• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Искусственный интеллект обнаружил новые космические аномалии

Искусственный интеллект обнаружил новые космические аномалии

© iStock

Международная команда проекта SNAD, куда входит доцент факультета физики НИУ ВШЭ Матвей Корнилов, обнаружила 11 аномалий, 7 из которых — кандидаты в сверхновые. Исследования проводились на цифровых снимках северного неба за 2018 год, для поиска использовался метод ближайших соседей на основе K-мерных деревьев. Автоматизировать поиск аномалий позволили методы машинного обучения. Исследование опубликовано в журнале New Astronomy.

Большая часть астрономических открытий основана на наблюдениях и последующих расчетах. Еще в XX веке количество наблюдений было невелико, однако с вводом в строй широкопольных астрономических обзоров неба объемы получаемых данных многократно возросли. Например, Zwicky Transient Facility (ZTF) — широкопольный обзор северного неба — генерирует ∼1,4 ТБ данных за ночь наблюдений, а его каталог содержит миллиарды объектов. Обрабатывать такое количество данных вручную сложно и дорого, поэтому команда проекта SNAD, объединяющего ученых из России, Франции и США, решала задачу автоматизации этого процесса.

Чтобы больше узнать об астрономических объектах, ученые анализируют их кривые блеска — зависимости блеска объекта от времени. Сначала регистрируют вспышку на небе, затем фиксируют, как ее блеск эволюционирует: становится более ярким, ослабевает или совсем гаснет. Для исследования ученые взяли миллион кривых блеска реальных объектов из каталога Zwicky Transient Facility за 2018 год, а также составили 7 симулированных кривых блеска объектов исследуемых типов. Всего учитывалось около 40 свойств, например амплитуда яркости объекта и периодичность. 

Константин Маланчев

«Мы описали свойства симуляций набором характеристик, который ожидали увидеть у реальных астрономических тел. Среди миллиона объектов мы искали сверхмощные сверхновые, сверхновые типа Iа, сверхновые II типа и события приливного разрыва, — объясняет один из авторов статьи постдок в университете Иллинойса в Урбане—Шампейне Константин Маланчев.  —  Такие классы объектов мы называем аномалиями. Они встречаются очень редко и их свойства малоизучены, либо это интересные объекты для более подробного исследования».

Затем данные кривых блеска реальных объектов сопоставляли с симуляциями с помощью метода K-мерных деревьев. K-мерное дерево — специальная геометрическая структура данных, которая позволяет разбить пространство на меньшие части, рассекая его  гиперплоскостями, плоскостями, прямыми или точками. Разбиение используют для сужения диапазона поиска в K-мерном пространстве, где ищут объект со свойствами, максимально похожими на те, что описаны в 7 симуляциях.

В результате на каждую из 7 симуляций было найдено 15 наиболее похожих, реально существующих объектов из базы ZTF. Всего получилось 105 объектов. Их исследователи анализировали вручную и проверяли, являются ли они аномалиями.  После ручной проверки подтвердились 11 аномалий, 7 из них — кандидаты в сверхновые, а еще 4 —  активные ядра галактик, в которых могут происходить события приливного разрыва. 

Мария Пружинская

«Это очень хороший результат, — комментирует один из авторов статьи Мария Пружинская, научный сотрудник Государственного астрономического института имени П.К. Штернберга. — Причем у нас получилось обнаружить не только уже открытые редкие объекты, но и несколько новых, которые были пропущены астрономическим сообществом. Это значит, что можно отладить существующие алгоритмы поиска, чтобы такие объекты больше не пропускать».

Исследование показало, что данный метод действительно эффективен, при этом довольно прост в реализации. Предложенная методика поиска объектов определенного типа универсальна и может быть применена для открытия не только редких типов сверхновых, но и других интересных астрономических объектов. 

Матвей Корнилов

«Астрономические или астрофизические явления, которые не были обнаружены учеными ранее, тоже являются аномалиями, — поясняет доцент факультета физики НИУ ВШЭ Матвей Корнилов. — Наблюдательные проявления таких объектов должны отличаться от свойств уже известных объектов. В будущем мы планируем применять нашу методику для открытия новых классов объектов».

Вам также может быть интересно:

Быть, а не казаться: как вырастить из ИИ профессионала

Пока ученые спорят о пользе и вреде искусственного интеллекта, молодежь активно осваивает и интегрирует нейросети в свою жизнь, приспосабливая нашу реальность к новым условиям. О том, как дообучить LLM, чтобы они смогли служить полноценными ассистентами в профессиональной среде, обсудили в Вышке на воркшопе «Большие языковые модели в науке и в жизни».

«Нам нужно учиться общаться с сервисами искусственного интеллекта»

На платформе «Открытое образование» стартовал онлайн-курс «Что такое генеративный ИИ?», который поможет слушателям узнать больше о том, как правильно общаться с нейросетями, чтобы они лучше выполняли задачи. Как работает генеративный ИИ и как с его помощью создавать любой контент, рассказала эксперт Центра непрерывного образования, старший преподаватель департамента больших данных и информационного поиска ФКН Дарья Касьяненко.

«Специалист по Data Science» ВШЭ — первая программа переподготовки с аккредитацией Альянса в сфере ИИ

Согласно итогам экспертизы, программа Высшей школы экономики охватывает современные области анализа данных и машинного обучения и помогает нетехническим специалистам приобрести базовые знания в области больших данных и искусственного интеллекта. Это уже шестая образовательная программа факультета компьютерных наук НИУ ВШЭ, получившая престижную профессионально-общественную аккредитацию.

В Вышке стартует конкурс компетенций в области ИИ и машинного обучения

Дирекция программы развития НИУ ВШЭ объявляет о проведении конкурса компетенций в интересах развития исследований в области искусственного интеллекта и машинного обучения. Заявки принимаются до 2 мая 2024 года.

Что мы знаем о мозге и его возможностях: рассказывают исследователи ВШЭ

Правда ли, что мозг — самый неизученный орган? Как нейротехнологии помогают в лечении сложных заболеваний? Может ли искусственный интеллект соревноваться с естественным? И куда пойти учиться, чтобы стать нейроученым? Эти и другие темы в новом выпуске рубрики «Разговор с экспертом» обсудили ученые из Высшей школы экономики — Ольга Драгой, Андрей Мячиков и Алексей Осадчий.

НИУ ВШЭ планирует до конца года обучить преподавателей работе с ИИ

Высшая школа экономики представила новый комплексный проект по повышению квалификации профессорско-преподавательского состава НИУ ВШЭ в области использования искусственного интеллекта. Входящий в него пакет программ направлен на обеспечение высокого уровня компетенций в области использования ИИ в образовании и исследованиях. Курсы бесплатны и предназначены для штатных преподавателей, а в дальнейшем — научных сотрудников и аспирантов московского кампуса НИУ ВШЭ.

«Нейросети показывают, какие качества действительно делают людей уникальными»

Онлайн-кампус НИУ ВШЭ запустил курс «Прикладные нейросети» на портале «Открытое образование». Теперь разобраться в том, как применять возможности искусственного интеллекта на практике, может любой желающий.

В Вышке наградят студентов, которые напишут диплом с помощью ИИ

Высшая школа экономики запустила конкурс решений, применяющих технологии искусственного интеллекта, при подготовке дипломов. Задача конкурса — оценить использование студентами инструментов на основе генеративных моделей в выпускных квалификационных работах (ВКР), защищаемых в 2024 году.

Определены победители финала НТО по профилю «Искусственный интеллект»

Названы победители и призеры Национальной технологической олимпиады (НТО) по профилю «Искусственный интеллект», который уже второй год оказывается самым популярным по количеству регистраций из 41 направления НТО. В этом сезоне участниками соревнований стали более 6300 человек из 84 регионов России, а также Казахстана, Молдовы и Узбекистана. В финал вышли 104 школьника из 28 регионов России. Среди субъектов РФ по числу финалистов лидируют Москва (26 человек), Санкт-Петербург (16 человек) и Новосибирская область (13 человек).

Производство будущего: Центр ИИ ВШЭ представил разработки в области контроля ручных операций

Исследователи Центра ИИ НИУ ВШЭ выстроили систему автоматизированного контроля ручных операций, которая находит применение в промышленном производстве. Система облегчает процессы наблюдения за объектами и действиями, а также позволяет контролировать качество их исполнения.