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Abstract In this paper, we analyze several experiments that address the effects of electron-
electron interactions in 2D electron (hole) systems in the regime of low carrier
density. The interaction effects result in renormalization of the effectivespin
susceptibility, effective mass, andg∗-factor. We found a good agreement among
the data obtained for different 2D electron systems by several experimental teams
using different measuring techniques. We conclude that the renormalization is
not strongly affected by the material or sample-dependent parameters such as the
potential well width, disorder (the carrier mobility), and the bare (band) mass.
We demonstrated that the apparent disagreement between the reportedresults
on various 2D electron systems originates mainly from different interpretations
of similar "raw" data. Several important issues should be taken into account
in the data processing, among them the dependences of the effective mass and
spin susceptibility on the in-plane field, and the temperature dependence ofthe
Dingle temperature. The remaining disagreement between the data for various
2D electron systems, on one hand, and the 2D hole system in GaAs, on the other
hand, may indicate more complex character of electron-electron interactions in
the latter system.

Keywords: low-dimensional electron systems, electron-electron interactions, Fermi-liquid
effects

1. Introduction

Understanding the properties of strongly interacting and disordered two-
dimensional (2D) electron systems represents an outstanding problem of mod-
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ern condensed matter physics. The apparent "2D metal-insulator transition"
(2D MIT) is one of the puzzling phenomena that are still waiting for an ad-
equate theoretical description [1, 2]. Figure 1 shows that the transition from
the "metallic" to "insulating" behavior occurs as the density of electronsn is
decreased below a certain critical valuenc. The strength of electron-electron
(e − e) interactions is characterized by the ratio of the Coulomb interaction
energy to the Fermi energy. This ratio,rs, increases∝ 1/n1/2 [3] and reaches
∼ 10atn ≈ nc; this suggests that thee−e interactions might be one of the major
driving forces in the phenomenon. Thus, better understanding of the properties
of 2D systems at low densities, and, in particular, in the critical regime [4] in
the vicinity of the apparent 2D MIT, requires quantitative characterizationof
electron-electron interactions.
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Figure 19.1. Temperature dependences of the resistivity for Si-MOS device over a wide density
range, 0.8 to35 × 1011cm−2.

Within the framework of Fermi-liquid theory, the interactions lead to renor-
malization of the effective quasiparticle parameters, such as the spin suscepti-
bility χ∗, effective massm∗, Land́e factorg∗, and compressibilityκ∗. Measure-
ments of these renormalized parameters are the main source of experimental
information on interactions. The renormalizations are described by harmon-
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ics of the Fermi-liquid interaction in the singlet (symmetric, (s)) and triplet
(antisymmetric, (a)) channels, the first of them being:

F a
0 =

2

g∗
− 1, F s

1 = 2

(

m∗

mb
− 1

)

. (19.1)

Heregb andmb are the band values of theg-factor and mass, respectively.
Recently, as a result of extensive experimental efforts, rich informationon

the renormalized quasiparticle parameters has become available for 2D sys-
tems. The corresponding results were obtained by different techniquesand for
different material systems. At first sight, the data sets in different publications
seem to differ from each other a great deal. Our goal is to review brieflythe
available data and to analyze the sources of their diversity. We find that, in fact,
the apparent diversity between various results originates mainly from different
interpretation ofsimilar "raw" data. Being treated on the same footing, most
experimental data do agree with each other. The remaining disagreement be-
tween the data forp-type GaAs, on one hand, and the other systems, on the
other hand, may indicate more complex character of interactions in the former
2D hole system.

2. Renormalized spin susceptibility

Several experimental techniques have been used for measuring the renor-
malized spin susceptibilityχ∗, such as
(i) analysis of the beating pattern of Shubnikov-de Haas (SdH) oscillationsin
weak tilted or crossed magnetic fields [5–8];
(ii) fitting the temperature- and magnetic field dependences of the resistivity
[9–12] with the quantum corrections theory [13, 14];
(iii) the magnetoresistance scaling in strong fields [15–17];
(iv) measuring the “saturation” or hump in magnetoresistance in strong in-plane
fields [17–22];
(v) measuring the thermodynamic magnetization [23].
We compare below the available experimental results.

(1) SdH oscillations:n-Si andn-GaAs.
Figure 19.2 shows theχ∗(rs) data obtained by Okamoto et al. [5] forn-(100)Si-
MOS system by observing how the first harmonic of SdH oscillations vanishes
in tilted magnetic fields (the so called “spin-zero” condition, which corresponds

to the equalityg∗µBBtot = ~ωc/2, whereBtot =
√

B2
⊥ + B2

‖ andµB is the

Bohr magneton). More recent results [6] onn-(100)SiMOS samples have been
obtained from the SdH interference pattern in weak crossed magnetic fields
[7]; they extend the earlier data to both higher and lowerrs values. It is worth
noting that the data presented in Fig. 19.2 have been obtained for many Si-
MOS samples fabricated by different manufacturers [6, 5]; the peak mobilities
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for these samples range by a factor of∼ 2. Nevertheless, there is a good
agreement between the data for different samples. We conclude therefore that
the effect of disorder on the renormalization of χ∗ at n > nc is negligible or, at
least, weak.

As seen from Fig. 19.2, the data onn-channel Si-MOS samples are in a
reasonable agreement with the data obtained by Zhu et al. [8] forn-type
GaAs/AlGaAs samples using a similar technique (measuring SdH effect in
tilted magnetic fields). Because of a smaller (by a factor of 3) electron effective
mass in GaAs, similarrs values have been realized for the electron density 10
times lower than in Si-MOS samples. The width of the confining potential well
in such GaAs/AlGaAs heterojunctions is greater by a factor of 6 than in (100)
Si-MOS, due to a smaller massmz, lower electron density, and higher dielec-
tric constant. This significant difference in the thickness of 2D layers may be
one of the reasons for the 20% difference between theχ∗-data inn-GaAs and
n-SiMOS samples seen in Fig. 19.2; at the same time, the minor difference
indicates thatthe effect of the width of the potential well on renormalization of
χ∗ is not strong; recently, this effect has been studied in Ref. [20].
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Figure 19.2. Renormalized spin susceptibility measured by SdH effect in tilted or crossed fields
on n-SiMOS by Okamoto et al. [5], Pudalov et al [6], and on n-GaAs/AlGaAs by Zhu et al. [8].
Horizontal bars depict the upper and lower limits on theχ∗ values, determined from the sign
of SdH oscillations, measured atT = 0.027mK for sample Si5 [24]. Dashed and dotted lines
show two examples of interpolation of the data [5, 6].

The SdH experiments provide the direct measurement ofχ∗ in weak per-
pendicular and in-plane magnetic fields~ωc � EF , g∗µBBtot � EF [6, 7].
Under such conditions, the quantum oscillations of the Fermi energy may be ne-
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glected, and the magnetization remains a linear function ofB, χ∗(Btot) ≈ χ∗
0.

Also, under such experimental conditions, the filling factor is large,ν =
(nh)/(eB⊥) � 1 and the amplitude of oscillations is small|δρxx|/ρxx � 1.
Figure 19.3 shows, on theρ−B⊥ plane, the domain of the weak magnetic fields,
ν > 6, where the SdH oscillations have been measured in Refs. [6, 24]. As
the perpendicular magnetic field increases further (andν decreases), the SdH
oscillations at high densityn � nc transform into the quantum Hall effect;
for low densities,n ≈ nc, the SdH oscillations transform into the so called
“reentrant QHE-insulator”(QHE-I) transitions [25, 26]. The uppermost curve
(open circles) presents theρ(B) variations in the regime of QHE-I transitions
[25, 26]), measured for a density slightly larger (by 4%) than the critical value
nc. This diagram is only qualitative, because thenc value is sample-dependent.

Regime of low densities.In the vicinity of the critical densityn ≈ nc, the
number of observed oscillations decreases, their period increases, and the in-
terpretation of the interference pattern becomes more difficult, thus limiting the
range of direct measurements ofχ∗(rs).

The horizontal bars in Fig. 19.2 are obtained from consideration of the sign
and period of SdH oscillations [24] as explained below. They show the upper
limit for χ∗, calculated from the data reported in Refs. [6, 26, 24]. Figure 19.3 b
demonstrates that in the density range0.7 < n < 1×1011cm−2, the oscillatory
ρxx (beyond the magnetic field enhancedν = 1 valley gap) has minima at filling
factors

ν = (4i − 2), i = 1, 2, 3..., (19.2)

rather than atν = 4i (in (100) Si-MOSFETs, the valley degeneracygv = 2).
The latter situation is typical for high densities and corresponds to inequality
g∗µBB < ~ω∗

c/2.
In other words, the sign of oscillations at low densities is reversed. This fact

is fully consistent with other observations (see, e.g., Fig. 2 of Ref. [24],Fig. 1
of Ref. [27], and Figs. 1-3 of Ref. [28]). As figure 19.2 shows, theratioχ∗/χb

exceeds1/2mb = 2.6 atrs ≈ 6; the first harmonic of oscillations disappears at
this density (so called “spin-zero”), and the oscillations change sign for lower
densities. Since the sign of the SdH oscillations is determined by the ratio of
the Zeeman to cyclotron splitting [29, 30]

cos

(

π
g∗µBB

~ω∗
c

)

≡ cos

(

π
χ∗

χb
mb

)

, (19.3)

it was concluded in Ref. [24] that, in order to have negative sign in the range
10 > rs > 6, the spin susceptibilityχ∗ must obey the following inequality:

2.6 =
1

2mb
<

χ∗

χb
<

3

2mb
= 7.9. (19.4)
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Figure 19.3. (a) Overall view of the SdH oscillations in low fields at different densities. Empty
circles show theρxx oscillations for sample Si9 in high fields, corresponding to the reentrant
QHE-insulator transitions [26]. (b) Expanded view of one of theρxx(B) curves (n = 1.04 ×

1011cm−2 (right axis) and its oscillatory component normalized by the amplitude of thefirst
harmonicA1(B) (left axis) [6]. Dashed line confines the region of the SdH measurements in
Refs. [6, 24].

Thus, Eq. (19.2) and Eq. (19.4) enable us to set the upper and lower limits
for χ∗ [24], which are shown by horizontal bars in Fig. 19.2 atrs = 7.9− 9.5.
As density decreases (andrs increases), due to finite perpendicular fields, in
which the SdH oscillations were measured, the condition Eq. (19.4) becomes
a bit more restrictive, which leads to narrowing the interval between the upper
and lower bars [24].

(2) Magnetoresistance in the in-plane field.
Monotonic magnetoresistance (MR) in the in-plane field exhibits a well-defined
saturation for then-type Si MOSFETs [31–36, 15] or a hump for then- or p-
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type 2D GaAs systems [18, 21, 19, 20, 9, 8]. With increasing mobility (and
corresponding decreasing criticalnc density), the latter hump becomes more
pronounced; it resembles the sharp transition to theR(B‖) saturation in Si-MOS
[37].

The hump or saturation of the in-plane magnetoresistance have been inter-
preted in Refs. [19, 17] as a signature of complete spin polarizationBpol. This
treatment is also supported by the experiments by Vitkalov et al. [36, 38], who
found that the frequency doubling of SdH oscillations coincides with the onset
of saturation of the in-plane magnetoresistance. Another approach to the high
field measurements ofχ∗ is based on the scaling ofR(B‖) data [16, 15]: by
scaling, theR(B‖) data for different densities are forced to collapse onto each
other. This procedure is essentially the high-field one,g∗µB ∼ 0.6EF , as the
chosen scaling fieldBsc ≈ 0.3Bpol.

The features inρ(B‖) are observed at a fieldBsat, which is close to the
estimated field of the complete spin polarization [34]:

Bsat ≈ Bpol = 2EF /g∗µB. (19.5)

By assuming thatBpol = Bsat and using the standard expression for the 2D
density of states,DOS = m∗gv/π~

2, one can estimateχ∗ from measurements
of the characteristic fieldBsat:

g∗m∗ =
2nπ~

2

BsatgvµB
. (19.6)

Evaluation ofχ∗ from the aforementioned experiments in strong fields and
from Eqs. (19.6) and (19.5) is based on the following assumptions: (i)χ∗ ∝
g∗m∗ isB‖-independent; (ii)m∗ and 2D DOS are energy-independent. In gen-
eral, both assumptions are dubious. Nevertheless, for some samples, Eqs. (19.6)
and (19.5) may give plausible results over a limited range of densities. For
example, the low-field SdH data and the high field magnetoresistance data
were found to differ only by≤ 12% over the density range(1 − 10) ×
1011cm−2. More detailed critical analysis of the in-plane MR data may be
found in Refs. [20, 22, 23, 39, 40, 8].

An interesting interpretation of the MR data has been suggested in Ref. [16],
where the1/χ∗(n) dependence determined down ton = 1.08 × 1011cm−2,
was linearly extrapolated to zero atn ≈ 0.85 × 1011cm−2 and interpreted as
an indication of the ferromagnetic instability at this density. Our data, obtained
from the analysis of the period and sign of SdH oscillations at lower densities
[24], do not support this interpretation:
(i) in the whole domain of densities and fields depicted in Fig. 19.3, no doubling
of the frequency of SdH oscillations is observed, which proves that the 2D
system remains spin-unpolarized (see e.g., Fig. 19.3;
(ii) the sign of the SdH oscillations [see Eq. (19.2) and the discussion above]
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enables us to estimate the upper limit onχ∗ (see bars in Fig. 19.2) in the interval
of rs = 8−9.5, i.e. n = (1.08−0.77)×1011cm−2. Note that the latter interval
includes criticalnc values for most of the high mobility Si-MOS samples, in
particular, those used in Ref. [16].

(3) Temperature dependence ofχ∗.
In order to test whether or not the enhanced spin susceptibilityχ∗ depend
strongly on temperature, we measured the interference pattern of SdH oscilla-
tions for various temperatures (see Fig. 19.4) and for different densities, and thus
determined the temperature dependence ofχ∗. The results shown in Fig. 19.4
reveal only weak temperature variations ofχ∗(T ), within 2% in the studiedT
range. We therefore can safely neglect the effect of temperature in comparison
of different sets of data.

There are several possible reasons for the disagreement between thehigh-
field and low-field data; they are considered below.

(4) Effect of disorder on the high-field MR data.
Firstly, it has been shown in Refs. [22, 39] that the saturation fieldBsat and the
high-field MR for Si-MOSFETs [40] are strongly sample- (disorder-) depen-
dent. In particular, for a given density (and, hence, givenEF ), Bsat can vary
by as much as a factor of two for the samples with different mobilities. It was
suggested in Refs. [22, 41, 17] that these variations are caused by thelocalized
states, so that Eq. (19.6) might be thought to hold only for a “disorder-free”
sample [17]. However, by extrapolating the measuredBsat fields [22, 39] for
samples with different peak mobilities to1/µpeak → 0, one obtains a “dis-
order free”Bµ=∞

sat value, which overshoots the spin polarizing field [39], i.e.
Bµ=∞

sat > Bpol. This suggests that the structure of the localized states below
the Fermi level is non-trivial [42]. SinceBsat crossesBpol, the two quantities
become equal at some mobility value. For this nontrivial reason, the estimate
Eq. (19.6) provides correct results [43] for some samples with intermediate
mobilities; nevertheless, for lower densitiesn ≈ nc, deviations from the SdH
data are observed, as discussed in Ref. [44].

(5) Magnetic field dependence ofχ∗.
Secondly, both parametersm∗ andg∗ (andχ∗ ∝ g∗m∗) that enter Eqs. (19.5),
(19.6) depend on the in-plane field. Them∗(B‖) dependence is mainly an
orbital effect [45]; it is very strong forn-GaAs samples with wider potential well
[8, 20]. In contrast, theg∗(B‖) dependence is apparently a spin-related effect
[8, 46]. The dependence ofm∗ andg∗ onB‖ is another reason for the deviation
of the high-fieldχ∗ values from the low field results of SdH measurements.
In GaAs, the difference between the low-B‖ and high-B‖ data is dramatic
[8, 20]: the density dependence ofχ∗ derived for 2D electrons in GaAs on the
basis of theR(B‖) measurements in high fields is non-monotonic, whereas the
same samples demonstrated a monotonicχ∗(n) dependence in low fields (see
Fig. 19.2) [8, 20]. It is plausible, therefore, that ignoring them∗(B‖) orbital
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Figure 19.4. Typical evolution of the interference pattern in SdH oscillations with temperature.
The oscillations are normalized by the amplitude of the first harmonic [6].

dependence causes the non-monotonic density dependence ofF a
0 , obtained in

Ref. [37] for 2D holes in GaAs in the dilute regimep ∼ 1010cm−2, in which the
potential well is very wide. Them∗(B‖) dependence is also present in Si-MOS
samples [46], though it is weaker than in GaAs owing to a narrower potential
well; as the density decreases and potential well gets wider, this orbital effect
should have a stronger influence on the results of high-field MR measurements.
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Figure 19.5. Typical dependence of the spin susceptibility on the in-plane magnetic field,
measured forn-Si-MOS sample atT ≈ 0.15K. Density is given in units of1011cm−2.

(6) Magnetization measurements.
Another important source of experimental information on the spin suscep-
tibility are the thermodynamic magnetization measurements, performed re-
cently by Reznikov et al. [23] on Si-MOS samples. Over the density range
(3− 9)× 1011cm−2, the measureddM/dB is in agreement with the SdH data
on χ∗. The contribution of the localized states to the measured magnetiza-
tion impedes the detailed quantitative comparison with the SdH data at lower
densities. Nevertheless, two important results at low densities are in a good
agreement with the SdH data: (i) the spin susceptibility remains finite down
to the lowest density (thus confirming the absence of the spontaneous magne-
tization transition), and (ii) the magnetization is nonlinear inB‖ field with χ∗

varying with field qualitatively similar to that shown in Fig. 19.5.

3. Effective mass and g-factor

Historically, experimental data on the effective mass in 2D systems have
always been controversial (for a review of the earlier data, see [3]). The data
on m∗ have been obtained mainly from the temperature dependence of SdH
oscillations. Even within the same approach, the data from different exper-
iments disagreed with each other at low densities. With the advent of high
mobility samples, much lower densities became accessible. However, the gen-
eral trend remained the same: disagreement between different sets of data grew
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as the density was decreased; this disagreement becomes noticeable whenkF l
becomes smaller than∼ 5.

Figure 19.6 shows that the data for Si-MOS samples determined in Refs. [6,
47, 48] are close to each other only atn > 2.5 · 1011 cm−2 (rs < 5). At
lower densities, at first sight, there is a factor of∼ 1.5 disagreement between
the data of Refs. [6] and [48] (closed and open symbols, respectively), which is
discouraging. However, we show below that the apparent disagreement stems
from different interpretations of raw data. When treated on the same footing,
the data agree reasonably well with each other down to the lowest explored
densityn ≈ 1 × 1011 cm−2 (i.e. rs ≈ 8).

One might suspect that the difference in the extractedm∗ values is due to
the different temperature ranges in different experiments (T = 0.15− 1 K and
0.3−3 K in Ref. [6] andT = 0.05−0.25 K in Ref. [48]). However, the data in
Fig. 19.4 do not reveal a strongT -dependence ofχ∗. Sinceχ∗ is proportional
to g∗m∗, one has to assume that the temperature dependences ofm∗ andg∗

must compensate each other; such compensation is highly unlikely.
In order to determine the effective mass from the temperature dependenceof

the amplitude of SdH oscillations, one needs a model; below we consider the
models which are used in calculations ofm∗. The open squares [48] and open
circles [6] in Fig. 19.6 are obtained by using the same model of non-interacting
Fermi gas, for which the amplitude of SdH oscillations is given by the Lifshitz-
Kosevich (LK) formula [29]. The effective mass in this model is derived from
theT -dependence of the amplitude, which in the limit ofkT � ~ωc can be
expressed as:

−
e~H

2π2kBc
ln |δρxx/ρxx| ≈ m∗(T + TD). (19.7)

If one assumes that the Dingle temperatureTD is temperature independent,
the calculated mass appears to depend on the temperature interval of measure-
ments [6]: the higher the temperature, the larger the mass. Note that the direct
measurements ofg∗m∗(T ) do not reveal any substantialT -dependence of this
quantity. Moreover, the mass value calculated in this way was found to be
somewhat different for samples with different mobilities (i.e.τ values).

We believe that the aforementioned inconsistencies are caused by assuming
thatTD is temperature independent. This assumption is not justified, even if the
resistance is temperature-independent over the studiedT range (see, e.g. [49]).
However, in a typical experimental situation, determination ofm∗ requires
measurements of the oscillation amplitude over a wide temperature range, where
ρ is stronglyT -dependent [12] owing to the interaction corrections [13].

In Ref. [6], in order to determinem∗ in a strongly-interacting 2D electron
system in Si MOSFETs, another approach has been suggested, in whichTD(T )
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Figure 19.6. Renormalized effective mass of electronsm∗ (a)
and renormalizedg-factor (b) determined with Si-MOS samples
in different experiments as denoted in the legend. Data shown by
open boxes and circles are from Refs. [48], and [6], correspond-
ingly, calculated using the LK formula Eq. (19.7). Closed circles
are the data from Ref. [6] obtained using Eq. (19.8).

was assumed to reflect the temperature dependence of the resistivity% = %0 +
β(n)Tτ :

T ∗
D(T ) ≈ TD(1 + β(n)Tτ). (19.8)

This empirical approach eliminates largely the disagreement between the re-
sults onm∗ for the same sample, obtained in different temperature intervals, and
between the results obtained for different samples. This conjecture has been
supported recently by the theoretical study [49]. The data shown in Fig. 19.6 by
closed circles are obtained within this approach [6]; we believe, they represent
more reliablem∗ data, which are consistent with the other types of measure-
ments (e.g., with the analysis [12] ofρ(T ) in terms of the theory of interaction
corrections in the ballistic regime).

We will verify now whether or not the approach of Eq. (19.8) leads to con-
vergence of the results from Ref. [48] (open boxes) and Ref. [6] (closed points).
In order to do this, we use theσ(T ) dependences reported in Ref. [10] for the
same samples. We show below how the results onm∗ from Ref. [48] could
be "corrected" in order to take into account a finitedσ/dT ). The open-box
data point with the highestrs value in Fig. 19.6 corresponds to the density
n = 1.03 × 1011cm−2. Theσ(T ) curves are reported in Fig. 1 of Ref. [10]
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for two nearest density values,n = 1.01 and 1.08 × 1011cm−2. For sim-
plicity, over the range of the SdH measurementsT = 0.05 − 0.25K [48], the
σ(T ) dependence may be approximated by a linearT -dependence with the
sloped lnσ/dT ≈ −1/K. According to Eq. (19.8), we now use theσ(T ) slope
together withTD ≈ 0.2K for the rangeT = 0.05 − 0.25 K as reported in
Ref. [48]. As a result, we obtainTD = TD0(1+T ) and, to the first approxima-
tion, m∗0.833[T + TD0(1 + T )] = m∗0.833[1.2T + 0.24] for the temperature
dependence of the logarithm of the oscillation amplitude. The exact procedure
of the non-linear data fitting based on Eq. (19.8) requires more thorough con-
sideration; we describe here a simplified step-by step procedure of fitting.At
the 2nd step one obtains0.8m∗[T1.24 + 0.248], etc. All the above functions
fit equally well the same raw data (i.e. theT -dependence of the amplitude
of oscillations), but with different masses. Finally, the procedure converges
with the mass that is by∼ 20% smaller and the Dingle temperature that is by
25% larger than the initial values, respectively. As a result, the disagreement
between the data at thisn in Fig. 19.6 is reduced from 50% to about 25%.

We have repeated the same procedure at every density, for which theσ(T )
curve is known for samples used in Ref. [48]. For the lower densities, similarity
between the results of Refs. [6] and [48] is even more striking. For example,
for the second data point (n = 1.08 × 1011cm−2, rs = 7.9), the initial dis-
agreement between the masses is 43%:m∗/mb = 2.75 (open boxes) versus
1.92 (closed dots). After applying the same procedure of the non-linear fitting
with d lnσ/dT = −0.72K, and initial TD = 0.25K, we obtain the corrected
valuesTD0 = 0.333K andm∗/mb = 2.06; the latter value differs only by 7%
from our data (closed circles). At the highest density,n = 2.4 × 1011cm−2

(rs = 5.37, for which theσ(T ) dependences are shown in Fig. 1 of Ref. [10],
the mass correction is also∼ 6%.

Reduction of them∗ values from Ref. [48] (by taking into account theT -
dependence ofTD) leads to re-evaluation ofg∗: sinceχ∗(n) is known with
higher accuracy, the decrease inm∗ leads to the corresponding increase in
g∗ ∝ χ∗/m∗. The g∗(rs) dependence becomes monotonic, and comes into
agreement with the earlier data shown in Fig. 19.6,b as closed dots.

3.1 F a

0
values

TheF a
0 values are determined from the renormalizedg∗ factor. Firstly, as

expected, we find that allg∗(rs) data for (100)n-Si [6] and vicinal to (100)
Si-MOS samples [50] are rather close to each other. Secondly, after the afore-
mentioned correction has been made tom∗, the data from Ref. [48] become
consistent with the data from Ref. [6]. Note that them∗(rs) andF a

0 data for
n-GaAs samples, determined on the basis of approach Eq. (19.8), are currently
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unavailable. We focus below on comparison withp-GaAs, for which the dis-
agreement is dramatic, as Fig. 19.7 shows.
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Figure 19.7. Comparison of theF a

0 values determined for n-SiMOS [6] and forp-
GaAs/AlGaAs [9]; the latter data are also shown versusrs without and with scaling down
by a factor of 3.5.

Comparison withp-GaAs.
With increasing quality ofp-GaAs/AlGaAs samples, the critical values ofrs

that corresponds to the apparent 2D metal-insulator crossover grew from 17
[9] to 37 [37], and finally to 57 [51]. Observation of a non-insulating behavior
at such unprecedently highrs values represents a puzzle by itself; two other
puzzles are the observed non-monotonic behavior of the renormalizedg-factor
(andF a

0 ) with rs [37] andrs-independentm∗ [9]. Even if the nonmonotonic
g∗(rs) dependence might be explained by the orbital effects (i.e. them∗(B‖)
dependence) [8], the difference between 2D holes in GaAs and other 2D systems
remains dramatic.

Clearly, the dependencesm∗(rs) andg∗(rs) for p-GaAs cannot be obtained
by extrapolating the Si MOS data to higherrs values (see Fig. 19.6). Not
surprisingly, therefore, that theF a

0 data, deduced in Refs. [9, 52] from the
temperature dependence of the conductivity, differ substantially from thevalues
determined forn-Si- andn-GaAs-based structures (see Fig. 19.7). It is highly
unlikely that the values ofF a

0 (rs) “jump up” aroundrs ∼ 10 (where the data are
currently missing); such possibility is also at odds with the numerical results.
Rather, this non-monotonic dependence might signal either the lack of the
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universal dependenceF a
0 (rs) or an incorrect quantification of the effective

interaction strength in different systems.
To choose between the aforementioned options, let us compare the charge

transport inn-type andp-GaAs systems in the low-density regime. It is well-
known that the experimental data for various 2D electron and hole systems
studied so far exhibit a number of empirical similarities (quantitative within the
same host material and qualitative - for different systems). The two of them
are: (i) the relationship between the “critical”ρc andrs values, and (ii) the
magnitude of the resistivity drop∆ρ(T )/ρD at a given resistivityρD value.
Both dependences imply a similar mechanism: the higher the quality of the
sample, the larger the criticalrs (i.e. the lowernc), F a

0 , ρc and the magnitude
of the resistance drop. These qualitative features have been explainedby the
theory [13], where the only sample- (or disorder-) dependent parameter is the
mean free timeτ (the higherτ , the stronger the “metallic”ρ(T ) dependence).

The low densityp-GaAs [9, 37, 51] samples demonstrate different features:
on the one hand, thers-values are extremely high (thus indicating a high sample
quality and strong interactions), on the other hand, the signatures of the metallic
behaviour are rather weak. For the highestrs data [37, 51] the renormalized
Fermi energy is so small (∼ 0.1K) that the 2D systems becomes non-degenerate
very quickly asT grows. This might explain the weak magnitude of the resis-
tance drop in the measurements of Ref. [37, 51]. However, this line of reasoning
is irrelevant to the higher-density (311)p-GaAs samples [9], in which the Fermi
energy is larger. In order to bring the above data forp-GaAs into agreement
with other data, one has to scale thers values down by a factor of 6 [9] and
factor of 8 [37].

It might be, therefore, that the effectivee − e interactions are weaker in
p-GaAs samples than in the other systems for the samers value, owing to a
more complicated physics of the multivalley band structure and strong spin-
orbit effects. If this is the case, the interactions inp-GaAs samples cannot be
adequately quantified with a single parameterrs. We illustrate this in Fig. 19.7
by a simple rescaling of the effectivers values for the data onp-GaAs [9].
Despite the raw data differ substantially, they come into a reasonable agreement
when rs for p-GaAs is scaled down by an empirical factor3.5. Of course,
from this rescaling, it is impossible to conclude whether the effectivers values
should be increased forn-Si- andn-GaAs- based structures, or decreased for
p-GaAs; however, the multitude of the material systems which show reasonably
consistent data, points at a somewhat more complex behavior inp-GaAs. The
same empirical scaling procedure applied to them∗(rs) data forp-GaAs helps
to resolve another puzzle. The data for the effective mass that were found in
Ref. [9] to bers independent over the rangers = 10− 17, after such rescaling
will fall into the rangers = 2.8 − 4.8, where the mass variations withrs are
small (see Fig. 19.6).
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4. Summary

To summarize, we compared various experimental data on the renormaliza-
tion of the effective spin susceptibility, effective mass, andg∗-factor. If the
data are considered on the same footing, one finds a good agreement between
different sets of data, measured by different experimental teams using different
experimental techniques, and for different 2D electron systems. The consis-
tency of the data provides one more evidence that the renormalization is indeed
caused by the Fermi-liquid effects. The renormalization is not strongly affected
by material- and sample-dependent parameters such as the width of the poten-
tial well, disorder (sample mobility) and the band mass value. The apparent
disagreement between the reported results is caused mainly by different inter-
pretation of similar raw data. Among the most important issues to be taken into
account in the data processing, there are the dependences of the effective mass
and spin susceptibility on the in-plane field, and the temperature dependence
of the “Dingle temperature” (the latter is intrinsic for strongly-interacting sys-
tems). The remaining disagreement with the data for 2D hole system in GaAs
suggests that the character of the effective electron-electron interaction is more
complex in this system; this important issue deserves thorough theoretical at-
tention.

Acknowledgments

The work was supported in part by NSF, ARO MURI, INTAS, RFBR, and
the Russian grants from the Ministry for Science and Technology, Programs
of the RAS, and the Presidential Program of the support of leading scientific
schools.



Electron-electron interactions in 2D 325

References

[1] S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and
M. D’Iorio, Phys. Rev. B50, 8039 (1994).

[2] S. V. Kravchenko, G. E. Bowler, J. E. Furneaux, V. M. Pudalov, and M.
D’Iorio, Phys. Rev. B51, 7038 (1995).

[3] T. Ando, A. B. Fowler, F. Stern, Rev. Mod. Phys.54, 432 (1982).

[4] B. L. Altshuler, D. L. Maslov, and V.M. Pudalov, Physica E,9, 2092001.

[5] T. Okamoto, K. Hosoya, S. Kawaji, and A. Yagi, Phys. Rev. Lett.82, 3875
(1999).

[6] V. M. Pudalov, M. E. Gershenson, H. Kojima, N. Butch, E. M. Dizhur, G.
Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett.88, 196404 (2002).

[7] M. E. Gershenson, V. M. Pudalov, H. Kojima, E. M. Dizhur, G. Brunthaler,
A. Prinz, and G. Bauer, Physica E,12, 585 (2002).

[8] J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys.
Rev. Lett.90, 056805 (2003).

[9] Y. Y. Proskuryakov, A. K. Savchenko, S. S. Safonov, M. Pepper, M. Y.
Simons, and D. A. Ritchie, Phys. Rev. Lett.89, 076406 (2002).

[10] A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M.Klapwijk,
Phys. Rev. B66, 076303 (2002).

[11] S. A. Vitkalov, K. James, B. N. Narozhny, M. P. Sarachik, and T.M.
Klapwijk, Phys. Rev. B67, 113310 (2003).

[12] V. M. Pudalov, M. E. Gershenson, H. Kojima, G. Brunthaler, A. Prinz,
and G. Bauer, Phys. Rev. Lett.91, 126403 (2003).

[13] G. Zala, B. N. Narozhny, and I. L. Aleiner., Phys. Rev. B64,214204 (2001);
Phys. Rev. B65, 020201 (2001).

[14] I. V. Gornyi, and A. D. Mirlin, cond-mat/306029.

[15] S. A. Vitkalov, H. Zheng, K. M. Mertes, M. P. Sarachik, and T. M.Klap-
wijk, Phys. Rev. Lett.87, 086401 (2001).

[16] A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M.Klapwijk,
Phys. Rev. Lett.87, 086801 (2001).

[17] S. A. Vitkalov, M. P. Sarachik, and T. M. Klapwijk, Phys. Rev. B65,
201106 (2002).

[18] J. Yoon, C. C. Li, D. Shahar, D. C. Tsui, and M. Shayegan, Phys. Rev. Lett.
84, 4421 (2000).

[19] E. Tutuc, E. P. DePoortere, S. J. Papadakis, and M. Shayegan,
Phys. Rev. Lett.86, 2858 (2001).



326 FUNDAMENTAL PROBLEMS OF MESOSCOPIC PHYSICS

[20] E. Tutuc, E. Melinte, E. P. De Poortere, M. Shayegan and R. Winkler,
Phys. Rev. B67, 241309 (2003).

[21] E. Tutuc, E. Melinte, and M. Shayegan, Phys. Rev. Lett.88, 036805 (2002).

[22] V. M. Pudalov, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett.88,
076401 (2001).

[23] O. Prus, Y. Yaish, M. Reznikov, U. Sivan, and V. M. Pudalov Phys. Rev.
B 67, 205407 (2003).

[24] V. M. Pudalov, M. Gershenson, H. Kojima, cond-mat/0110160.

[25] M. D’Iorio, V. M. Pudalov, and S. G. Semenchinckii, Phys. Lett. A150,
422 (1990).

[26] M. D’Iorio, V. M. Pudalov, and S. G. Semenchinsky Phys. Rev. B46,
15992 (1992).

[27] V. M. Pudalov, M. D’Iorio, J. W. Campbell, JETP Lett.,57, 608 (1993).

[28] S. V. Kravchenko, A. A. Shashkin, D. A. Bloore, T. M. Klapwijk,Sol. St.
Commun.116, 495 (2000).

[29] I. M. Lifshitz and A. M. Kosevich, Zh. Eks. Teor. Fiz.29, 730 (1955). A.
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[35] K. Eng, X. G. Feng, D. Popović, and S. Washburn, Phys. Rev. Lett.88,
136402 (2002).

[36] S. A. Vitkalov, H. Zheng, K. M. Mertes, M. P. Sarachik, and T. M.Klap-
wijk, Phys. Rev. Lett.85, 2164 (2000).

[37] H. Noh, M. P. Lilly, D. C. Tsui, J. A. Simmons, L. N. Pfeiffer, and K.W.
West, cond-mat/0206519.

[38] S. A. Vitkalov, M. P. Sarachik, and T. M. Klapwijk, Phys. Rev. B64,
073101 (2001).

[39] V. M. Pudalov, G. Brunthaler, A. Prinz, and G. Bauer, cond-mat/0103087.

[40] V. M. Pudalov, M. Gershenson, H. Kojima, cond-mat/0201001.

[41] V. T. Dolgopolov, and A. V. Gold, Phys. Rev. Lett.89, 129701 (2002).



Electron-electron interactions in 2D 327

[42] V. M. Pudalov, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett.89,
129702 (2002).

[43] S. V. Kravchenko, A. Shashkin, V. T. Dolgopolov, Phys. Rev.Lett. 89,
219701 (2002).

[44] V. M. Pudalov, M. Gershenson, H. Kojima, N. Busch, E. M. Dizhur, G.
Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett.89, 219702 (2002).

[45] F. Stern, Phys. Rev. Lett.21, 1687 (1968).

[46] V. M. Pudalov, M. Gershenson, H. Kojima, to be published elsewhere.

[47] W. Pan, D. C. Tsui, and B. L. Draper, Phys. Rev. B59, 10208 (1999).

[48] A. A. Shashkin, M. Rahimi, S. Anissimova, S. V. Kravchenko, V. T.Dol-
gopolov, and T. M. Klapwijk, Phys. Rev. Lett.91, 046403 (2003).

[49] G. W. Martin, D. L. Maslov, M. Reiser, cond-mat/0302054.

[50] Y. Y. Proskuryakov, A. K. Savchenko, S. S. Safonov, M. Pepper, M. Y.
Simons, D. A. Ritchie, E. H. Linfield, and Z. D. Kvon, J. Phys. A36, 9249
(2003).

[51] H. Noh, M. P. Lilly, D. C. Tsui, J. A. Simmons, L. N. Pfeiffer, and K.W.
West, cond-mat/0301301.

[52] L. Li, Y. Y. Proskuryakov, A. K. Savchenko, E. H. Linfield, D.A. Ritchie,
Phys. Rev. Lett.90, 076802 (2003).




