Domain taxonomy as a fundamental framework for judgement
of the quality of research.” Journal of Classification, 35(1), pp. 5-28,
2018.

[26] Mueller G, Bergmann R. “Generalization of Workflows in Process-
Oriented Case-Based Reasoning,”, In FLAIRS Conference, pp. 391-396,
2015.

[27] D. Nallaperuma & D. De Silva, “A participatory model for multi-
document health information summarisation,” Australasian Journal of
Information Systems, 21.

[28] S. Nascimento, T. Fenner, B. Mirkin, “Representing research activities
in a hierarchical ontology,” in Procs. of 3rd International Workshop on
Combinations of Intelligent Methods and Applications (CIMA 2012),
Montpellier, France, August, 28, pp. 23-29, 2012.

[29] F. Osborne, A. Salatino, A. Birukou, E. Motta, “Automatic Classifi-
cation of Springer Nature Proceedings with Smart Topic Miner,” In:
Groth P. et al. (Eds) The Semantic Web – ISWC 2016. Lecture Notes
in Computer Science, vol 9982, pp. 383-399. Springer, Cham, 2016.

[30] Pampapathi R., Mirkin B., Levene M. “A suffix tree approach to anti-
spam email filtering,” Machine Learning, 65(1), pp. 309–338, 2006.

[31] A. M. Rinaldi, “An ontology-driven approach for semantic information
retrieval on the Web,” ACM Trans. on Internet Technologies, vol. 9,
no.3, article 10, 2009.

45

[32] S. Robertson and H. Zaragoza, “The Probabilistic Relevance Frame-
work: BM25 and Beyond,” Journal Foundations and Trends in Infor-
mation Retrieval, 3(4), pp. 333–389, 2009.

[33] P. Robinson and S. Bauer, Introduction to Bio-Ontologies, Chapman
and Hall/CRC Press, 2011.

[34] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information Processing and Management, vol. 25, no 5,
pp. 513–523, 1998.

[35] A.P. Santos and F. Rodrigues, “Multi-Label Hierarchical Text Classi-
fication Using the ACM Taxonomy,” Proceedings of 14th Portuguese
Conference on Artificial Intelligence, (Aveiro, Portugal, October 12–
15), pp. 553-564, 2010.

[36] F. Sebastiani, “Machine learning in automated text categorization,”
Journal of ACM Computing Surveys, 1, 34, pp. 1-42, 2002.

[37] R.N. Shepard and P. Arabie, “Additive clustering: representation of
similarities as combinations of discrete overlapping properties,” Psy-
chological Review, vol. 86, pp. 87- 123, 1979.

[38] R. Snow, D. Jurafsky, and A.Y. Ng, Semantic taxonomy induction
from heterogenous evidence. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meet-
ing of the Association for Computational Linguistics, Association for
Computational Linguistics, pp. 801-808, 2006.

[39] Song, Y., Liu, S., Wang, H., Wang, Z., & Li, H. “Automatic taxonomy
construction from keywords,” U.S. Patent No. 9,501,569. Washington,
DC: U.S. Patent and Trademark Office, 2016.

[40] A.R. de Soto, “A hierarchical model of a linguistic variable,” Informa-
tion Sciences, vol. 181, pp. 4394-4408, 2011.

[41] M. Usman, R. Britto, J. Boerstler, and E. Mendes, “Taxonomies in
software engineering: A Systematic mapping study and a revised tax-
onomy development method,” Information and Software Technology,
85, pp. 43-59, 2017.

46

[42] N. Vedula, P.K. Nicholson, D. Ajwani, S. Dutta, A. Sala, and
S. Parthasarathy, “Enriching Taxonomies With Functional Domain
Knowledge,” In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, ACM, pp. 745-754,
2018.

[43] C. Wang, D.M. Blei, “Collaborative topic modeling for recommending
scientific articles,” InProceedings of the 17th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, ACM, pp.
448-456, 2011.

[44] J. Waitelonis, C. Exeler, and H. Sack, “Linked data enabled generalized
vector space model to improve document retrieval,” In Proceedings of
NLP & DBpedia 2015 workshop in conjunction with 14th International
Semantic Web Conference (ISWC), CEUR-WS, vol. 1486, 2015.

[45] Wang, C., He, X., & Zhou, A. “A Short Survey on Taxonomy Learn-
ing from Text Corpora: Issues, Resources and Recent Advances,” In
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 1190-1203, 2017.

47

6 APPENDIX: Taxonomy of Data Science
according to CCM-CCS 2012

The leaves added by the authors are labeled with a star “*”.

Index Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

1. Theory of
computa-
tion

1.1. Theory
and al-
gorithms
for ap-
plication
domains

1.1.1. Machine
learning
theory

1.1.1.1. Sample complexity and
generalization bounds

1.1.1.2. Boolean function
learning

1.1.1.3. Unsupervised learning
and clustering

1.1.1.4. Kernel methods
1.1.1.4.1. Support vector ma-

chines
1.1.1.4.2. Gaussian processes
1.1.1.4.3.* Modelling
1.1.1.5. Boosting
1.1.1.6. Bayesian analysis
1.1.1.7. Inductive inference
1.1.1.8. Online learning theory
1.1.1.9. Multi-agent learning
1.1.1.10. Models of learning
1.1.1.11. Query learning
1.1.1.12. Structured prediction
1.1.1.13. Reinforcement learning
1.1.1.13.1. Sequential decision

making
1.1.1.13.2. Inverse reinforce-

ment learning
1.1.1.13.3. Apprenticeship

learning
1.1.1.13.4. Multi-agent rein-

forcement learning
1.1.1.13.5. Adversarial learning
1.1.1.14. Active learning
1.1.1.15. Semi-supervised learn-

ing
1.1.1.16. Markov decision pro-

cesses
1.1.1.17. Regret bounds
1.1.2. Database

theory
1.1.2.1. Data exchange
1.1.2.2. Data provenance
1.1.2.3. Data modeling
1.1.2.4. Database query lan-

guages (principles)
1.1.2.5. Database constraints

theory
1.1.2.6. Database interoper-

ability
1.1.2.7. Data structures and al-

gorithms for data man-
agement

48

1.1.2.8. Database query pro-
cessing and optimiza-
tion (theory)

1.1.2.9. Data integration
1.1.2.10. Logic and databases
1.1.2.11. Theory of database

privacy and security
1.1.2.12. Incomplete, inconsis-

tent, and uncertain
databases

2. Mathema-
tics of
comput-
ing

2.1. Probability
and statis-
tics

2.1.1. Probabilis-
tic repre-
sentations

2.1.1.1. Bayesian networks
2.1.1.2. Markov networks
2.1.1.3. Factor graphs
2.1.1.4. Decision diagrams
2.1.1.5. Equational models
2.1.1.6. Causal networks
2.1.1.7. Stochastic differential

equations
2.1.1.8. Nonparametric repre-

sentations
2.1.1.8.1. Kernel density esti-

mators
2.1.1.8.2. Spline models
2.1.1.8.3. Bayesian nonpara-

metric models
2.1.2. Probabilis-

tic in-
ference
problems

2.1.2.1. Maximum likelihood
estimation

2.1.2.2. Bayesian computation
2.1.2.3. Computing most prob-

able explanation
2.1.2.4. Hypothesis testing and

confidence interval
computation

2.1.2.5. Density estimation
2.1.2.5.1. Quantile regression
2.1.2.6. Max marginal compu-

tation
2.1.3. Probabilis-

tic rea-
soning
algorithms

2.1.3.1. Variable elimination
2.1.3.2. Loopy belief propaga-

tion
2.1.3.3. Variational methods
2.1.3.4. Expectation maximiza-

tion
2.1.3.5. Markov-chain Monte

Carlo methods
2.1.3.5.1. Gibbs sampling
2.1.3.5.2. Metropolis-Hastings

algorithm
2.1.3.5.3. Simulated annealing
2.1.3.5.4. Markov-chain Monte

Carlo convergence
measures

2.1.3.6. Sequential Monte
Carlo methods

2.1.3.7. Kalman filters and hid-
den Markov models

49

2.1.3.7.1.* Factorial HMM
2.1.3.8. Resampling methods
2.1.3.8.1. Bootstrapping
2.1.3.8.2. Jackknifing
2.1.3.9. Random number gener-

ation
2.1.4. Probabilis-

tic algo-
rithms

2.1.5. Statistical
paradigms

2.1.5.1. Queueing theory
2.1.5.2. Contingency table

analysis
2.1.5.3. Regression analysis
2.1.5.3.1. Robust regression
2.1.5.4. Time series analysis
2.1.5.5. Survival analysis
2.1.5.6. Renewal theory
2.1.5.7. Dimensionality reduc-

tion
2.1.5.8. Cluster analysis
2.1.5.9. Statistical graphics
2.1.5.10. Exploratory data anal-

ysis
2.1.6. Stochastic

processes
2.1.6.1. Markov processes
2.1.7. Nonpara-

metric
statistics

2.1.8. Distribu-
tion func-
tions

2.1.9. Multiva-
riate
statistics

3. Informa-
tion
systems

3.1. Data man-
agement
systems

3.1.1. Database
design and
models

3.1.1.1. Relational database
model

3.1.1.2. Entity relationship
models

3.1.1.3. Graph-based database
models

3.1.1.3.1. Hierarchical data
models

3.1.1.3.2. Network data models
3.1.1.4. Physical data models
3.1.1.5. Data model extensions
3.1.1.5.1. Semi-structured

data
3.1.1.5.2. Data streams
3.1.1.5.3. Data provenance
3.1.1.5.4. Incomplete data
3.1.1.5.5. Temporal data
3.1.1.5.6. Uncertainty
3.1.1.5.7. Inconsistent data
3.1.2. Data

structures
3.1.2.1. Data access methods
3.1.2.1.1. Multidimensional

range search
3.1.2.1.2. Data scans
3.1.2.1.3. Point lookups
3.1.2.1.4. Unidimensional

range search
3.1.2.1.5. Proximity search

50

3.1.2.2. Data layout
3.1.2.2.1. Data compression
3.1.2.2.2. Data encryption
3.1.2.2.3. Record and block

layout
3.1.3. Database

man-
agement
system
engines

3.1.3.1. DBMS engine architec-
tures

3.1.3.2. Database query pro-
cessing

3.1.3.2.1. Query optimization
3.1.3.2.2. Query operators
3.1.3.2.3. Query planning
3.1.3.2.3. Join algorithms
3.1.3.3. Database transaction

processing
3.1.3.3.1. Data locking
3.1.3.3.2. Transaction logging
3.1.3.3.3. Database recovery
3.1.3.4. Record and buffer

management
3.1.3.5. Parallel and dis-

tributed DBMSs
3.1.3.5.1. Key-value stores
3.1.3.5.2. MapReduce-based

systems
3.1.3.5.3. Relational parallel

and distributed
DBMSs

3.1.3.6. Triggers and rules
3.1.3.7. Database views
3.1.3.8. Integrity checking
3.1.3.9. Distributed database

transactions
3.1.3.9.1. Distributed data

locking
3.1.3.9.2. Deadlocks
3.1.3.9.3. Distributed database

recovery
3.1.3.10. Main memory engines
3.1.3.11. Online analytical pro-

cessing engines
3.1.3.12. Stream management
3.1.4. Query lan-

guages
3.1.4.1. Relational database

query languages
3.1.4.1.1. Structured Query

Language
3.1.4.2. XML query languages
3.1.4.2.1 XPath
3.1.4.2.2. XQuery
3.1.4.3. Query languages for

non-relational engines
3.1.4.3.1. MapReduce lan-

guages
3.1.4.4. Call level interfaces
3.1.5. Informa-

tion inte-
gration

3.1.5.1. Deduplication
3.1.5.2. Extraction transforma-

tion and loading
3.1.5.3. Data exchange
3.1.5.4. Data cleaning
3.1.5.5. Wrappers (data min-

ing)
3.1.5.6. Mediators and data in-

tegration
3.1.5.7. Entity resolution
3.1.5.8. Data warehouses

51

3.1.5.9. Federated databases
3.2. Informa-

tion sys-
tems
applica-
tions

3.2.1. Data min-
ing

3.2.1.1. Data cleaning
3.2.1.2. Collaborative filtering
3.2.1.2.1.* Item-based
3.2.1.2.2.* Scalable
3.2.1.3. Association rules
3.2.1.3.1.* Types of association

rules
3.2.1.3.2.* Interestingness
3.2.1.3.3.* Parallel computation
3.2.1.4. Clustering
3.2.1.4.1.* Massive data clus-

tering
3.2.1.4.2.* Consensus clustering
3.2.1.4.3.* Fuzzy clustering
3.2.1.4.4.* Additive clustering
3.2.1.4.5.* Feature weight clus-

tering
3.2.1.4.6.* Conceptual cluster-

ing
3.2.1.4.7.* Biclustering
3.2.1.5. Nearest-neighbor

search
3.2.1.6. Data stream mining
3.2.1.7.* Graph mining
3.2.1.7.1.* Graph partitioning
3.2.1.7.2.* Frequent graph min-

ing
3.2.1.7.3.* Graph based concep-

tual clustering
3.2.1.7.4.* Anomaly detection
3.2.1.7.5.* Critical nodes detec-

tion
3.2.1.8.* Process mining
3.2.1.11.* Text mining
3.2.1.11.1.* Text categorization
3.2.1.11.2.* Key-phrase indexing
3.2.1.10.* Data mining tools
3.2.1.9.* Sequence mining
3.2.1.9.1.* Rule and pattern

discovery
3.2.1.9.2.* Trajectory cluster-

ing
3.2.1.9.3.* Market graph
3.2.1.12.* Formal concept analy-

sis
3.3. World

Wide Web
3.3.1. Web min-

ing
3.3.1.2. Site wrapping
3.3.1.3. Data extraction and

integration
3.3.1.3.1 Deep web
3.3.1.3.2. Surfacing
3.3.1.3.3. Search results dedu-

plication
3.3.1.4. Web log analysis
3.3.1.5. Traffic analysis
3.3.1.6.* Knowledge discovery
3.4. Informa-

tion re-
trieval

3.4.1. Document
represen-
tation

3.4.1.1. Document structure

52

3.4.1.2. Document topic mod-
els

3.4.1.3. Content analysis and
feature selection

3.4.1.4. Data encoding and
canonicalization

3.4.1.5. Document collection
models

3.4.1.6. Ontologies
3.4.1.7. Dictionaries
3.4.1.8. Thesauri
3.4.2. Informa-

tion re-
trieval
query
processing

3.4.2.1. Query representation
3.4.2.2. Query intent
3.4.2.3. Query log analysis
3.4.2.4. Query suggestion
3.4.2.5. Query reformulation
3.4.3. Users and

interactive
retrieval

3.4.3.1. Personalization
3.4.3.2. Task models
3.4.3.3. Search interfaces
3.4.3.4. Collaborative search
3.4.4. Retrieval

models
and rank-
ing

3.4.4.1. Rank aggregation
3.4.4.2. Probabilistic retrieval

models
3.4.4.3. Language models
3.4.4.4. Similarity measures
3.4.4.5. Learning to rank
3.4.4.6. Combination fusion

and federated search
3.4.4.7. Information retrieval

diversity
3.4.4.8. Top-k retrieval in

databases
3.4.4.9. Novelty in information

retrieval
3.4.5. Retrieval

tasks and
goals

3.4.5.1. Question answering
3.4.5.2. Document filtering
3.4.5.3. Recommender systems
3.4.5.4. Information extraction
3.4.5.5. Sentiment analysis
3.4.5.6. Expert search
3.4.5.7. Near-duplicate and

plagiarism detection
3.4.5.8. Clustering and classifi-

cation
3.4.5.9. Summarization
3.4.5.10. Business intelligence
3.4.6. Evaluation

of retrieval
results

3.4.6.1. Test collections
3.4.6.2. Relevance assessment
3.4.6.3. Retrieval effectiveness
3.4.6.4. Retrieval efficiency
3.4.6.5. Presentation of re-

trieval results
3.4.7. Specialized

infor-
mation
retrieval

53

3.4.7.1. Structure and multilin-
gual text search

3.4.7.1.1. Structured text
search

3.4.7.1.2. Mathematics re-
trieval

3.4.7.1.3. Chemical and bio-
chemical retrieval

3.4.7.1.4. Multilingual and
cross-lingual re-
trieval

3.4.7.2. Multimedia and multi-
modal retrieval

3.4.7.2.1. Image search
3.4.7.2.2. Video search
3.4.7.2.3. Speech / audio

search
3.4.7.2.4. Music retrieval
3.4.7.3. Environment-specific

retrieval
3.4.7.3.1. Enterprise search
3.4.7.3.2. Desktop search
3.4.7.3.3. Web and social me-

dia search
4. Human-

centered
comput-
ing

4.1. Visualiza-
tion

4.1.2. Visualiza-
tion tech-
niques

4.1.2.1. Treemaps
4.1.2.2. Hyperbolic trees
4.1.2.3. Heat maps
4.1.2.4. Graph drawings
4.1.2.5. Dendrograms
4.1.2.6. Cladograms
4.1.2.7.* Elastic maps
4.1.3. Visualiza-

tion ap-
plication
domains

4.1.3.1. Scientific visualization
4.1.3.2. Visual analytics
4.1.3.3. Geographic visualiza-

tion
4.1.3.4. Information visualiza-

tion
4.1.4. Visualiza-

tion sys-
tems and
tools

4.1.4.1. Visualization toolkits
4.1.5. Visualiza-

tion the-
ory con-
cepts and
paradigms

4.1.6. Empirical
studies in
visualiza-
tion

4.1.7. Visualiza-
tion de-
sign and
evaluation
methods

5. Compu-
ting
method-
ologies

54

5.1. Artificial
intelli-
gence

5.1.1. Natural
language
processing

5.1.1.2. Information extraction
5.1.1.3. Machine translation
5.1.1.4. Discourse dialogue and

pragmatics
5.1.1.5. Natural language gen-

eration
5.1.1.6. Speech recognition
5.1.1.7. Lexical semantics
5.1.1.7.1.* Wikipedia based se-

mantics
5.1.1.8. Phonology / morphol-

ogy
5.1.1.9. Language resources
5.1.2. Knowledge

represen-
tation and
reasoning

5.1.2.1. Description logics
5.1.2.2. Semantic networks
5.1.2.3. Nonmonotonic, default

reasoning and belief re-
vision

5.1.2.4. Probabilistic reasoning
5.1.2.5. Vagueness and fuzzy

logic
5.1.2.6. Causal reasoning and

diagnostics
5.1.2.7. Temporal reasoning
5.1.2.8. Cognitive robotics
5.1.2.9. Ontology engineering
5.1.2.10. Logic programming

and answer set pro-
gramming

5.1.2.11. Spatial and physical
reasoning

5.1.2.12. Reasoning about belief
and knowledge

5.1.3. Computer
vision

5.1.3.1. Computer vision prob-
lems

5.1.3.1.1. Interest point and
salient region detec-
tions

5.1.3.1.2. Image segmentation
5.1.3.1.3. Video segmentation
5.1.3.1.4. Shape inference
5.1.3.1.5. Object detection
5.1.3.1.6. Object recognition
5.1.3.1.7. Object identification
5.1.3.1.8. Tracking
5.1.3.1.9. Reconstruction
5.1.3.1.10. Matching
5.1.3.2. Computer vision repre-

sentations
5.1.3.2.1. Image representa-

tions
5.1.3.2.1.1.* 2D PCA
5.1.3.2.2. Shape representa-

tions
5.1.3.2.3. Appearance and tex-

ture representations
5.1.3.2.4. Hierarchical repre-

sentations
5.2. Machine

learning
5.2.1. Learning

paradigms
5.2.1.1. Supervised learning

55

5.2.1.1.1. Ranking
5.2.1.1.2. Learning to rank
5.2.1.1.3. Supervised learning

by classification
5.2.1.1.4. Supervised learning

by regression
5.2.1.1.5. Structured outputs
5.2.1.1.6. Cost-sensitive learn-

ing
5.2.1.2. Unsupervised learning
5.2.1.2.1. Cluster analysis
5.2.1.2.2. Anomaly detection
5.2.1.2.3. Mixture modeling
5.2.1.2.4. Topic modeling
5.2.1.2.5. Source separation
5.2.1.2.6. Motif discovery
5.2.1.2.7. Dimensionality

reduction and mani-
fold learning

5.2.1.2.7.1.* Graph em-
bedding

5.2.1.2.7.2.* Supervised
dimesional-
ity reduction

5.2.1.3. Reinforcement learning
5.2.1.3.1. Sequential decision

making
5.2.1.3.2. Inverse reinforce-

ment learning
5.2.1.3.3. Apprenticeship

learning
5.2.1.3.4. Multi-agent rein-

forcement learning
5.2.1.3.5. Adversarial learning
5.2.1.4. Multi-task learning
5.2.1.4.1. Transfer learning
5.2.1.4.2. Lifelong machine

learning
5.2.1.4.3. Learning under co-

variate shift
5.2.2. Learning

settings
5.2.2.1. Batch learning
5.2.2.2. Online learning set-

tings
5.2.2.3. Learning from demon-

strations
5.2.2.4. Learning from cri-

tiques
5.2.2.5. Learning from implicit

feedback
5.2.2.6. Active learning set-

tings
5.2.2.7. Semi-supervised learn-

ing settings
5.2.2.7.1.* Kernel approach
5.2.3. Machine

learn-
ing ap-
proaches

5.2.3.1. Classification and re-
gression trees

5.2.3.1.1.* Parallel implementa-
tion

5.2.3.1.2.* Splitting criteria
5.2.3.1.3.* Model trees
5.2.3.2. Kernel methods
5.2.3.2.1.* Kernel support vec-

tor machines
5.2.3.2.1.1.* Dynamic
5.2.3.2.2. Gaussian processes
5.2.3.2.3.* Kernel Matrix
5.2.3.2.4.* Kernel Independent

components

56

5.2.3.2.5.* Kernel-based clus-
tering

5.2.3.3. Neural networks
5.2.3.3.1.* Self organized map
5.2.3.3.2.* Training approaches
5.2.3.3.2.1.* Evolutionary

approach
5.2.3.3.3.* Representation
5.2.3.3.3.1.* Rule-based

netwok
archirtecture

5.2.3.3.3.2.* Fuzzy repre-
sentation

5.2.3.3.4.* Evolving NN
5.2.3.3.5.* Ensembling
5.2.3.4. Logical and relational

learning
5.2.3.4.1. Inductive logic

learning
5.2.3.4.2. Statistical relational

learning
5.2.3.5. Learning in probabilis-

tic graphical models
5.2.3.5.1. Maximum likelihood

modeling
5.2.3.5.2. Maximum entropy

modeling
5.2.3.5.3. Maximum a posteri-

ori modeling
5.2.3.5.4. Mixture models
5.2.3.5.5. Latent variable mod-

els
5.2.3.5.6. Bayesian network

models
5.2.3.5.7.* Markov network

models
5.2.3.6. Learning linear models
5.2.3.6.1. Perceptron algo-

rithm
5.2.3.6.2.* Linear Discriminant

Analysis
5.2.3.6.2.1.* Tensor repre-

sentation
5.2.3.7. Factorization methods
5.2.3.7.1. Non-negative matrix

factorization
5.2.3.7.2. Factor analysis
5.2.3.7.3. Principal component

analysis
5.2.3.7.3.1.* 2D PCA
5.2.3.7.3.2.* Sparse PCA
5.2.3.7.4. Canonical correla-

tion analysis
5.2.3.7.6. Latent Dirichlet al-

location
5.2.3.7.8.* Independent Compo-

nent Analysis
5.2.3.7.9.* Nonlinear Principal

Components
5.2.3.7.10.* Multidimentional

scaling
5.2.3.7.10.1.* Least moduli
5.2.3.8. Rule learning
5.2.3.8.1.* Neuro-fuzzy ap-

proach
5.2.3.9. Instance-based learn-

ing
5.2.3.10. Markov decision pro-

cesses
5.2.3.11. Partially-observable

Markov decision pro-
cesses

5.2.3.12. Stochastic games
5.2.3.13. Learning latent repre-

sentations

57

5.2.3.13.1. Deep belief networks
5.2.3.14.* Multiresolution
5.2.3.15.* Support vector ma-

chines
5.2.4. Machine

learning
algorithms

5.2.4.1. Dynamic programming
for Markov decision
processes

5.2.4.1.1. Value iteration
5.2.4.1.2. Q-learning
5.2.4.1.3. Policy iteration
5.2.4.1.4. Temporal difference

learning
5.2.4.1.5. Approximate dy-

namic programming
methods

5.2.4.2. Ensemble methods
5.2.4.2.1. Boosting
5.2.4.2.2. Bagging
5.2.4.2.3.* Fusion of classifiers
5.2.4.3. Spectral methods
5.2.4.3.1.* Spectral clustering
5.2.4.4. Feature selection
5.2.4.5. Regularization
5.2.4.5.1.* Generalized eigen-

value
5.2.5. Cross-

validation

58

