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a b s t r a c t

A mathematically correct description is presented on the interrelations between the
dynamics of divergence free vector fields on an oriented 3-dimensional manifold M and
the dynamics of Hamiltonian systems. It is shown that for a given divergence free vector
field X with a global cross-section there exist some 4-dimensional symplectic manifold
M̃ ⊃ M and a smooth Hamilton function H : M̃ → R such that for some c ∈ R one gets
M = {H = c} and the Hamiltonian vector field XH restricted on this level coincides with
X . For divergence free vector fields with singular points such an extension is impossible
but the existence of local cross-section allows one to reduce the dynamics to the study
of symplectic diffeomorphisms in some sub-domains of M . We also consider the case of a
divergence free vector field X with a smooth integral having only finite number of critical
levels. It is shown that such a noncritical level is always a 2-torus and restriction of X on it
possesses a smooth invariant 2-form. The linearization of the flow on such a torus (i.e. the
reduction to the constant vector field) is not always possible in contrast to the case of an
integrable Hamiltonian system but in the analytic case (M and X are real analytic), due to
the Kolmogorov theorem, such a linearization is possible for tori with Diophantine rotation
numbers.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

It is a rather frequent case when the Lagrangian description of liquid flows discovers structures characteristic for
Hamiltonian dynamics [1,5,25,32]. Our aim in this note is to display the reason of this in the explicit form. In a sense, we
proceed what was done by Arnold in [1,2]. To show the interrelations between these two types of dynamics we present
some calculations which have to demonstrate how symplectic 2-dimensional maps arise in the Lagrangian description of
liquid flows. One has to say that models, where divergence-free 3-dimensional vector fields are studied, appear not only at
the Lagrangian description of liquid currents. Such equations arise also in the study of motions of thin liquid films flowing
down along the inclined plane [5]. The same features are characteristic in other situations where the divergence-free flows
arise [4]. This is observed in models of magnetic hydrodynamics, plasma confinement problems where magnetic line fields
are studied [13,15,17,24]. An important application in plasma physics involves integration of magnetic field lines

dx
dt0

= B(x),
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where t0 is an artificial time-like parameter parameterizing motion along the field line, and divB is equal to zero [17]. In any
case, the study of divergence-free vector fields is a very interesting problem itself, many features of their flow orbit structure
deserve a detailed investigation, see, for instance [12,34].

The Lagrangian description of stationary 3-dimensional flows in the space R3 with coordinates (x, y, z) has the form

ẋ = A(x, y, z, t), ẏ = B(x, y, z, t), ż = C(x, y, z, t),

where vector field V = (A, B, C) is the velocity field of liquid particles. If the liquid is incompressible, then divV ≡ 0 and
the field is divergence-free. We consider here the autonomous case and suppose also that vector field V has some (possibly
local) cross-section, that is, there is a 2-dimensional smooth submanifold N such that N is transverse to the vector field at
points of N and for which orbits starting at points of some of its subdomain N1 ⊂ N return to N in finite times.

It is more convenient to carry out the calculations in the invariant (coordinate-free) form [4]. Consider a smooth (C∞)
3-dimensional orientedmanifoldM with a smooth volume formΩ . Recall that for each smooth vector field X onM a smooth
function is defined called the divergence of the vector field, div X . This function is given by the relation

LXΩ = d(ıXΩ) = (div X)Ω,

where ıXΩ , called the interior product of Ω and X , is the 2-form such that for any m ∈ M, ξ , η ∈ TmM gives ıXΩ(ξ, η) =

Ω(X, ξ , η). If div X ≡ 0, then they say the vector field be divergence-free. For any given diffeomorphism f : M → M the
pullback form f ∗Ω is defined as [f ∗Ω]m(ξ, η, ζ ) = Ωf (m)(Df (ξ ),Df (η),Df (ζ )). One says that f preserves the volume if the
identity f ∗Ω = Ω holds true.

Let a vector field X be divergence-free. Then the flow for this vector field, i.e. one-parameter group of diffeomorphisms
f t (shifts along flow orbits) consists of divergence-free diffeomorphisms [4].

A nondegenerate volume formΩ on an oriented manifold (M,Ω) generates the correspondence between vector fields X
onM and 2-forms ω. This is given by the relation

ωX = ıXΩ, (1)

for any given vector field X onM .
A standard example of a 3-dimensional divergence-free vector field (DFVF, for brevity) is a flow on a nonsingular level

of a Hamilton function H for a Hamiltonian vector field XH on some smooth symplectic 4-dimensional manifold (N, ω) with
the Hamiltonian H : N → R and symplectic 2-form ω. Suppose dH ̸= 0 on some level H = c , then this level is a smooth
3-dimensional orientable submanifold M of N (nonsingular level). The flow in N generated by the vector field XH preserves
2-form ω and hence, the iterated volume formΩ = ω∧ω as well. Let us endow N with some smooth Riemannian metric g .
Then a vector field ∇H onM is correctly defined by the relation ı∇Hg = g(∇H, ·) = dH(·). By construction, one gets ∇H ̸= 0
onM . Therefore, the function ρ = 1/g(∇H,∇H) and a vector field n = ρ∇H are defined and differentiable. Observe that

dH(n) = (ı∇Hg)(n) = g(∇H, n) ≡ 1. (2)

Let us set Ωn = (ınΩ)|M . It turns out that Ωn is nondegenerate, i.e. is a volume form and invariant w.r.t. the flow on M .
The invariant proof of this assertion is given below in Section 3. In statistical physics the measure on M generated byΩn is
usually called the Liouville measure.

Nowwe return to themanifold (M,Ω) with a divergence-free vector field X and assume X to have a smooth cross-section
N. This means that X(m) /∈ TmN for any m ∈ N . Suppose also for some subdomain N1 ⊂ N orbits of X return to N in finite
time. Then the Poincaré map P : N1 → N is defined. This map is a diffeomorphism from N1 onto the image P(N1). As is
known, Poincaré map P on N1 generated by the flow f t is defined as follows. For a point x ∈ N1 its image P(x) is defined as
P(x) = f T (x)(x), where T (x) is the first return time to N for the orbit through x. Due to transversality of N to the vector field
at the points of N and smoothness of X , function T (x) depends smoothly on x, hence P is a smooth map P : N1 → N . The
following assertion is used in many papers, we present the proof for the reader convenience.

Proposition 1. P is symplectic w.r.t. 2-form ωX on N, in particular, ωX is nondegenerate.

Proof. To prove this fact, let us remark first the 2-form on ωX as a function of two vectors ωX (ξ, η) is bilinear and skew-
symmetric. This follows from the properties of Ω. It is also nondegenerate. Indeed, let for a fixed ξ ∈ TxN one has
ωX (ξ, η) = 0 for any η ∈ TxN. We need to prove that ξ = 0. If ξ ̸= 0, consider the plane Lξ in TxM spanned by two
independent vectors ξ and X(x). If η ∈ Lξ , then Ω(X(x), ξ , η) = 0, but if η /∈ Lξ , then vectors X(x), ξ , η are not coplanar
andΩ(X(x), ξ , η) ̸= 0 sinceΩ is the volume form. But intersection of two transverse planes TxN and Lξ is the straight-line
lξ ⊂ TxN spanned by ξ . So, ωX (ξ, η) = 0 implies η ∈ lξ . But η is, by assumption, an arbitrary vector in TxN , so ξ = 0. Also,
on 2-dimensional manifold N any nondegenerate skew-symmetric 2-form is closed.

Let us shift the triple (X(x), ξ , η) to TyM by the differential of the flow, where y = f T (x)(x) ∈ N.We get (Df TX(x),Df T ξ,
Df Tη), here T (x) is the transition time for point x ∈ N1. Then the equality holds

Ω(X(x), ξ , η) = (f T )∗Ω(X(x), ξ , η) = Ω(Df T (X(x)),Df T (ξ ),Df T (η)),

since flow maps preserveΩ . Denote ω the restriction of the form ωX on N .
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To verify the symplecticity of the Poincaré map P we calculate the differential DP at x. Let us take on N a smooth curve
c(s) through x, c(0) = x, c ′(0) = ξ, and transform it by the map P(c(s)) = f T (c(s))(c(s)) ∈ N . Differentiating the transformed
curve and setting s = 0 gives

DP(ξ ) = Df T (x)(ξ ) + X(P(x))dTx(ξ ).

Thus the difference between DP(ξ ) and Df T (x)(ξ ) is proportional to the vector X(P(x)) with the proportionality factor dTx(ξ ).
In addition, in accordance with the definition of the orbit, one has

d
dτ

(f t+τ (x))|τ=0=
d
dτ

(f τ ◦ f t (x))|τ=0= X(f t (x)).

Calculating this in the reverse order and using the group properties of the flow diffeomorphisms we come to
d
dτ

(f t+τ (x))|τ=0=
d
dτ

(f t ◦ f τ (x))|τ=0= Df t (X(x)).

Thus we have the identity for the flow

Df t (X(x)) ≡ X(f t (x)). (3)

Now we come to the equality

ωx(ξ, η) = Ω(X(x), ξ , η) = (f T )∗Ω(X(x), ξ , η) = Ω(Df TX,Df T ξ,Df Tη)
= Ω(X(P(x)),DP(ξ ) − dTx(ξ )X(P(x)),DP(η) − dTx(η)X(P(x)))
= Ω(X(P(x)),DP(ξ ),DP(η)) = ωP(x)(DP(ξ ),DP(η)). ■

A similar construction being applied to the case of divergence-free vector fields on a smooth n-dimensional orientedman-
ifold (M,Ω)with a nondegenerate n-formΩ and a smooth cross-sectionN leads to the study of volumepreservingmappings
on N w.r.t. the nondegenerate (n− 1)-form ω. In the case of nonautonomous T -periodic in t divergence-free vector fields on
an oriented 3-dimensionalM this gives for its Poincaré map in period T the volume-preserving diffeomorphism ofM .

These calculations show that if a divergence-free flowhas a cross-section, then the related Poincarémap is symplectic and
all known results on suchmaps are applicable (see, for instance, [21,30]). In particular, if a divergence free vector field X0 has
a smooth integral (integrable, see Section 3) and possesses a domain in the phase manifold filled with invariant tori, then its
perturbation obeys the conclusions of KAM theory (see, for instance, [9]). Such type results were elaborated when studying
divergence-free vector fields near singularities [8]. Also, all structures related with the stochastic properties of these maps
reflect themselves in the chaotic behavior of the trajectories of liquid particles. But, of course, it is not obligatory, when the
flow has a global cross-section. For instance, thewell knownABC flow [4,5] on 3-torusmost likely does not have global cross-
sections. On the other hand, majority of such flows have periodic orbits, hence local cross-sections exist. In any case, this is
themain reasonwhy structures characteristic for the Hamiltonian flows are observed in liquid currents [1,5,19,24,25,31,32].

Similar considerations in Lagrangian periodic incompressible liquid flows lead to the study of iterations of volume
preserving diffeomorphisms. There is a vast literature devoted to this topic. Many similarities with the structures observed
in Hamiltonian dynamics can be found in these investigations. But there are many differences since the property of volume
preservation gives much more freedom for the behavior of orbits [29,37].

2. Divergence-free vector fields and Hamiltonian systems

Nowwe suppose a divergence-free vector field X on an oriented smooth 3-manifold (M,Ω) to have a global cross-section.
Due to a discussion above, thismeans that for some smooth closed 2-dimensional submanifoldN ⊂ M all orbits ofX intersect
N transversely and each orbit starting on N returns on N in a finite time. Then the Poincaré map P : N → N is globally
defined on N and M itself is a bundle over S1 with a leaf N . In other words, M is diffeomorphic to the suspension over a
diffeomorphism P : N → N and a roof function F : N → R being the return time F (x) for the orbit through x ∈ N .

The construction above implies that there is a symplectic 2-formω onN such that P is a symplectic diffeomorphismw.r.t.
ω : P∗ω = ω. In this section we want to show that there is a 4-dimensional smooth symplectic manifold (M̃,Λ) and a
smooth Hamilton function H on M̃ such that the Hamiltonian vector field XH on some of its level H = c coincides with the
vector field X . Namely, the following theorem holds

Theorem 1. There is a smooth manifold M̃ of dimension four and a symplectic 2-formΛ on M̃ such that

• M is a smooth submanifold of M̃,
• vector field X is extended till a Hamiltonian vector field X̃ on (M̃,Λ) with a smooth Hamiltonian H : M̃ → R and M is the

level H = c for some c.

Proof. It is sufficient to consider M and the flow of the vector field X as given by the suspension over a diffeomorphism
P : N → N . To construct the manifold M̃ and the vector field X̃ we increase by one the dimension of the suspension
construction.
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Let us define the action (x, r, s) · n of the group Z on the manifold N × R2 setting (Pn(x), r − n, s) for any x ∈ N and all
n ∈ Z. This action is free and its set of orbits M̃ = (N × R2)/Z is a smooth manifold of dimension four and the quotient
mapping q : N × R2

→ M̃ is a regular covering.
IfR2

×Z → R2 is the auxiliary action defined as (r, s) ·n = (r−n, s), then the factor-manifold C = R2/Z is diffeomorphic
to the cylinder and the quotient mapping q0 : R2

→ C is the regular covering as well.
The formula p(q(x, r, s)) = q0(r, s) defines a submersion p : M̃ → C . Hence, a smooth bundle ξ = (M̃, p, C) is defined.
Let p0 : N × R2

→ R2 be a natural projection. According to the construction, the following diagram is commutative

N × R2 p0
−−−−→ R2

q
⏐⏐↓ ⏐⏐↓q0

M̃
p

−−−−→ C

(4)

Consider a flow ĥt on N × R2 being defined by the formula ĥt (x, r, s) = (x, r + t, s). This flow generates a vector field
X̂ = ∂/∂r . Since the flow ĥt commutes with the action of the group Z, it induces the flow h̃t na M̃ . Denote its vector field as
X̃ .

A usual suspension over the diffeomorphism P : N → N is given, if everywhere in these constructions we set s = 0.
Then M = q(N × R × 0) is a smooth 3-dimensional submanifold in M̃ . The flow ht corresponding to the vector field X on
M is generated by the restriction of the flow ĥt on N × R × 0. Therefore, one has X̃ |M= X , i.e. X̃ is the extension of X from
the submanifold M ⊂ M̃ to the whole M̃ . Finally, the restriction of the bundle ξ over S1 = q0(R × 0) ⊂ C gives the bundle
ξ1 = (M, p1, S1).

The standard symplectic form λ0 = dr ∧ds onR2 is invariant with respect to shifts (r, s) → (r − t, s), t ∈ R. In particular,
this is true for t = n ∈ Z. Thus λ0 generates a symplectic form λ on C . To further purposes, one needs to calculate the Lie
derivative of the form p∗λ in the direction of the vector field X̃ .

Lemma 1. The equality LX̃ (p
∗λ) = 0 holds.

Proof. By construction we get λ0 = q∗

0λ. Due to (4) one has

q∗(p∗λ) = p∗

0λ0. (5)

The invariance of λ0 with respect to the shifts implies that the form p∗

0λ0 is preserved by the flow ĥt on N × R2. In virtue of
h̃t

◦ q = q ◦ ĥt we have

q∗((h̃t )∗(p∗λ)) = (ĥt )∗(q∗(p∗λ)) = (ĥt )∗(p∗

0λ0) = p∗

0λ0 = q∗(p∗λ).

The mapping q is a covering, therefore the equalities obtained imply that (h̃t )∗(p∗λ) = p∗λ. It remains to remember that the
flow h̃t is generated by the field X̃ . ■

A natural projection µ0 : N × R2
→ N × R × 0 induces the map µ : M̃ → M via the formula µ(q(x, r, s)) = q(x, r, 0) =

q(µ0(x, r, s)). Here for any points û ∈ N × R2, ũ = q(û) and u = µ(ũ) we have

Dµ(X̃(ũ)) = Dµ(Dq(X̂(û))) = Dq(Dµ0(X̂(û))) = X(u).

Let us set Ω̃ = µ∗Ω and ω̃ = ıX̃Ω̃ . Then the preceding equalities imply ω̃ = µ∗ωX .
We setΛ = ω̃ + ε−1p∗λ for some ε ̸= 0.

Lemma 2. 2-formΛ on M̃ is symplectic.

Proof. First we prove that the form ω̃ is nondegenerate on the leaves of the bundle ξ = (M̃, p, C).
Each leaf F1 of the bundle ξ1 = (M, p1, S1) is a cross-section for the flow generated by the vector field X . By Proposition 1

this means that the form ωX is nondegenerate on F1.
Let c = q0(r, s) ∈ C and c1 = q0(r, 0).We set F = p−1(c) and F1 = p−1

1 (c1). Then one has F = q(N×r×s), F1 = q(N×r×0)
and therefore the restriction µ|F : F → F1 is a diffeomorphism. But then the form ω̃ = µ∗ωX is nondegenerate on F .

The nondegeneracy of the form ω̃ on bundle leaves of ξ and lemma 1 from [28] imply thatΛ is symplectic on M̃ . ■

Thus we have constructed a symplectic manifold (M̃,Λ) for which the first assertion of the theorem holds and the vector
field X̃ on M̃ that is the extension of the field X . It remains to prove that X̃ is Hamiltonian.

Lemma 3. The form ıX̃Λ is closed.

Proof. For any vector field Ỹ on manifold M̃ one has

(ıX̃Λ)(Ỹ ) = Λ(X̃, Ỹ ) = ω̃(X̃, Ỹ ) +
1
ε
(p∗λ)(X̃, Ỹ ).
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But the following equalities hold ω̃(X̃, Ỹ ) = (ıX̃Ω̃)(X̃, Ỹ ) = Ω̃(X̃, X̃, Ỹ ) = 0, hence

ıX̃Λ =
1
ε
ıX̃ (p

∗λ). (6)

Also we have d(ıX̃ (p
∗λ)) = LX̃ (p

∗λ) − ıX̃ (d(p
∗λ)). Since d(p∗λ) = p∗(dλ) = 0, the preceding formula and Lemma 1 imply

d(ıX̃ (p
∗λ)) = 0. In virtue of (6) lemma has been proved. ■

Lemma 4. Periods of the form ıX̃Λ along any 1-cycle in the manifold M̃ are equal to zero.

Proof. The inclusionM → M̃ is a homotopic equivalence. Then it is sufficient to calculate periods along cycles lying inM . It
is also evident that as a singular 1-cycle one can understand a piece-wise smooth loop γ : I → M , I = [0, 1], with the initial
point γ (0) = γ (1) = q(x0, 0, 0).

Suppose γ̂ : I → N × R × 0 be a path with an initial point γ̂ (0) = (x0, 0, 0), for which q ◦ γ̂ = γ . For any t ∈ I as Nt
and Rt we denote the leaves of trivial bundles N × R × 0 → R and N × R × 0 → N , through the point γ̂ (t). Then we have
dγ̂ /dt = Y2 + Y1, where Y2 ∈ Tγ̂ (t)Nt and Y1 ∈ Tγ̂ (t)Rt . Here we have Dp0(Y2) = 0 and vectors Y1 and X̂(γ̂ (t)) are collinear.
This implies ıX̂ (p

∗

0λ0)(Yk) = (p∗

0λ0)(X̂(γ̂ (t)), Yk) = 0 for k = 1,2. These equalities imply ıX̂ (p
∗

0λ0)(dγ̂ /dt) = 0 and then∫
γ̂

ıX̂ (p
∗

0λ0) =

∫ 1

0
ıX̂ (p

∗

0λ0)(dγ̂ /dt) = 0. (7)

Due to (5) and (6) we come to∫
γ

ıX̃Λ =
1
ε

∫
γ

ıX̃ (p
∗λ) =

1
ε

∫
γ̂

ıX̂ (q
∗(p∗λ)) =

1
ε

∫
γ̂

ıX̂ (p
∗

0λ0). (8)

From (7) and (8) the proof follows. ■

Lemmata 3 and 4 imply, in accordance with de Rham theorem [38, chapter 5], that the form ıX̃Λ is exact. Therefore there
is a smooth function H : X̃ → R for which the identity dH = ıX̃Λ holds. But this means that the vector field X̃ is globally
Hamiltonian.

To complete the proof we need to show that M is a level of the Hamiltonian H . Fix some point x0 ∈ N and set
ũ0 = q(x0, 0, 0). Then the value of Hamiltonian H : M̃ → R at an arbitrary point ũ = q(x, r, s) can be calculated by
means of the formula H(ũ) =

∫
γ
ıX̃Λ, where γ : [0, 1] → M̃ is some piece-wise smooth path with the end points γ (0) = ũ0

and γ (1) = ũ.
We put also ũs = q(x0, 0, s) for all s ∈ R. The integral

∫
γ
ıX̃Λ depends only on the endpoint of the path γ . This allows one

to regard that γ = αsγrs where αs(t) = q(x0, 0, ts) and the path γrs : [0, 1] → M̃ lies in the submanifoldMs = q(N × R × s),
it joins points ũs and ũ. But for such a path γrs the equalities hold: (7) and (8). Hence we get

∫
γrs

ıX̃Λ=0 and

H(ũ) =

∫
αs

ıX̃Λ+

∫
γrs

ıX̃Λ =

∫
αs

ıX̃Λ.

Thus, the valueH(ũ) does not depend on the number r . Therefore, submanifoldsMs ⊂ M̃ are the level sets of the Hamiltonian
H . In particular, there is a number c ∈ R such thatM = M0 = {ũ ∈ M̃|H(ũ) = c}. ■

It is evident that the extension of a DFVF given on smooth 3-dimensional oriented manifold M till a Hamiltonian vector
field on some symplectic 4-dimensional M̃ is impossible if X has singular points (equilibria) [15,26]. Indeed, as is known,
equilibria of a Hamiltonian vector field coincide with critical points of the Hamiltonian. But usually a critical level of a
Hamiltonian is not a smooth manifold since it has singularities at critical points (near them the level is not a smooth
manifold).

Nevertheless, the reduction to 2-dimensional symplectic diffeomorphisms here is exploited also, for instance, when
studying homoclinic dynamics. This can be seen, in particular, in [5]. In these cases the related Poincaré maps are
discontinuous but symplectic since they are constructed on cross-sections to homoclinic orbits to an equilibrium where
the discontinuity takes place on the trace of stable (unstable) manifold to the related saddle or saddle-focus equilibrium.
Other equilibria are also possible but they are degenerate (have either zeroth or pure imaginary eigenvalues) because the
condition divX = 0 holds at the equilibrium.

There is an interesting case where a close construction is exploited in other circumstances [11]. This concerns the case
when amap f : M → M acts on a smoothmanifold and it is assumed in addition that there is a symmetry for f , that a smooth
vector field v on M exists such that f ∗v = v where [f ∗v](x) = Df −1v(f (x)). Hence f transforms v to itself and then orbits
of the flow are transformed to the orbits of the same flow. Suppose that the flow of v is complete (all orbits are extendable
onto wholeR) and has a global cross-sectionΣ . In this case there is a covering spaceΣ×R → M generated by the Poincaré
map on Σ . It appears there exists a lift F of the map f to Σ × R which has a form of a skew product map with the base Σ .
Moreover, if f preserves a volume formΩ onM and v is divergence-free, then the map on the baseΣ preserves the induced
form onΣ . This shows connections with our results.
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3. On integrable divergence-free vector fields

In this section we single out a class of DFVF with a simple structure. They can be taken as initial systems for applying
perturbation methods.

Suppose on a smooth 3-dimensional orientedmanifold (M,Ω) a smooth DFVF X be given.We shall call such a vector field
to be integrable if it possesses a smooth integral F , i.e. a smooth function F : M → Rwhich satisfies the identity dF (X) ≡ 0.
A particular case of this situation was studied, for instance, in [32]. There is also another case of integrability similar to that
for a general 3-dimensional systems, where by the integrability one understands the existence two integrals independent
almost everywhere. This case for a DFVF we call super-integrable.

If a vector field X is integrable, then themanifoldM is foliated into levels of this function F = c. A first natural question in
this case arises: do some restrictions exist on the topology of levels of function F and flows generated by X on the invariant
subset F = c? Recall that usually the integrability of 3-dimensional vector fields requires to have two independent (almost
everywhere) integrals (what we called super-integrability above). We shall show that for many goals it is enough to have
only one smooth integral to investigate the orbit structure on the majority of levels of the integral. This also shows the close
relationwith integrable Hamiltonian vector fields where the (Liouville) integrability of a 2-degrees-of-freedomHamiltonian
vector field XH follows from the existence of one additional smooth integral independent of H almost everywhere (due to
the Liouville–Arnold theorem [3]). But as we shall see, the orbit behavior on levels F = c can be a bit more complicated than
in the integrable Hamiltonian case: the flow on such a level is not always linear, this depends on interrelations between
arithmetics of rotation numbers and smoothness of the flow as in the Kolmogorov theorem [22]. The details on the orbit
structure of the integrable Hamiltonian systems with two degrees of freedom see in [6,27].

Let us consider the case when dF ̸= 0 on a level F = c (more precisely, its connected component) assuming this
component be compact. We call such a level nonsingular. Thus a smooth closed connected 2-dimensional submanifold
Σ = {F = c} is an invariant set w.r.t. the flow generated by DFVF X .

Proposition 2. A closed nonsingular invariant 2-dimensional levelΣ is orientable. If X has not zeros onΣ, then it is an invariant
torus. Moreover, all close toΣ levels are also smooth invariant tori with flows without zeros.

Proof. Consider a tubular neighborhood B of Σ . Since dF ̸= 0 on it, Σ separates B into parts with different signs of the
function F − c. On the other hand, if Σ would be nonorientable, then it does not separate B [7]. Thus, Σ is an orientable
closed invariant 2-dimensional manifold. If X has not zeros onΣ , then it cannot be the Klein bottle and it is a torus. In this
case, all close levels of F are diffeomorphic to Σ by the Morse theory [33] and carry flows without zeros, that is, they are
smooth invariant tori. ■

Now we consider the level Σ = {F = c0} without equilibria on Σ . In principle, a flow without equilibria on a smooth
torus can have different structures. If the flow has a global cross-section, then its structure depends mainly on its Poicaré
rotation number and the smoothness of the flow [16]. But the flow on a torus without a global cross-sectionmay have a Reeb
component [18]. We want to show that the divergence-free property implies the strong restrictions on the flow behavior.
Namely, we shall prove the existence of smooth invariant measure for the flow.

In particular, 2-form ωX (ξ, η) is completely degenerate onΣ . Indeed, if vector ξ ∈ TxΣ is not collinear to X(x), then the
plane Lξ in TxM spanned by two independent vectors ξ and X(x) coincides with the tangent plane TxΣ . Thus for any vector
η ∈ TxΣ one has ωX (ξ, η) = 0. This is an analog forΣ to be a Lagrangian torus in the symplectic setting.

So, in order to get an invariant measure onΣ , we need to go in another way. The natural way is the following. Take a thin
layer F = c, |c − c0| < ε,where ε is small enough and positive. Then these levels of F are also smooth tori with vector fields
without equilibria. The flow in this layer preserves the volume. Let us introduce some smooth Riemannian metrics in this
layer. Since Σ is two-sidedly imbedded, then on Σ a smooth field of normal vectors exists. Choose such a field and denote
n(x) ∈ TxM its normal vector at the point x ∈ Σ . Then a 2-form ωn onΣ , ωn(·, ·) = Ω(n(x), ·, ·) is defined.

Theorem 2. A vector field of normals can be chosen in such a way that: (i) 2-form ωn onΣ is nondegenerate; (ii) the restriction
of X on the level F = c0 defines the flow ϕt

Σ that preserves the form ωn, (ϕt
Σ )

∗ωn = ωn.

Proof. Choose ε ∈ R, ε > 0, small enough such that on submanifold Mε = {x ∈ M||F (x) − c0| < ε} of M the inequalities
dF ̸= 0 and X ̸= 0 stay valid.

Let g be some smooth Riemannian metrics on Mε . Then a vector field ∇F on Mε is correctly defined by the relation
ı∇Fg = g(∇F , ·) = dF (·). By construction, one gets ∇F ̸= 0 on Mε . Therefore, the function ρ = 1/g(∇F ,∇F ) and a vector
field n = ρ∇F are defined and differentiable. Observe that

dF (n) = (ı∇Fg)(n) = g(∇F , n) ≡ 1. (9)

Let us set as above ωn = (ınΩ)|Σ .
The vector field X is tangent toΣ , therefore we get

LXωn = (LX (ınΩ))|Σ . (10)
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By definition ınΩ = c(n ⊗Ω), where c denote the contraction of the tensor n ⊗Ω . In accordance to proposition 3.2 in [35]
we have

LX (c(n ⊗Ω)) = c(LX (n ⊗Ω)) = c(LXn ⊗Ω) + c(n ⊗ LXΩ),

where LXn = [X, n] is the Lie bracket of vector fields. As a result we come to the relation

LX (ınΩ) = ı[X,n]Ω + ın(LXΩ). (11)

Lemma 5. The vector field [X, n] is tangent toΣ .

Proof. The vector n(x) is orthogonal to the surfaceΣ , thus the representation [X, n](x) = hn(x)+ Z holds, where h ∈ R and
Z ∈ TxΣ . But then, due to (9) we get

[X, n](x)F = hn(x)F + ZF = hdF (n(x)) + dF (Z) = h.

From the other hand, one has nF = dF (n) ≡ 1 and XF = dF (X) ≡ 0. Therefore, the equality holds

[X, n]F = X(nF ) − n(XF ) ≡ 0.

The equalities obtained lead to h = 0 and hence [X, n](x) = Z ∈ TxΣ . ■

Returning to the proof of the theorem, consider arbitrary x ∈ Σ and Y , Z ∈ TxΣ . It follows from the equality dimΣ = 2
and Lemma 5 that three vectors Y , Z and [X, n](x) are coplanar. Therefore we get (ı[X,n]Ω)(Y , Z) = Ω([X, n](x), Y , Z) = 0
and hence

(ı[X,n]Ω)|Σ= 0. (12)

Since LXΩ = 0, then from (11) and (12) the equality (LX (ınΩ))|Σ= 0 follows and hence LXωn = 0, in virtue of (10).
The orthogonality of n to the surfaceΣ implies also that the form ωn is nondegenerate and consequently is the area form

onΣ . ■
Thus, for any nondegenerate levelΣc = {F = c} we have the vector field Xc being the restriction of X onto the invariant

submanifold Σc . This vector field is nonsingular and preserves the area form ωn. Let us choose some angle variables (ϕ,ψ)
on the torusΣ . Then 2-form ωn takes the form a(ϕ,ψ)dϕ∧ dψ with the smooth doubly periodic positive function a and the
vector field has the form

ϕ̇ = A(ϕ,ψ), ψ̇ = B(ϕ,ψ),

where A2
+ B2

̸= 0 and both smooth functions A, B are doubly periodic. The measure preservation means here
∂

∂ϕ
(aA) +

∂

∂ψ
(aB) = 0.

Denote

λ1 =

∫
Σ

Aadϕ ∧ dψ, λ2 =

∫
Σ

Badϕ ∧ dψ.

The number λ = λ1/λ2 called the Poincaré rotation number plays the main role in the orbit dynamics on the torusΣ . As is
known, if λ is rational or one of λi is equal to zero, then all orbits of the flow are periodic (this is because of the existence of
a smooth invariant measure). But if λ is irrational and the flow is of smoothness C2 then all orbits on the torus are transitive.
More subtle ergodic properties of the flow depend on the interrelations between the arithmetic type of λ and a smoothness
of functions A, B [22]. For instance, for the case of C5-smooth r.h.s. the flow can have a continuous spectrum [20] (also see
details in [23]).

One can think that the integrability of X imply the flow structure like in the integrable Hamiltonian system. In fact, the
existence of an integral inM does not imply that this additional integral can be extended onto the 4-dimensional symplectic
manifold constructed above. This is not the case even for the case of a Hamiltonian systemwith two degrees of freedom. Such
a system can be nonintegrable in the whole phase space but be integrable on some separate level of Hamiltonian. To present
such an example, let us consider some smooth symplectic four-dimensional manifold (M,Λ) with a symplectic formΛ and
a smooth Hamiltonian H0. We assume the related Hamiltonian vector field XH0 be integrable, that is there is an additional
smooth integral K , {H0, K } ≡ 0. Consider a perturbation of this vector field H = H0 + εH1. Let us fix c. One can choose the
function H1 in the form H1 = (H0 − c)F such that on the level H0 = c the integrable system has some integrable structure,
and a function F can be taken arbitrarily. Let Jx : TxM → T ∗

x M be the isomorphism between 1-forms and vector fields on
M defined by the symplectic form Λ. Then JdH is the Hamiltonian vector field generated by function H . Thus we get the
Hamiltonian vector field

J(dH0 + εFdH0 + ε(H0 − c)dF ).

On the set H = c we have (H0 − c)(1 + εF ) = 0, thus it coincides with the level of the function H0 and therefore is the
invariant submanifold where the dynamics is integrable. Indeed, XH = J(1 + εF )dH0 on this level, hence the vector field is
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obtained by the change time from the integrable vector field XH0 on the level H0 = c . It is evident that function F can be
chosen in such a way that the complete dynamics would be nonintegrable. For instance, it can be reached, if on the level
H0 = c the orbit structure will contain a saddle periodic orbit with its merged stable and unstable manifolds. Function F can
be chosen in such a way that on close levels stable and unstable manifolds of saddle periodic orbits existing when changing
H = c would be split transversely. This shows that the integral K generally cannot be extended onto the whole phase space.

Remark 1. All constructions above where they appeal to the Riemannian metrics use a possibility the construct a smooth
Riemannianmetrics on a smoothmanifoldM , applying, for instance, a partition of unity [35]. If themanifoldM is real analytic
this construction does not work and one needs to use other tools. For example, to find a Riemannian metrics in this case one
can exploit the Morrey–Grauert theorem about an analytic embedding ofM into the Euclidean space (see, for instance, [36])
and then to restrict the Euclidean metrics to this embedded manifold. Thus all constructions can be done analytic as well. In
particular, this concerns the case of an integrable DFVF and the flow on its nonsingular level without zeros. The flow in this
case is real analytic and all conclusions of the Kolmogorov theorem hold.

3.1. On global structure of integrable divergence free vector fields

For the case of integrable DFVFs one can develop a global theory of such vector fields similar to the case of integrable
Hamiltonian vector fields on smooth symplectic four-dimensional manifolds [6,27]. Recall that if H be a smooth Hamilton
function and F its additional integral, one can restrict the Hamiltonian vector field XH on some nondegenerate level
Vc = {H = c} where dH ̸= 0. Suppose the restriction Fc of this additional integral be a smooth Bottian function [6],
that is it has finitely many critical values and the related critical sets of Fc are organized into the finitely many critical closed
smooth curves such that the restriction of Fc on the transverse disk D to the critical curve l generates a Morse function on
D with a nondegenerate critical point at the trace of l on D. For the restriction of the flow XH on Vc these critical curves are
usually closed periodic orbits for XH and for Bottian integral they can be only of two types: elliptic and hyperbolic ones in
dependence of what type of a nondegenerate critical point on D is. If the level Vc is a closed manifold (compact without a
boundary), then almost all levels of F are invariant Lagrangian tori (by the Liouville–Arnold theorem). This foliation can be
described via the invariant introduced by Fomenko (see details in [6]).

A similar theory can be also elaborated for the case of integrable DFVFs. Suppose a smooth closed oriented 3-dimensional
manifold (M,Ω) be given and X be a DFVFwhichwe assume to be integrable andwithout equilibria (sinceM is oriented and
closed, its Euler characteristic is zero). Let F be the related smooth integral, i.e. dF (X) ≡ 0, such that it has a finite number
of critical levels. We assume that each critical set of F consists of finitely many smooth disjoint closed curves l1, . . . , lm such
that on a cross-section to such curve li the restriction of F is a smooth function that has a Morse critical point at the trace of
li. A simplest example of such situation is an integrable Hamiltonian vector field on a symplectic manifold restricted on the
non-degenerate level of its additional integral when this restriction is a Bottian function. There are many such examples in
mechanics (see, for instance, [6,10].

Suppose now γ be a periodic orbit of X and {F = F (γ ) = f } be a connected set containing γ . If this level is not critical,
then its connected component containing γ is an invariant smooth torus with a rational rotation number since it contains
a periodic orbit. Due to the existence of smooth invariant measure on this torus all orbits on the torus are periodic and γ
cannot be isolated. Thus, if γ is an isolated periodic orbit of X , then the connected set of F = f either coincides with γ and
γ is an elliptic periodic orbit for X or γ is a saddle periodic orbit and the connected set of F = f coincides with the merged
stable and unstable manifolds of γ (recall that F is preserved along any orbit of X).

In the first case γ is a closed curve of maximums (minimums) for F and for the second case γ is the curve of saddle critical
points for F . This is easily derived from the Bott property like in [14].

By analogywith theHamiltonian casewe shall call such an integral to be Bottian. Aswe know, all noncritical levels of F are
disjoint invariant tori. We assume, in addition, that almost all of these tori carry flows with irrational rotation numbers. This
assumption prevents the super-integrability – the existence of the second independent almost everywhere integral for X .

First of all, we observe that an orbit of X through a critical point of F , since this orbit is not an equilibrium of X , consists of
critical points of F . Indeed, by definition, one has (DΦ t )∗(dF ) = dF (DΦ t ). If dF (ξ ) = 0 for any ξ ∈ TxM (the point x is critical),
then dF (η) = 0 for any η = DΦ t (ξ ) at the point y = Φ t (x). Since Φ t is a diffeomorphism, then DΦ t is the isomorphism
of tangent spaces. Hence, each connected critical set of F being a smooth closed curve is a periodic orbit of X . Denote such
orbit γ . Choose a local transverse disk D to γ at some its pointm ∈ γ and consider a smooth function f being the restriction
of F on D. Point m is a nondegenerate (Morse) critical point for f (the Bott property). Hence, m can be of two types, a center
or a saddle. Since F is the integral, then for the case of center γ is enclosed by the family of invariant tori for X . If m is a
saddle, then through m two smooth segments pass composing together the intersection of D with the local level of the set
F = F (m). Generically, for the saddle case the related periodic orbit of X through m is a saddle periodic orbit, hence one
segment generates a local stable manifold of the orbit γ and another segment does a local unstable manifold of γ .

As is known, in the whole phase space a saddle periodic orbit can be of two types: orientable and nonorientable. For a
periodic orbit of X the flow generates on the cross-section D the Poincaré map P : D → D being a symplectic mapping w.r.t.
the restriction ofΩ on D (see above). This symplectic map has a fixed point atm. The multipliers of DF |m can be generically
either two complex conjugate numbers on the unit circle (elliptic fixed point) or two different nonzero real numbersµ,µ−1

(saddle fixed point). An orientable periodic orbit corresponds to the positive multipliers µ,µ−1 of DF |m and nonorientable
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periodic orbit corresponds to the negative multipliers of DF |m. Local stable and unstable 2-dimensional manifolds W s(γ ),
W u(γ ) for the orientable periodic orbits are both cylinders and for the nonorientable periodic orbit they are both Möbius
strips. Their continuation by the flow of X gives global stable and unstablemanifoldswhichwe also denote asW s(γ ),W u(γ ).
Consider the ω-limit set of an orbit from W u(γ ). SinceM is closed, this set is not empty, invariant and closed.

To ease the exposition, we assume that all critical sets of F are either elliptic periodic orbits (critical sets of maximums
or minimums) or saddle periodic orbits for X . Then for the case of Bottian integral all orbits of X and their limit sets inM are
known. They are either closed periodic orbits composed by critical sets of F or they belong to stable (unstable) manifolds
of saddle periodic orbits (saddle critical curves) or they belong to invariant 2-tori. In the latter case their ω- (α-) limit sets
belong to the same torus as well. In the case under consideration, all limit set for an orbit inW u(γ ) is one of saddle periodic
orbits. More precisely, the following assertion is valid

Lemma 6. Consider a critical level {F = F (γ )} being a compact set in M and let γ1, . . . , γs be all saddle periodic orbits of X in
this set. Then any connected component of the set {F = F (γ )} \ {γ1, . . . , γs} consists of homo- or heteroclinic orbits of one or two
different saddle periodic orbits from the collection {γ1, . . . , γs}.

This lemma means that all stable and unstable manifolds of the same or different saddle periodic orbits coalesce.
Now onemay consider, as in [14], the evolution of tori and their reconstructions when a natural parameter of the system,

the value of integral F , varies. SinceM is closed, F takes its maximal f+ andminimal f− critical values. For a Bottian integral F
we have the related critical sets – a finite set of elliptic periodic orbits. Each maximal (and minimal) periodic orbit γ+

i (γ−

j )
gives rise to the one-parameter family of tori starting from γ+

i (if f+ corresponds to several maximal critical curves, then we
get several related families of tori). Tori of different families (or even from the same family), as F varies, can collide when
they approach to the critical levels of saddle critical curves, reconstruct and continue forming other families. The complete
reconstructions can be described by the invariant like ‘‘moleculas’’ (see details in [6]).

Remark 2. If a DFVF in question has equilibria, then its integrability with a smooth integral is in question. For instance, if this
integral would have nondegenerate (of the Morse type) critical points, then the local structure of levels for this integral is
determined by theMorse lemma [33]. The singular level containing the critical point is nonsmooth at the critical point (it has
a cone-like singularity). But this level is an invariant set of the flow and usually this point is simultaneously a singular point of
the vector field. Therefore, either this singular point has to be degenerate or the integral should havemore degenerate critical
points. Examples of (super-)integrable vector field in [34] show this. Another possibility is a nondegenerate (hyperbolic)
singular point of a DFVF and its smooth integral with lines of critical points being not Bottian.
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