Исследователи из НИУ ВШЭ разработали модель машинного обучения, которая предсказывает риск развития осложнений у пациентов, перенесших инфаркт миокарда. В модели впервые учли генетические данные, что позволило точнее оценить риск долгосрочных осложнений. Исследование опубликовано в журнале Frontiers in Medicine.
Тема «машинное обучение»
25–26 октября в Москве состоялась конференция Fall into ML, организованная Институтом искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ совместно с Центром ИИ при поддержке титульного партнера — Сбера. На протяжении двух дней ведущие специалисты в области искусственного интеллекта обсуждали перспективы развития фундаментальных технологий ИИ.
Тематические модели — алгоритмы машинного обучения, способные сортировать большие объемы текстов по темам. Исследователи из НИУ ВШЭ в Санкт-Петербурге сравнили пять тематических моделей и определили, какие из них работают лучше. Наименьшее число ошибок показали две модели, одна из которых, GLDAW, — разработка Лаборатории социальной и когнитивной информатики НИУ ВШЭ в Санкт-Петербурге. Статья опубликована в журнале PeerJ Computer Science.
3 января родился один из самых популярных писателей прошлого века Джон Рональд Руэл Толкин. Исследователи из НИУ ВШЭ, AIRI и МИСИC использовали машинное обучение для исследования социальных связей между персонажами его вселенной Средиземья. Ученые считают, что этот подход найдет применение во многих сферах за пределами литературы. Результаты работы опубликованы в IEEE Xplore.
Сотрудники факультета компьютерных наук НИУ ВШЭ представят 12 своих работ на 37-й конференции NeurIPS. Conference and Workshop on Neural Information Processing Systems — одно из самых значительных событий в сфере искусственного интеллекта и машинного обучения. В этом году она пройдет с 10 по 16 декабря в Новом Орлеане (США).
Один из проектов, победивших на конкурсе «Зеркальные лаборатории» НИУ ВШЭ в июне этого года, посвящен технологиям машинного обучения в прогнозировании исходов острого коронарного синдрома. Его реализуют Международная лаборатория биоинформатики НИУ ВШЭ и Научно-образовательный центр Медицинского института Сургутского государственного университета. Как зародился этот совместный проект, чем он поможет пациентам и как будет организована работа по его реализации, рассказывает заведующая Международной лабораторией биоинформатики, доцент ФКН НИУ ВШЭ Мария Попцова.
По итогам конкурса проектов на факультете компьютерных наук НИУ ВШЭ открываются две новые лаборатории. Лабораторию матричных и тензорных методов в машинном обучении возглавит Максим Рахуба, доцент департамента больших данных и информационного поиска. Лабораторией облачных и мобильных технологий будет руководить профессор департамента программной инженерии Дмитрий Александров.
Исследователи факультета компьютерных наук ВШЭ и Лаборатории искусственного интеллекта Сбера смогли увеличить скорость работы градиентного бустинга — одного из самых эффективных алгоритмов для решения задач машинного обучения. Предложенный подход позволит быстрее решать задачи классификации и регрессии машинного обучения. Результаты их работы были представлены на конференции NeurIPS.
Ученые НИУ ВШЭ и МГМСУ им. Евдокимова разработали модель машинного обучения, которая предсказывает произнесенное слово на основе активности мозга, записанной небольшим количеством инвазивных электродов. Статья “Speech decoding from a small set of spatially segregated minimally invasive intracranial EEG electrodes with a compact and interpretable neural network” опубликована в Journal of Neural Engineering. Работа выполнена при поддержке мегагранта правительства РФ в рамках нацпроекта «Наука и университеты».
Команда ученых из МИЭМ ВШЭ, Физического института имени П.Н. Лебедева РАН и Университета Южной Калифорнии с помощью технологий машинного обучения нашли способ избежать внутренних дефектов и увеличить эффективность перовскитных солнечных элементов. Результаты исследования могут применяться для разработки более эффективных и долговечных материалов. Исследование проводилось на двойном перовските Cs2AgBiBr6. Статья опубликована в журнале Journal of Physical Chemistry Letters.
1
2